Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

dealing with intractability

Last updated on 12/5/23 10:04AM

Overview: introduction to advanced topics

Main topics. [final two lectures]

- Intractability: barriers to designing efficient algorithms.
- Algorithm design: paradigms for solving problems.

Shifting gears.

- From individual problems to problem-solving models.
- From linear/quadratic to poly-time/exponential scale.
- From implementation details to conceptual frameworks.

Goals.

- Introduce you to essential ideas.
- Place algorithms and techniques we've studied in a larger context.

INTRACTABILITY

Pvs. NP

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Fundamental questions

- Q1. What is an algorithm?
- Q2. What is an efficient algorithm?
- Q3. Which problems can be solved efficiently?

A Turing machine

A difficult problem: integer factorization

Integer factorization. Given an integer *x*, find a nontrivial factor. — *or report that no such factor exists*

Ex.

147573952589676412927

a FACTOR instance

193707721

a factor

Core application area. Cryptography.

Brute-force search. Try all possible divisors between 2 and \sqrt{x} .

not 1 nor x

1350664108659952233496032162788059699388814756056670 2752448514385152651060485953383394028715057190944179 8207282164471551373680419703964191743046496589274256 2393410208643832021103729587257623585096431105640735 0150818751067659462920556368552947521350085287941637 7328533906109750544334999811150056977236890927563

> a very challenging FACTOR instance (factor to earn an A+ in COS 226)

if there's a nontrivial factor larger than \sqrt{x} , there is one smaller than \sqrt{x}

Another difficult problem: boolean satisfiability

Boolean satisfiability. Given a system of boolean equations, find a satisfying truth assignment.

Ex.

$\neg x_1$	or	x_2	or	<i>x</i> ₃			=		
x_1	or	¬ <i>x</i> ₂	or	<i>x</i> ₃			=		
¬ <i>x</i> ₁	Oľ	¬ <i>x</i> ₂	or	¬ <i>x</i> ₃			=		
¬ <i>x</i> ₁	Oľ	¬ <i>x</i> ₂	or		or	X_4	=		
		¬ <i>x</i> ₂	or	<i>x</i> ₃	Oľ	<i>x</i> ₄	=		
a SAT instance									

Applications.

- Automatic verification systems for software.
- Mean field diluted spin glass model in physics.
- Electronic design automation (EDA) for hardware.

•

or report that no such assignment is possible

a satisfying truth assignment

Another difficult problem: boolean satisfiability

Boolean satisfiability. Given a system of boolean equations, find a satisfying truth assignment.

Ex.

¬ <i>x</i> ₁	Or	x_2	Or	<i>x</i> ₃			=
x_1	Oľ	¬ <i>x</i> ₂	Oľ	<i>x</i> ₃			=
$\neg x_1$	Or	¬ <i>x</i> ₂	Oľ	¬ <i>x</i> ₃			=
¬ <i>x</i> ₁	Or	¬ <i>x</i> ₂	Oľ		or	X_4	=
		¬ <i>x</i> ₂	or	<i>x</i> ₃	or	<i>x</i> ₄	=

a SAT instance

Brute-force search. Try all 2^n possible truth assignments, where n = # variables.

- Q. Can we do anything substantially more clever?
- A. Probably no. [stay tuned]

jolycn.co.uk

Imagine a galactic computer...

- With as many processors as electrons in the universe.
- Each processor having the power of today's supercomputers.
- Each processor working for the lifetime of the universe.

quantity	estimate
electrons in universe	10 ⁷⁹
instructions per second	10 ¹³
age of universe in seconds	10^{17}

Q. Could galactic computer solve satisfiability instance with 1,000 variables using brute-force search? A. Not even close: $2^{1000} > 10^{300} >> 10^{79} \cdot 10^{13} \cdot 10^{17} = 10^{109}$.

Lesson. Exponential growth dwarfs technological change.

Q2. What is an efficient algorithm? A2. Algorithm whose running time in polynomial in input size n. \leftarrow n = # of bits in input

with respect to some reasonable model of computation (Turing machine, λ -calculus, word RAM, ...)

Polynomial time. Number of elementary operations is at most n^k for some constant k.

must hold for all inputs of size n (worst-case running time)

toda	name	emoji	order of growth
	constant		Θ(1)
	logarithmic		$\Theta(\log n)$
	linear		$\Theta(n)$
	linearithmic		$\Theta(n \log n)$
	quadratic		$\Theta(n^2)$
	cubic		$\Theta(n^3)$
N.	quasipolynomial		$\Theta(n^{\log n})$
2C	exponential		$\Theta(1.1^n)$
22	exponential	U	$\Theta(2^n)$
22	factorial	25	$\Theta(n!)$

Which of the following are poly-time algorithms?

