INTRACTABILITY

- introduction
- Pvs. NP
- poly-time reductions
- NP-completeness
- dealing with intractability
https://algs4.cs.princeton.edu

Overview: introduction to advanced topics

Main topics. [final two lectures]

- Intractability: barriers to designing efficient algorithms.
- Algorithm design: paradigms for solving problems.

Shifting gears.

- From individual problems to problem-solving models.
- From linear/quadratic to poly-time/exponential scale.
- From implementation details to conceptual frameworks.

Goals.

- Introduce you to essential ideas.
- Place algorithms and techniques we've studied in a larger context.

INTRACTABILITY

- introduction
$\rightarrow P$ vs. Níp

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Fundamental questions

Q1. What is an algorithm?
Q2. What is an efficient algorithm?
Q3. Which problems can be solved efficiently?

A Turing machine

A difficult problem: integer factorization

Integer factorization. Given an integer x, find a nontrivial factor. \qquad or report that no such factor exists
not 1 nor x

Ex. 147573952589676412927193707721

a FACTOR instance

Core application area. Cryptography.

1350664108659952233496032162788059699388814756056670 2752448514385152651060485953383394028715057190944179 8207282164471551373680419703964191743046496589274256 2393410208643832021103729587257623585096431105640735 0150818751067659462920556368552947521350085287941637 7328533906109750544334999811150056977236890927563
a very challenging FACTOR instance
(factor to earn an A+ in COS 226)

Brute-force search. Try all possible divisors between 2 and \sqrt{x}.
if there's a nontrivial factor larger
than \sqrt{x}, there is one smaller than \sqrt{x}

Another difficult problem: boolean satisfiability

Boolean satisfiability. Given a system of boolean equations, find a satisfying truth assignment. Ex.

$\neg x_{1}$	or	x_{2}	or	x_{3}		$=$	true
x_{1}	or	$\neg x_{2}$	or	x_{3}			
$\neg x_{1}$	or	$\neg x_{2}$	or	$\neg x_{3}$			true
$\neg x_{1}$	or	$\neg x_{2}$	or		or	x_{4}	$=$
		$\neg x_{2}$	or	x_{3}	or	x_{4}	
				true			
						true	

or report that no such assignment is possible

$$
\begin{aligned}
& x_{1}=\text { false } \\
& x_{2}=\text { false } \\
& x_{3}=\text { true } \\
& x_{4}=\text { true }
\end{aligned}
$$

a satisfying truth assignment

Applications.

- Automatic verification systems for software.
- Mean field diluted spin glass model in physics.
- Electronic design automation (EDA) for hardware.

Another difficult problem: boolean satisfiability

Boolean satisfiability. Given a system of boolean equations, find a satisfying truth assignment.

Brute-force search. Try all 2^{n} possible truth assignments, where $n=$ \# variables.
Q. Can we do anything substantially more clever?
A. Probably no. [stay tuned]

How difficult can it be?

Imagine a galactic computer...

- With as many processors as electrons in the universe.
- Each processor having the power of today's supercomputers.
- Each processor working for the lifetime of the universe.

quantity	estimate
electrons in universe	10^{79}
instructions per second	10^{13}
age of universe in seconds	10^{17}

Q. Could galactic computer solve satisfiability instance with 1,000 variables using brute-force search?
A. Not even close: $2^{1000}>10^{300} \gg 10^{79} \cdot 10^{13} \cdot 10^{17}=10^{109}$.

Lesson. Exponential growth dwarfs technological change.

Polynomial time

Q2. What is an efficient algorithm?
A2. Algorithm whose running time in polynomial in input size n. \qquad $n=\#$ of bits in input

We use to a poly-time algorithm as a surrogate for useful in practice. \qquad more on practicality shortly!

order of growth	emoji	name	today
$\Theta(1)$	(2)	constant	(-)
$\Theta(\log n)$	0	logarithmic	(-)
$\Theta(n)$	(i)	linear	(-)
$\Theta(n \log n)$	()	linearithmic	(-)
$\Theta\left(n^{2}\right)$	-	quadratic	-
$\Theta\left(n^{3}\right)$	(-)	cubic	(-)
$\Theta\left(n^{\log n}\right)$	\%	quasipolynomial	(2)
$\Theta\left(1.1^{n}\right)$	(6)	exponential	(2)
$\Theta\left(2^{n}\right)$	(13)	exponential	(2)
$\Theta(n!)$	(13)	factorial	(2)

Intractability: quiz 1

Which of the following are poly-time algorithms?
A. Brute-force search for satisfiability.
B. Brute-force search for factoring.
C. Both A and B.
D. Neither A nor B.

