Precept Topics

- Graphs and Digraphs
- Graph search: DFS and BFS

Relevant Material

- Book chapters: 4.1 and 4.2.

A. RECAP: Graphs, Digraphs and Graph Search

Your preceptor will review the material covered in this week's lectures.

B. EXERCISE: Shortest Common Ancestor (~40 minutes)

In a directed graph, a vertex x is an ancestor of v if there exists a (directed) path from v to x. Given two vertices v and w in a rooted directed acyclic graph (DAG), a shortest common ancestor sca (v, w) is a vertex x which:

- is an ancestor to both v and w;
- minimizes the sum of the distances from v to x and w to x (this path, which goes from v to x and x to w - in reverse direction - is the shortest ancestral path between v and w).
a) In the following digraph, compute the (smallest) sum of the path lengths from vertices 1 and 4 to all common ancestors. Find the shortest common ancestor and the shortest ancestral path.

b) Describe an algorithm for calculating the shortest common ancestor of two vertices v and w. Your algorithm should run in linear time (i.e., proportional to $V+E$).
c) How would your algorithm differ if we are interested in the shortest ancestral path between two sets of vertices A and B, rather than two vertices? (The shortest path between two sets is the shortest among any vertex v in A and any vertex w in B.

In the following example, $A=\{3,11\}$ and $B=\{9,10,13\}$. The shortest common ancestor is 5 (between 10 and 11).

C. EXERCISE: Rooted DAGs (~ 15 minutes)

In order to compute shortest common ancestors, we assumed the graph has a particular structure: it is directed and acyclic (i.e., is a DAG) and is also rooted (i.e., there is a unique common ancestor to all nodes). We will see now how to check for both of these things. Once again, our goal is to achieve a $\Theta(V+E)$-time algorithm.
a) Describe an algorithm that uses graph search to detect if a directed graph has a cycle.

Optional: Code this algorithm in the Ed Lesson.
b) Describe an algorithm that detects if a DAG is rooted.

D. CHALLENGE PROBLEM (optional)

An Eulerian cycle in a digraph is a cycle that uses each edge exactly once (vertices may repeat). First, design an algorithm that detects if a digraph has an Eulerian cycle; then extend this algorithm to return such a cycle if one exists.