- A. Brute-force search for satisfiability.
- **B.** Brute-force search for factoring.
- C. Both A and B.
- **D.** Neither A nor B.

Some computational problems

problem	description	example instance	a solution	poly-time algorithm
FACTOR (<i>integer factorization</i>)	given an integer, find a nontrivial factor	147573952589676412927	193707721	?
SAT (boolean satisfiability)	given a system of boolean equations, find a satisfying assignment	$\neg x_2 or x_3 = true$ $\neg x_1 or \neg x_2 or \neg x_3 = true$ $x_2 or \neg x_3 = true$	$x_1 = false$ $x_2 = true$ $x_3 = true$?
SORT (<i>sorting</i>)	given an array of integers, find a permutation that puts the elements in ascending order	[45, 32, 21, 67, 226]	[2, 1, 0, 3, 4]	insertion sort
ST-CONN (graph connectivity)	given a graph and two vertices, find a path that connects them		0–3–2–4	depth-first search
•	•	•	•	•

SORT
(sorting)

- Q3. Which problems can be solved efficiently?
- A3. Those for which poly-time algorithms exist.
- **Def.** A problem is intractable if no poly-time algorithm exists to solve it.
- Q4. How to prove that a problem is intractable?
- A4. Generally no easy way. Focus of today's lecture.

intractable?	tractable			
integer factorizat	primality			
longest path	shortest path			
max cut	min cut			
3-Sat ←	2-SAT			
•	•			

tion

- 3 boolean variables per equation

Intractable problems

INTRACTABILITY

Pvs. NP

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Search problem. Computational problem for which you can check a solution in poly-time.

Ex 1. [integer factorization] Given an n-bit integer x, find a nontrivial factor.

193707721 147573952589676412927

instance I

solution S

Poly-time checking algorithm. Check whether solution is a divisor of x. $\leftarrow O(n^2)$ time via long division

Remark. Suffices to verify a purported solution.

- Doesn't need to find the solution from scratch.
- Doesn't need to address case when no solution exists (e.g., if x is prime).

Search problem. Computational problem for which you can check a solution in poly-time.

Ex 2. [boolean satisfiability] Given a system of *m* boolean equations in *n* variables, find a satisfying assignment.

instance I

Poly-time checking algorithm. Plug values of solution into system of equations and check.

O(mn) time

Definition. NP is the class of all search problems.

description	problem
given an integer,	FACTOR
find a nontrivial facto	(<i>integer factorization</i>)
given a boolean formu	SAT
find a satisfying assignm	(boolean satisfiability)
given an array of integers, find a	SORT
that puts the elements in ascen	(sorting)
given a digraph and two ve	ST-CONN
find a path that connects	(graph connectivity)
given strings S and h, find a striction concatenation with S hash	BLOCK-CHAIN (hash verification)

•

Significance. Problems that scientists, engineers, and programmers aspire to solve in practice.

More accurately, **FNP**. **NP** = *nondeterministic poly-time*

poly-time checking algorithm

long division tor plug in boolean values and ula, evaluate boolean equations iment a permutation *compare all adjacent* ending order integers in permutation check for existence of edges between vertices, them consecutive vertices in path ring t whose compute the hash of the concatenation hes to **h** and compare with **h**

Which of these problems are in NP?

- **A.** Given a graph *G*, find a simple path with the most edges.
- Given a graph G and an integer k, find a simple path with $\geq k$ edges. B.
- Both A and B. С.
- Neither A nor B. D.

Definition. P is the class of all search problems that can be solved in poly-time. — *more accurately*, **FP**

problem	description	poly-time algorithm		
Sort	given an array of integers, find a permutation	insertion sort		
(sorting)	that puts the elements in ascending order			
ST-CONN	given a digraph and two vertices,	douth first so grah		
(graph connectivity)	find a path that connects them	depth-first search		
JAVA	given a string,			
(legal Java program)	is it a legal Java program?	javac		
L-Solve	given a system of linear equations,			
(system of linear equations)	find a solution	Gaussian elimination [†]		

Significance. Problems that scientists, engineers, and programmers do solve in practice. Note. All problems in P are also in NP. — any string serves as certificate

The central question. Does P = NP?

- **P** = set of search problems that are solvable in poly-time.
- **NP** = set of search problems (checkable in poly-time).

the best we can do

Consensus opinion. $P \neq NP$. \leftarrow *but nobody has been able to*

prove or disprove (!!!)

