
Assignment #3
Due: 6:00pm Wednesday 27 September 2023

Upload at: https://www.gradescope.com/courses/606160/assignments/3328412

Assignments in COS 302 should be done individually. See the course syllabus for the collaboration policy.

Remember to append your Colab PDF as explained in the first homework, with all outputs visible.
When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (14pts)
A convex set is a set with the property that it is closed under convex combination. That is, if C is a convex set,
then ∀x, y ∈ C and α ∈ [0, 1]:

αx + (1 − α)y ∈ C .

A positive definite matrix matrix is a square (say n × n), symmetric matrix with the property that zT Az > 0 for
all z ∈ Rn. Explain why the set of n × n positive definite matrices is a convex set.
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Problem 2 (14pts)
Determine whether the following vectors are linearly independent:

(A)

x1 =

󰀵󰀹󰀹󰀹󰀹󰀷
2
−1
3

󰀶󰀺󰀺󰀺󰀺󰀸
x2 =

󰀵󰀹󰀹󰀹󰀹󰀷
1
1
−2

󰀶󰀺󰀺󰀺󰀺󰀸
x3 =

󰀵󰀹󰀹󰀹󰀹󰀷
3
−3
7

󰀶󰀺󰀺󰀺󰀺󰀸
(B)

x1 =

󰀵󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
2
1
0
0

󰀶󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸
x2 =

󰀵󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
1
0
1
1

󰀶󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸
x3 =

󰀵󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
0
0
1
1

󰀶󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸
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Problem 3 (10pts)
Write

y =
󰀵󰀹󰀹󰀹󰀹󰀷

1
−2
5

󰀶󰀺󰀺󰀺󰀺󰀸
as a linear combination of

x1 =

󰀵󰀹󰀹󰀹󰀹󰀷
1
1
1

󰀶󰀺󰀺󰀺󰀺󰀸
x2 =

󰀵󰀹󰀹󰀹󰀹󰀷
1
2
3

󰀶󰀺󰀺󰀺󰀺󰀸
x3 =

󰀵󰀹󰀹󰀹󰀹󰀷
2
−1
2

󰀶󰀺󰀺󰀺󰀺󰀸
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Problem 4 (30pts)
One important Pythonic skill is the ability to load, manipulate, and store external data in files. There are several
different ways to do this, but one of the most powerful and convenient tools is the pickle library. (Pickling being a
way to safely prepare food for long-term storage, although Python pickling isn’t particularly safe from a security
point of view.) The first step towards pickling data in Python is to understand how to open files. Tutorials and
documentation abound online, but for pickling, the most straightforward thing to do is to use the with open
pattern. For reading, this typically looks like:

impo r t p i c k l e a s pk l

w i th open ( ’ i n _ f i l e . pk l ’ , ’ rb ’ ) a s fh :
u n p i c k l e d _ d a t a = pk l . l o ad ( fh )

What’s happening here is that we’re opening a file (that here conventionally has the extension .pkl) in “read
binary” mode as indicated by the ‘rb’. The variable fh is a handle to the opened file that here we just hand to
the pickle library to process. Writing pickled data is very similar:

w i th open ( ’ o u t _ f i l e . pk l ’ , ’wb ’ ) a s fh :
pk l . dump ( d a t a _ t o _ p i c k l e , fh )

We’re opening a file in “write binary” mode and then handing the dump function a Python variable and the
filehandle we just opened. The pickle library knows how to handle many different kinds of Python data structures;
one powerful thing to do is to give it a dict with a bunch of different things you’d like to save.

(A) Download the coords.pkl file from the course website. Create a Colab notebook as in the previous
two assignments. Upload the coords.pkl file and write code to open and unpickle it. After you load it,
you’ll have a NumPy array that is a 296× 2 matrix. As the name indicates, these are coordinates in 2d. The
first column are x and the second column are y. Plot these data using Matplotlib. This will look best if it is
large with equal aspect ratio; the code below might be helpful for that.

f i g , ax = p l t . s u b p l o t s ( f i g s i z e = (15 , 15 ) )
# . . . p l o t t i n g . . .
ax . s e t _ a s p e c t ( 1 )

(B) In graphics and computer vision, affine transformations are a powerful way to deform objects and images.
We’ll look at a simple version of this here, in which we’ll use 2× 2 matrix to transform the two-dimensional
coordinates you loaded above. For example, these linear maps rotate, scale, and shear:

rotate:
󰀗
cos(θ) − sin(θ)
sin(θ) cos(θ)

󰀘
scale:

󰀗
scalex 0

0 scaley

󰀘
shear:

󰀗
1 shearx

sheary 1

󰀘

Use subplot to make three subplots, rendering the coordinate data after applying each of these three
transformations for parameter values of your choosing. Make sure to set the subtitles appropriately.