Some computational problems

problem	description	example instance	a solution	poly-time algorithm
FACTOR (integer factorization)	given an integer, find a nontrivial factor	147573952589676412927	193707721	?
Sat (boolean satisfiability)	given a system of boolean equations, find a satisfying assignment	$\begin{aligned} \neg x_{2} \text { or } x_{3} & =\text { true } \\ \neg x_{1} \text { or } \neg x_{2} \text { or } \neg x_{3} & =\text { true } \\ x_{2} \text { or } \neg x_{3} & =\text { true } \end{aligned}$	$\begin{aligned} & x_{1}=\text { false } \\ & x_{2}=\text { true } \\ & x_{3}=\text { true } \end{aligned}$?
$\begin{gathered} \text { SORT } \\ \text { (sorting) } \end{gathered}$	given an array of integers, find a permutation that puts the elements in ascending order	[45, 32, 21, 67, 226]	[2, 1, 0, 3, 4]	insertion sort
ST-ConN (graph connectivity)	given a graph and two vertices, find a path that connects them		0-3-2-4	depth-first search

Intractable problems

Q3. Which problems can be solved efficiently?
A3. Those for which poly-time algorithms exist.

Def. A problem is intractable if no poly-time algorithm exists to solve it.

Q4. How to prove that a problem is intractable?
A4. Generally no easy way. Focus of today's lecture.

tractable	intractable?
primality	integer factorization
shortest path	longest path
min cut	max cut
2-SAT	3-SAT $\longleftarrow 3$ boolean variables
per equation	

Intractable problems

INTRACTABILITY

- introduction
-P vs. NP

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Search problems

Search problem. Computational problem for which you can check a solution in poly-time.

Ex 1. [integer factorization] Given an n-bit integer x, find a nontrivial factor.

```
147573952589676412927
instance I
193707721
    solutionS
```

Poly-time checking algorithm. Check whether solution is a divisor of x. $O\left(n^{2}\right)$ time via long division

Remark. Suffices to verify a purported solution.

- Doesn't need to find the solution from scratch.
- Doesn't need to address case when no solution exists (e.g., if x is prime).

Search problems

Search problem. Computational problem for which you can check a solution in poly-time.

Ex 2. [boolean satisfiability] Given a system of m boolean equations in n variables, find a satisfying assignment.

$\neg x_{1}$	or	x_{2}	or	x_{3}		$=$	true
x_{1}	or	$\neg x_{2}$	or	x_{3}		$=$	true
$\neg x_{1}$	or	$\neg x_{2}$	or	$\neg x_{3}$			$=$
$\neg x_{1}$	or	$\neg x_{2}$	or		or	x_{4}	$=$
		$\neg x_{2}$	or	x_{3}	or	x_{4}	$=$
				true			
					true		

instance I

$$
\begin{aligned}
x_{1} & =\text { false } \\
x_{2} & =\text { false } \\
x_{3} & =\text { true } \\
x_{4} & =\text { true }
\end{aligned}
$$

solution S

Poly-time checking algorithm. Plug values of solution into system of equations and check.

NP

Definition. NP is the class of all search problems.

More accurately, FNP.
$\mathbf{N P}=$ nondeterministic poly-time

problem	description	poly-time checking algorithm
FACTOR (integer factorization)	given an integer, find a nontrivial factor	long division
SAT (boolean satisfiability)	given a boolean formula, find a satisfying assignment	plug in boolean values and evaluate boolean equations
SORT (sorting)	given an array of integers, find a permutation that puts the elements in ascending order	compare all adjacent integers in permutation
$\begin{gathered} \text { ST-CONN } \\ (\text { graph connectivity) } \end{gathered}$	given a digraph and two vertices, find a path that connects them	check for existence of edges between consecutive vertices in path
Block-Chain (hash verification)	given strings S and h, find a string t whose concatenation with S hashes to h	compute the hash of the concatenation and compare with h

Significance. Problems that scientists, engineers, and programmers aspire to solve in practice.

Intractability: quiz 2

Which of these problems are in NP?

A. Given a graph G, find a simple path with the most edges.
B. Given a graph G and an integer k, find a simple path with $\geq k$ edges.
C. Both A and B.
D. Neither A nor B.