 $\mathbf{P} = \mathbf{NP}$

poly-time algorithms for FACTOR, SAT, LONGEST-PATH, ...

P vs. NP

The central question. Does **P** = **NP**?

- **P** = set of search problems that are solvable in poly-time.
- **NP** = set of search problems (checkable in poly-time).

Consensus opinion. $P \neq NP$. \leftarrow but nobody has been able to

prove or disprove (!!!)

Creativity: another way to view the situation

Analogy. Creative genius vs. ordinary appreciation of creativity.

domain	creative genius				
music	Taylor Swift writes a song				
mathematics	Wiles proves a deep theorem				
engineering	Boeing designs an efficient airfoil				
science	Einstein proposes a theory				
programming	GitHub Copilot generates a program				

Intuition. Checking a solution seems like it should be way easier than finding it.

ordinary appreciation

a Swiftie appreciates it

a colleague checks it

a simulator verifies it

an experimentalist validates it

a programmer verifies it

creative genius

ordinary appreciation

Princeton computer science building

Princeton computer science building (closeup)

Р	80
=	61
Ν	78
Р	80
?	63

INTRACTABILITY

Pvs. NP

introduction

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

poly-time reductions

NP-completeness

dealing with intractability

Desiderata. Classify problems according to computational requirements.

Desiderata'. Suppose we could (not) solve problem *X* efficiently. What else could we (not) solve efficiently?

"Give me a lever long enough and a fulcrum on which to place it, and I shall move the world." — Archimedes

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to Y. \leftarrow Cook reduction

Design algorithms. If X poly-time reduces to Y, and can solve Y efficiently, then can also solve X.

- **Ex 1.** MEDIAN reduces to SORT.
- Ex 2. BIPARTITE-MATCHING reduces to MAX-FLOW.

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to Y.

Establish intractability. If SAT poly-time reduces to *Y*, then *Y* is intractable. — *assuming* SAT *is intractable*

Mentality (to establish intractability).

- If I could solve Y in poly-time, then I could also solve SAT in poly-time.
- SAT is believed to be intractable.
- Therefore, so is *Y*.

Poly-time reduction

Def. Problem X poly-time reduces to problem Y if X can be solved with:

- Polynomial number of elementary operations.
- Polynomial number of calls to Y.

Common mistake. Confusing X poly-time reduces to Y with Y poly-time reduces to X.

X reduces to SAT: X is no harder than SAT. (If I can solve SAT, then I can solve X.) **SAT reduces to** *X*: *X* is <u>no easier</u> than SAT. (If I can solve *X*, then I can solve SAT.)

ILP. Given a system of linear inequalities, find an integer-valued solution.

$3x_1$	+	$5x_2$	+	$2x_3$	+	<i>x</i> ₄	+	$4x_{5}$	≥
$5x_1$	+	$2x_2$			+	$4x_4$	+	<i>x</i> ₅	<
x_1			+	<i>x</i> ₃	+	$2x_4$			≤
$3x_1$			+	4 <i>x</i> ₃	+	$7x_4$			\leq
x_1					+	x_4			\leq
x_1			+	<i>x</i> ₃			+	<i>x</i> ₅	\leq
x_1	,	x_2	,	<i>x</i> ₃	,	<i>x</i> ₄	,	<i>x</i> ₅	\in

instance I

Context. Cornerstone problem in operations research. Remark. Finding a real-valued solution can be solved in poly-time (linear programming).

solution S

SAT poly-time reduces to ILP

SAT. Given a system of boolean equations in CNF, find a solution.

> conjunctive normal form (AND of ORs)

ILP. Given a system of linear inequalities, find an integervalued solution. $0 \leq y_1 \leq 1$

$$y_{i} = 0 \implies x_{i} = false \qquad \longrightarrow \qquad 0 \leq y_{2} \leq 1$$
$$y_{i} = 1 \implies x_{i} = true \qquad 0 \leq y_{3} \leq 1$$
$$0 \leq y_{4} \leq 1$$

Solution to ILP instance provides solution to SAT instance.

$$\neg x_1 \quad or \quad x_2 \quad or \quad x_3 \qquad = tr$$

$$x_1 \quad or \quad \neg x_2 \quad or \quad x_3 \qquad = tr$$

$$\neg x_1 \quad or \quad \neg x_2 \quad or \quad \neg x_3 \qquad = tr$$

$$\neg x_1 \quad or \quad \neg x_2 \quad or \quad \neg x_3 \qquad = tr$$

$$\neg x_1 \quad or \quad \neg x_2 \quad or \quad or \quad x_4 = tr$$

$$\neg x_2 \quad or \quad x_3 \quad or \quad x_4 = tr$$

SAT poly-time reduces to ILP

Algorithm for SAT

Preprocessing: boolean equations to linear inequalities

Post-processing:

$$y_i = 0 \implies x_i = false$$

 $y_i = 1 \implies x_i = true$

Suppose that Problem *X* poly-time reduces to Problem *Y*. Which of the following can we infer?