(C) Do these transformation commute? Create a rotation matrix and a shear matrix for some non-trivial
parameters. Create a figure with two subplots, in which you compose these transformations: one with
rotate-then-shear and another that is shear-then-rotate. Make sure to set the subtitles appropriately.

4

https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/Pickling
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://www.cs.princeton.edu/courses/archive/fall23/cos302/files/coords.pkl
https://en.wikipedia.org/wiki/Affine_transformation
https://matplotlib.org/3.1.0/gallery/subplots_axes_and_figures/subplots_demo.html


Problem 5 (30pts)
Even with just knowledge of vector norms, you already have a powerful way to construct machine learning
classifiers using the k-nearest neighbors (KNN) algorithm. In KNN, as in many kinds of machine learning
problems, we have a training set of data that we use to build the classifier, and our objective is to make accurate
predictions on data we haven’t seen before, i.e., the test data. If an algorithm makes good predictions on
previously-unseen (“out of sample”) data, then we say that it generalizes. Building algorithms that can generalize
to new data is what machine learning is all about.

The nearest neighbor algorithm centers on a simple concept: when given a new piece of data, find the datum
in your training set that is most similar to it, and return that label. The k-nearest neighbor algorithm does the
same thing, but takes the majority vote of the k training examples that are most similar to it. Of course for this to
work, we need to specify what it means to be “similar” and for that we can use a metric: a measure of distance as
determined by the norm of the distance between the data.

(A) Download the mnist2000.pkl file from the course website and then upload it to Colab. MNIST is a
famous data set for the problem of handwritten digit recognition for, e.g., reading zip codes off of envelopes.
The data are 28 × 28 greyscale images of the digits 0 through 9. This pickle file contains a subset with
2000 training images and 150 test images; the pickle contains a dictionary with keys train_images,
train_labels, test_images, and test_labels. The associated values are NumPy arrays: the
images for train and test are in arrays of size (2000,28,28) and (150,28,28), respectively, and the labels are
in 1d arrays. The pixels of the images take values in [0, 1] and the labels are integers in the range 0, 1, . . . , 9.
Use the imshow function from Matplotlib to render one of the training images via a command along the
lines of plt.imshow(train_images[n,:,:]). Print the corresponding training label for whatever
n you used. Do they make sense?

(B) Write a function called classify that takes in a test image in the form of a 28 × 28 NumPy array, and
returns a digit based on the nearest neighbor. Use basic squared Euclidean distance in pixels to make the
classification. The steps for this will be: 1) compute all the squared distances between the test image and
the training data, probably using a broadcast and a sum, 2) use the argmin function to determine the index
of the training image with the smallest distance to the test image, 3) use that index to select the right training
label and return it.

d e f c l a s s i f y ( t e s t _ i m a g e ) :
s q _ d i s t s = # ???
s m a l l e s t = # ???
r e t u r n # ???

Test your function on a couple of the images from the test set and see if it behaves reasonably.

(C) Loop over all the test images and report the test accuracy (percent correct) of your classifier.

(D) That was a k-nearest neighbor classifier for k = 1. Make a similar function called knn_classify that
also takes k as an argument and works for any k. You’ll probably want to use argsort instead of
argmin, to get the closest k. Determining the most common label among the k nearest might be slightly
more involved. There are several ways to do it, but I suggest looking at the unique function for ideas.
Try it out for a couple of values of k (say 5 and 10) and report the accuracies. (You should not expect to
get perfect accuracy, by the way.) For an additional challenge, see if you can do this without writing any
explicit loops.
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Problem 6 (2pts)
Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

Changelog

• 6 September 2023 – Initial F23 version.
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