Definition. \mathbf{P} is the class of all search problems that can be solved in poly-time.

problem	description	poly-time algorithm
SoRT		
(sorting)	given an array of integers, find a permutation that puts the elements in ascending order	insertion sort
ST-CONN		
(graph connectivity)	given a digraph and two vertices, find a path that connects them JAVA (legal Java program)	depth-first search
L-SoLVE	is it a legal Java program?	
(system of linear equations)		

Significance. Problems that scientists, engineers, and programmers do solve in practice.
Note. All problems in \mathbf{P} are also in NP. \qquad any string serves as certificate

Pvs. NP

The central question. Does $\mathbf{P}=\mathbf{N P}$?

- $\mathbf{P}=$ set of search problems that are solvable in poly-time.
- $\mathbf{N P}=$ set of search problems (checkable in poly-time).

brute-force search may be the best we can do

$$
\mathbf{P}=\mathbf{N P}
$$

poly-time algorithms for
FACTOR, SAT, LONGEST-PATH, ...

The central question. Does $\mathbf{P}=\mathbf{N P}$?

- $\mathbf{P}=$ set of search problems that are solvable in poly-time.
- $\mathbf{N P}=$ set of search problems (checkable in poly-time).

Creativity: another way to view the situation

Analogy. Creative genius vs. ordinary appreciation of creativity.

domain	creative genius	ordinary appreciation
music	Taylor Swift writes a song	a Swiftie appreciates it
mathematics	Wiles proves a deep theorem	a colleague checks it
science	Boeing designs an efficient airfoil	a simulator verifies it
programming	GitHub Copilot generates a program	an experimentalist validates it

creative genius

ordinary appreciation

Intuition. Checking a solution seems like it should be way easier than finding it.

Princeton computer science building

Princeton computer science building (closeup)

INTRACTABILITY

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Bird's-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'. Suppose we could (not) solve problem X efficiently. What else could we (not) solve efficiently?
" Give me a lever long enough and a fulcrum on which to place it, and I shall move the world." - Archimedes

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to Y. \longleftarrow Cook reduction

Algorithm for X

Design algorithms. If X poly-time reduces to Y, and can solve Y efficiently, then can also solve X.

Ex 1. Median reduces to Sort.
Ex 2. Bipartite-Matching reduces to Max-Flow.

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to Y.

Algorithm for X

Establish intractability. If SAT poly-time reduces to Y, then Y is intractable. \qquad

Mentality (to establish intractability).

- If I could solve Y in poly-time, then I could also solve SAT in poly-time.
- Sat is believed to be intractable.
- Therefore, so is Y.

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to Y.

Algorithm for X

Common mistake. Confusing X poly-time reduces to Y with Y poly-time reduces to X.
X reduces to SAT: X is no harder than SAT. (If I can solve SAT, then I can solve X.) Sat reduces to $X: X$ is no easier than Sat. (If I can solve X, then I can solve Sat.)

Integer linear programming

ILP. Given a system of linear inequalities, find an integer-valued solution.

instance I

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=1 \\
& x_{3}=0 \\
& x_{4}=1 \\
& x_{5}=1
\end{aligned}
$$

solution S

Context. Cornerstone problem in operations research.
Remark. Finding a real-valued solution can be solved in poly-time (linear programming).

SAT poly-time reduces to ILP

SAT. Given a system of boolean equations in CNF, find a solution.

ILP. Given a system of linear inequalities, find an integervalued solution.

$$
\begin{aligned}
& 0 \leq y_{1} \leq 1 \\
& y_{i}=0 \Rightarrow x_{i}=\text { false } \\
& y_{i}=1 \Rightarrow x_{i}=\text { true }
\end{aligned} \longrightarrow \begin{aligned}
& 0 \leq y_{2} \leq 1 \\
& 0 \leq y_{3} \leq 1 \\
& 0 \leq y_{4} \leq 1
\end{aligned}
$$

$\left(1-y_{1}\right)$	$+y_{2}$	$+y_{3}$			1	
y_{1}	$+\left(1-y_{2}\right)$	$+y_{3}$		\geq	1	
$\left(1-y_{1}\right)$	$+\left(1-y_{2}\right)$	$+\left(1-y_{3}\right)$	y_{4}	\geq	1	
$\left(1-y_{1}\right)$	$+\left(1-y_{2}\right)$	+		$+y_{4}$	\geq	1
		$\left(1-y_{2}\right)$	+	y_{3}	$+y_{4}$	\geq

Solution to ILP instance provides solution to SAt instance.