- A. If *X* can be solved in poly-time, then so can *Y*.
- **B.** If *X* cannot be solved in $\Theta(n^3)$ time, *Y* cannot be solved in poly-time.
- **C.** If *Y* can be solved in $\Theta(n^3)$ time, then *X* can be solved in poly-time.
- **D.** If *Y* cannot be solved in poly-time, then neither can *X*.

More poly-time reductions from SAT

Richard Karp (1972)

INTRACTABILITY

introduction

Pvs. NP

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

poly-time reductions

NP-completeness

dealing with intractability

Def. A problem is NP-complete if

- It is in NP.

Two worlds.

 $\mathbf{P} = \mathbf{NP}$

Suppose that *X* is NP-complete. What can you infer?

- I. X is in NP.
- **II.** If X can be solved in poly-time, then $\mathbf{P} = \mathbf{NP}$.
- **III.** If *X* cannot be solved in poly-time, then $P \neq NP$.
- I only. Α.
- B. ll only.
- I and II only. С.
- **D.** I, II, and III.

Key property. An NP-complete problem can be solved in poly-time if and only if P = NP.

Cook-Levin theorem. SAT is NP-complete.

Pf. Pioneering result in computer science.

Corollary. SAT can be solved in poly-time if and only if P = NP.

Impact. To provide that a new problem Y is NP-complete, suffices to show that:

- Y is in NP.
- SAT poly-time reduces to *Y*.

Stephen Cook (1971)

Leonid Levin (1971)

Implications of Cook-Levin theorem

All of these problems (and many, many more) poly-time reduce to SAT.

Implications of Karp + Cook-Levin

All of these problems are **NP**-complete; they are manifestations of the same really hard problem.

Implications of Karp + Cook-Levin

manifestations of the same really hard problem.

More NP-complete problems

NP-complete p	field of study	
optimal mesh partitioning	Aerospace engineering	
phylogeny recon	Biology	
heat exchanger netw	Chemical engineering	
protein fold	Chemistry	
equilibrium of urbai	Civil engineering	
computation of arbitrage in finan	Economics	
VLSI layo	Electrical engineering	
optimal placement of con	Environmental engineering	
minimum risk portfolio	Financial engineering	
Nash equilibrium that maxim	Game theory	
structure of turbulence	Mechanical engineering	
reconstructing 3d shape from b	Medicine	
traveling salesperson problem	Operations research	
partition function of 3	Physics	
Shapley–Shubik vo	Politics	
versions of Sudoku, Checkers	Pop culture	
optimal experimer	Statistics	

problem

g for finite elements

nstruction

work synthesis

lding

an traffic flow

incial markets with friction

out

ontaminant sensors

o of given return

cimizes social welfare

in sheared flows

biplane angiocardiogram

m, integer programming

³*d* Ising model

voting power

rs, Minesweeper, Tetris

ental design

6,000+ scientific papers per year.

INTRACTABILITY

Pvs. NP

introduction

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

poly-time reductions

NP-completeness

dealing with intractability

Dealing with intractability

A program with which of these running times is most likely to be useful in practice?

Key point. Poly-time is not always a surrogate for useful in practice, though it tends to be true for the algorithms we encounter in the wild.

some poly-time algorithms are slow; some exponential-time algorithms are fast!

Identifying intractable problems

Establishing NP-completeness through poly-time reduction is an important tool in guiding algorithm design efforts.

- Q4'. How to convince yourself that a problem is (probably) intractable?
- A. [hard way] Long futile search for a poly-time algorithm (as for SAT).
- A. [easy way] Poly-time reduction from SAT. *complete problem*

Caveat. Intricate reductions are common.

Identifying intractable problems

Step 1. Learn to identify NP-complete problems.

does not know about NP-completeness

"I can't find a poly-time algorithm, but neither can all these famous people."

knows about NP-completeness

Approaches to dealing with intractability

- **Q.** What to do when you identify an **NP**-complete problem?
- A. Safe to assume it is intractable: no worst-case poly-time algorithm for all problem instances.

