
Assignment #4
Due: 6:00pm Wednesday 4 October 2023

Upload at: https://www.gradescope.com/courses/606160/assignments/3377028

Assignments in COS 302 should be done individually. See the course syllabus for the collaboration policy.

Remember to append your Colab PDF as explained in the first homework, with all outputs visible.
When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (20pts) (A) Compute an orthonormal basis of the kernel of

A =
󰀗
1 −1 1 −1 1
1 1 −1 1 1

󰀘

(B) Write down an orthonormal basis for the image of A.

1

https://www.gradescope.com/courses/606160/assignments/3377028
https://www.cs.princeton.edu/courses/archive/fall23/cos302/files/syllabus.pdf

Problem 2 (23pts)
You’ve encountered power series before in other classes, but one thing you may not’ve realized is that you can
construct matrix functions from matrix power series. That is, if you have a function f (·) that has a convergent
power series representation:

f (x) =
∞󳕗
i=0

ai xi

then you can generally write a similar matrix version for square symmetric matrices X using the same ai:

F(X) =
∞󳕗
i=0

aiX i

(A) The matrix version F turns out to just apply the scalar f to each eigenvalue independently. Explain why.
(Hint: Write down the diagonalization of X and then multiply it by itself. What happens? How would a
diagonalized version of X interact with the power series?)

(B) In power series there is a notion of radius of convergence. How would you expect this concept to generalize
to square symmetric matrices?

(C) One important example is where the function f (x) is the exponential function. I can take any square
symmetric matrix and if I compute its matrix exponential, I get a positive definite matrix. Explain why.

2

https://en.wikipedia.org/wiki/Radius_of_convergence

Problem 3 (25pts)
Consider the following set of vectors in R3:

v1 =

󰀵󰀹󰀹󰀹󰀹󰀷
1
2
1

󰀶󰀺󰀺󰀺󰀺󰀸
v2 =

󰀵󰀹󰀹󰀹󰀹󰀷
1
0
−1

󰀶󰀺󰀺󰀺󰀺󰀸
v3 =

󰀵󰀹󰀹󰀹󰀹󰀷
2
1
3

󰀶󰀺󰀺󰀺󰀺󰀸
.

(A) Perform Gram-Schmidt orthogonalization on this set of vectors to obtain an orthonormal set {u1, u2, u3}.
Show all your intermediate steps and calculations.

(B) Once you have the vectors, verify that they are orthogonal by calculating the dot products between all
possible pairs of vectors in the set.

3

Problem 4 (30pts)
One of the most important algorithms in data analysis is principal component analysis or PCA. PCA tries to find
a way to represent high-dimensional data in a low-dimensional way so that human brains can reason about it. It
tries to identify the “important” directions in a data set and represent the data just in that basis. PCA does this
by computing the empirical covariance matrix of the data (we’ll learn more about that in a couple of weeks), and
then looking at the eigenvectors of it that correspond to the largest eigenvalues.

(A) Load mnist2000.pkl into a Colab notebook. Take the 2000 × 28 × 28 tensor of training data and
reshape it so that it is a 2000 × 784 matrix, where the rows are “unrolled” image vectors. Typically in
PCA, one first centers the data. Center the data by subtracting off the mean image; you did a very similar
procedure in HW2.

(B) Now compute the “scatter matrix” which is the 784 × 784 matrix you get from multiplying data matrix by
its transpose, making sure that you get it so the data dimension is the one being summed over.

(C) This scatter matrix is square and symmetric, so use the eigh function in the numpy.linalg package to
compute the eigenvalues and eigenvectors. Plot the eigenvalues in decreasing order.

(D) Read the documentation for eigh and figure out how to get the “big” eigenvectors. For each of the top five
eigenvectors, reshape them into 28 × 28 images and use imshow to render them.

(E) Now, create a low-dimensional representation of the data. Take the 2000 × 784 matrix and multiply it by
each of the top two eigenvectors. This takes all 2000 data, each of which are 784-dimensional, and gives
them two-dimensional coordinates. Make a scatter plot of these two-dimensional coordinates.

(F) That scatter plot doesn’t really give you much of a visualization. Here’s some starter code to build a more
interesting figure. It takes the two-dimensional projection and builds a “scatter plot” where the images
themselves are rendered instead of dots. Here I have the projections in a 2000 × 2 matrix called proj,
which I modify so that all the values are in [0, 1].

Make t h e p r o j e c t i o n s i n t o [0 , 1]
p r o j = p r o j − np . min (p ro j , a x i s =0)
p r o j = p r o j / np . max (p ro j , a x i s =0)

C r e a t e a 12" x 12" f i g u r e .
v i z _ f i g = p l . f i g u r e (f i g s i z e = (1 2 . , 1 2 .))

Get t h e f i g u r e wid th and h e i g h t i n p i x e l s .
width , h e i g h t = v i z _ f i g . g e t _ s i z e _ i n c h e s () ∗ v i z _ f i g . dp i

p l . p l o t () # Colab seems t o r e q u i r e t h i s t o r e n d e r .

Loop ove r images . Could do a l l 2000 bu t i t ’ s crowded .
f o r i i i n r ange (400) :

Render each image i n a l o c a t i o n on t h e f i g u r e .
p l . f i g image (t r a i n _ i m a g e s [i i , : , :] ,

xo= p r o j [i i , 1] ∗ width ,
yo =(p r o j [i i , 0] ∗ he i gh t −150) , # hack t o make v i s i b l e
o r i g i n = ’ uppe r ’)

Modify this code to work with your projections and make a visualization of the MNIST digits. Do you see
any interesting structure?

4

https://en.wikipedia.org/wiki/Principal_component_analysis
https://www.cs.princeton.edu/courses/archive/fall23/cos302/files/mnist2000.pkl
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html
https://matplotlib.org/3.1.3/api/_as_gen/matplotlib.pyplot.imshow.html

Problem 5 (2pts)
Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

Changelog

• 20 Sept 2023 – Initial F23 version

5

https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