SAT poly-time reduces to ILP

Algorithm for SAT

Preprocessing: boolean equations to linear inequalities
Post-processing: $\begin{aligned} & y_{i}=0 \Longrightarrow x_{i}=\text { false } \\ & y_{i}=1 \Longrightarrow x_{i}=\text { true }\end{aligned}$

Suppose that Problem X poly-time reduces to Problem Y.
 Which of the following can we infer?

A. If X can be solved in poly-time, then so can Y.
B. If X cannot be solved in $\Theta\left(n^{3}\right)$ time, Y cannot be solved in poly-time.
C. If Y can be solved in $\Theta\left(n^{3}\right)$ time, then X can be solved in poly-time.
D. If Y cannot be solved in poly-time, then neither can X.

More poly-time reductions from SAT

INTRACTABILITY

- introduction
$\rightarrow P$ vs. NP

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

NP-completeness

Def. A problem is NP-complete if

- It is in NP.
- All problems in NP poly-time to reduce to it. \qquad intuitively, the "hardest problems" in NP

Two worlds.

$P \neq N P$

$\mathbf{P}=\mathbf{N P}$

Suppose that X is NP-complete. What can you infer?

I. X is in NP.
II. If X can be solved in poly-time, then $\mathbf{P}=\mathbf{N P}$.
III. If X cannot be solved in poly-time, then $\mathbf{P} \neq \mathbf{N P}$.
A. I only.
B. II only.
C. I and II only.
D. I, II, and III.

Key property. An $\mathbf{N P}$-complete problem can be solved in poly-time if and only if $\mathbf{P}=\mathbf{N} \mathbf{P}$.

Cook-Levin theorem

Cook-Levin theorem. Sat is NP-complete.

Pf. Pioneering result in computer science.

Corollary. Sat can be solved in poly-time if and only if $\mathbf{P}=\mathbf{N P}$.

Impact. To provide that a new problem Y is NP-complete, suffices to show that:

- Y is in NP.
- Sat poly-time reduces to Y.

All of these problems (and many, many more) poly-time reduce to SAT.

Implications of Karp + Cook-Levin

All of these problems are NP-complete; they are manifestations of the same really hard problem.

Implications of Karp + Cook-Levin

All of these problems are NP-complete; they are manifestations of the same really hard problem.

More NP-complete problems

field of study

Aerospace engineering
Biology
Chemical engineering
Chemistry

Civil engineering

Economics
Electrical engineering
Environmental engineering
Financial engineering
Game theory
Mechanical engineering
Medicine
Operations research
Physics
Politics
Pop culture

NP-complete problem
optimal mesh partitioning for finite elements phylogeny reconstruction
heat exchanger network synthesis protein folding
equilibrium of urban traffic flow
computation of arbitrage in financial markets with friction

VLSI layout

optimal placement of contaminant sensors
minimum risk portfolio of given return
Nash equilibrium that maximizes social welfare structure of turbulence in sheared flows
reconstructing 3d shape from biplane angiocardiogram traveling salesperson problem, integer programming
partition function of $3 d$ Ising model
Shapley-Shubik voting power
versions of Sudoku, Checkers, Minesweeper, Tetris

Statistics

INTRACTABILITY

Algorithms

Robert Sedgewick | Kevin Wayn
https://algs4.cs.princeton.edu

Dealing with intractability

A program with which of these running times is most likely to be useful in practice?
A. $10^{226} n$
B. n^{226}
\qquad poly-time (but probably not useful in practice)
C. 1.000000001^{n} \qquad exponential time
(but probably useful in practice)
D. $\quad(n!)!\longleftarrow$ good luck if $n \geq 5$

Key point. Poly-time is not always a surrogate for useful in practice, though it tends to be true for the algorithms we encounter in the wild.
\qquad some poly-time algorithms are slow; some exponential-time algorithms are fast!

Identifying intractable problems

Establishing NP-completeness through poly-time reduction is an important tool in guiding algorithm design efforts.

Q4'. How to convince yourself that a problem is (probably) intractable?
A. [hard way] Long futile search for a poly-time algorithm (as for SAT).
A. [easy way] Poly-time reduction from Sat. \qquad or from any other NP-complete problem

Caveat. Intricate reductions are common.

Identifying intractable problems

Step 1. Learn to identify NP-complete problems.

does not know about NP-completeness

knows about NP-completeness

Approaches to dealing with intractability

Q. What to do when you identify an NP-complete problem?
A. Safe to assume it is intractable: no worst-case poly-time algorithm for all problem instances.