Q1. Must your algorithm *always* run fast? Solve real-world instances. Backtracking, TSP, SAT.

Q2. Do you need the *right* solution or a *good* solution? Approximation algorithms. Look for suboptimal solutions.

Q3. Can you use the problem's hardness in your favor? Leverage intractability. Cryptography.

Observations.

- Worst-case inputs may not occur for practical problems.
- Instances that do occur in practice may be easier to solve.
- Reasonable approach: relax the condition of guaranteed poly-time.

Boolean satisfiability.

- Chaff solves real-world instances with 10,000+ variables.
- Princeton senior independent work (!) in 2000.

Traveling salesperson problem.

- Concorde routinely solves large real-world instances.
- 85,900-city instance solved in 2006.

Integer linear programming.

- CPLEX routinely solves large real-world instances.
- Routinely used in scientific and commercial applications.

TSP solution for 13,509 US cities

Dealing with intractability: approximation algorithms

MAX-CUT: given a graph *G*, find the cut with maximum number *M* of crossing edges. Approximate version: find a large cut.

Algorithm: take a uniformly random cut. Expected size is E/2; random assignment size is $\geq E/2 \geq M/2$ with at least 50% probability.

can improve to .878M

Dealing with intractability: approximation algorithms

3-SAT: given 3-variable equations on *n* boolean variables, find satisfying truth assignment. Approximate version: find assignment that satisfies many equations.

Algorithm: take a uniformly random assignment. Expected fraction of satisfied equations is 7/8; random assignment does with at least 50% probability. can't be improved (unless $\mathbf{P} = \mathbf{NP}$)

Remark. Some problems have approximation algorithms with arbitrary precision. For others, finding better approximations is also **NP**-complete!

Leveraging intractability: RSA cryptosystem

Modern cryptography applications.

- Secure a secret communication.
- Append a digital signature.
- Credit card transactions.

 \bullet . . .

RSA cryptosystem exploits intractability.

- multiply/divide two *n*-digit integers (easy). • To use:
- To break: factor a 2*n*-digit integer (intractable?).

MasterCard SecureCode

Ron Rivest

52

Len Adelman

Leveraging intractability: guiding scientific inquiry

- Ising introduces a mathematical model for ferromagnetism. 1926.
- **1930s.** Closed form solution is a holy grail of statistical mechanics.
- Onsager finds closed form solution to 2D version in tour de force. 1944.
- **1950s.** Feynman (and others) seek closed form solution to 3D version.
- Istrail shows that ISING-3D is **NP**-complete. 2000.

Bottom line. Search for a closed formula seems futile.

Summary

Set of search problems solvable in poly-time. Ρ. **NP.** Set of search problems (checkable in poly-time). **NP-complete.** "Hardest" problems in **NP.** SAT, LONGEST-PATH, ILP, TSP, ...

Use theory as a guide

- You will confront **NP**-complete problems in your career.
- An poly-time algorithm for an NP-complete problem would be a stunning scientific breakthrough (a proof that P = NP).
- It is safe to assume that $\mathbf{P} \neq \mathbf{NP}$ and that such problems are intractable.
- Identify these situations and proceed accordingly.

Credits

image

Gears Finding a Needle in a Haystack Galactic Computer Taylor Swift Caricature Fans in a Stadium P and NP cookbooks Homer Simpson and P = NPArchimedes, Lever, and Fulcrum COS Building, Western Wall Richard Karp Stephen Cook Leonid Levin Garey–Johnson Cartoon Updated Cartoon of Turing Machine Warning sign Glass with water John Nash

Lecture Slides © Copyright 2023 Robert Sedgewick and Kevin Wayne

source	license
Adobe Stock	Education License
Basic Vision	
Adobe Stock	Education License
Cory Jensen	<u>CC BY-NC-ND</u>
Adobe Stock	Education License
Futurama S2E10	
Simpsons	
unknown	
Kevin Wayne	
Berkeley EECS	
<u>U. Toronto</u>	
Wikimedia	<u>CC BY-SA 3.0</u>
<u>Stefan Szeider</u>	<u>CC BY 4.0</u>
Tom Dunne	
Adobe Stock	Education License
Adobe Stock	Education License
Wikimedia	<u>CC BY-SA 3.0</u>

"Now my general conjecture is as follows: for almost all sufficiently complex types of enciphering, [...] the mean key computation length increases exponentially with the length of the key [...].

The nature of this conjecture is such that I cannot prove it [...]. Nor do I expect it to be proven. "

— John Nash