Q1. Must your algorithm always run fast?
Solve real-world instances. Backtracking, TSP, SAT.

Q2. Do you need the right solution or a good solution?
Approximation algorithms. Look for suboptimal solutions.

Q3. Can you use the problem's hardness in your favor?
Leverage intractability. Cryptography.

Dealing with intractability: find solutions to real-world problem instances

Observations.

- Worst-case inputs may not occur for practical problems.
- Instances that do occur in practice may be easier to solve.
- Reasonable approach: relax the condition of guaranteed poly-time.

Boolean satisfiability.

- Chaff solves real-world instances with 10,000+ variables.
- Princeton senior independent work (!) in 2000.

Traveling salesperson problem.

- Concorde routinely solves large real-world instances.
- 85,900-city instance solved in 2006.

TSP solution for 13,509 US cities

Integer linear programming.

- CPLEX routinely solves large real-world instances.
- Routinely used in scientific and commercial applications.

Dealing with intractability: approximation algorithms

Max-Cut: given a graph G, find the cut with maximum number M of crossing edges. Approximate version: find a large cut.

Algorithm: take a uniformly random cut.
Expected size is $E / 2$; random assignment size is $\geq E / 2 \geq M / 2$ with at least 50% probability.

Dealing with intractability: approximation algorithms

3-Sat: given 3-variable equations on n boolean variables, find satisfying truth assignment. Approximate version: find assignment that satisfies many equations.

Algorithm: take a uniformly random assignment.
Expected fraction of satisfied equations is 7/8; random assignment does with at least 50% probability.
can't be improved (unless $\mathbf{P}=\mathbf{N P}$)

Remark. Some problems have approximation algorithms with arbitrary precision. For others, finding better approximations is also NP-complete!

Leveraging intractability: RSA cryptosystem

Modern cryptography applications.

- Secure a secret communication.
- Append a digital signature.
- Credit card transactions.

Verified by MasterCard. VISA Securecode.

RSA cryptosystem exploits intractability.

- To use: multiply/divide two n-digit integers (easy).
- To break: factor a $2 n$-digit integer (intractable?).

Ron Rivest

Adi Shamir

Len Adelman

Leveraging intractability: guiding scientific inquiry

1926. Ising introduces a mathematical model for ferromagnetism.

1930s. Closed form solution is a holy grail of statistical mechanics.
1944. Onsager finds closed form solution to 2D version in tour de force.

1950s. Feynman (and others) seek closed form solution to 3D version.
2000. Istrail shows that ISING-3D is NP-complete.

Bottom line. Search for a closed formula seems futile.

Summary

P. Set of search problems solvable in poly-time.

NP. Set of search problems (checkable in poly-time).
NP-complete. "Hardest" problems in NP. \qquad SAT, LONGEST-PATH, ILP, TSP,

Use theory as a guide

- You will confront NP-complete problems in your career.
- An poly-time algorithm for an NP-complete problem would be a stunning scientific breakthrough (a proof that $\mathbf{P}=\mathbf{N P}$).
- It is safe to assume that $\mathbf{P} \neq \mathbf{N P}$ and that such problems are intractable.
- Identify these situations and proceed accordingly.

Credits

image	source	license
Gears	Adobe Stock	Education License
Finding a Needle in a Haystack	Basic Vision	
Galactic Computer	Adobe Stock	Education License
Taylor Swift Caricature	Cory Jensen	CC BY-NC-ND
Fans in a Stadium	Adobe Stock	Education License
P and NP cookbooks	Futurama S2E10	
Homer Simpson and P = NP	Simpsons	
Archimedes, Lever, and Fulcrum	unknown	
COS Building, Western Wall	Kevin Wayne	
Richard Karp	Berkeley EECS	
Stephen Cook	$\underline{\mathrm{U}}$. Toronto	
Leonid Levin	Wikimedia	CC BY-SA 3.0
Garey-Johnson Cartoon Updated	Stefan Szeider	CC BY 4.0
Cartoon of Turing Machine	Tom Dunne	
Warning sign	Adobe Stock	Education License
Glass with water	Adobe Stock	Education License
John Nash	Wikimedia	CC BY-SA 3.0

A final thought

" Now my general conjecture is as follows: for almost all sufficiently complex types of enciphering, [...] the mean key computation length increases exponentially with the length of the key [...].

The nature of this conjecture is such that I cannot prove it [...].
Nor do I expect it to be proven. "

- John Nash

