
Efficient Binary Search 
Trees

COS 226 October 12, 2023
Robert E. Tarjan



Observations
Over the last 60 years, computer scientists have 
developed many beautiful and theoretically efficient 
algorithms and data structures.

But computer science is still a young field.

But we have often settled for the first (good enough) 
solution.

It may not be the best – the design space is rich.



Goal: simplicity + efficiency = “elegance”
Identify the simplest possible efficient methods to solve 
basic problems
algorithms from “the book”
           a la “proofs from the book” (Erdős)
algorithms as simple as possible,
    with provable resource bounds
          for important input classes, 
    and efficient in practice
 



“Make everything as simple as possible, 
but not simpler” - Einstein



Dictionary Problem

Support three operations on a set S of items:

Access: find a given item, return its information
Insert: add a new item
Delete:  remove an item

Assume items are totally ordered, so that binary search is possible: 
store in a binary search tree: one item per node, in in-order
Can also do range queries & other order-based operations; can’t use 
hashing 



Binary Search

Maintain set S in sorted order.
To find x in S: 
    If S empty, stop (failure).
    If S non-empty, compare x to some item y in S.  
        If x = y, stop (success).  
        If x < y, search among elements in S < y
        If x > y, search among elements in S > y



Data Structure:
Binary Search Tree
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Deletion 

Find item.  Remove node.  Repair tree.
 
   If leaf (no children), delete node.
   If unary (one child), replace by the other child.
   If binary(two children)?
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If binary, swap with next item.  Now in leaf or unary 
node; delete.  To find next item, follow left path from 
right child (Hibbard deletion).

Delete M: 
  Swap with P;
  delete.
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Time Per Operation

Proportional to depth of deepest node reached 
    during operation (length of path from root)
Goal: minimize tree depth



Best Case

All leaves have depths within 1: depth ëlgnû      (lg: 
base-two logarithm) n = #items

Can achieve if tree is static (insertion order chosen by 
implementation, no deletions)
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Average Case

Starting with an empty tree, if n items are inserted in uniformly random 
order, expected tree depth (access time) is O(logn)
The analysis is the same as that of quicksort with pivot chosen 
uniformly at random



Worst Case
Natural but bad insertion order: sorted.
Insert A, B, C, D, E, F, G,…

                                Depth of tree is n  
   Average access time is ~n/2

                                      No better than a list!
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Ways to improve efficiency 

• Balance: AVL trees, (left-leaning) red-black trees, 
weak AVL trees…

• Randomization: Zip trees 
• Self-adjustment: Splay trees



Zip Trees
The height of a node is the maximum number of links 
on a path from it to a leaf. 

Idea: On insertion, choose a height for an item and 
insert it at the given height, or close to it. Definition:

Choose heights like those in a best-case BST: ½  of the 
nodes at height 0, ¼ at height 1, 1/8 at height 2…
Choose the heights randomly.  



We cannot choose heights exactly.

Instead, for each node to be inserted we choose a rank, 
as follows: flip a fair coin and count the number of 
heads before the first tail.*  The rank of a node does 
not change while it is in the tree.

The rank of a node has a geometric distribution: a node 
has rank k with probability 1/2k + 1.

We want the height of a node to be within a constant 
factor of its rank.

 *Can do in O(1) machine instructions.



Zip* Tree
A binary search tree in which each node has a rank 
chosen randomly on insertion, with nodes in in-order 
by key and max-heap-ordered by rank, breaking rank 
ties in favor of smaller key:

x.left.key < x.key < x.right.key
x.left.rank < x.rank

x.right.rank ≤ x.rank

*Zip: “to move very fast” 



In-order by key: key of y greater than keys in subtree of x, 
smaller than keys in subtree of z

Max-heap order by rank: rank of y no smaller than that of x,
greater than that of z

 
                               
                                  y.left                      y.right
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A Zip Tree
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Zip tree insertion?

Root insertion (Stephenson 1980)

Let x be the item to be inserted.  Follow the search path for x, 
unzipping it by splitting it into a path P of nodes with keys less than 
that of x and a path Q of nodes with keys greater than that of x.  Make 
the top node of P the left child of x and the top node of Q the right 
child of x.
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Zip tree insertion:
hybrid of leaf & root insertion

Let x be the item to be inserted. Choose its rank.  
Follow the search path for x until reaching the node y 
that x should replace.  Follow the remaining search 
path for x, unzipping it by splitting it into a path P of 
nodes with keys less than that of x and a path Q of 
nodes with keys greater than that of x.  Make the top 
node of P the left child of x and the top node of Q the 
right child of x. Replace y as a child of its parent by x. 
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Insert J
rank = 2
Replace H
Unzip path 
   from H
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Zip tree deletion:
Inverse of insertion

Search for the node x to be deleted.  Zip the path from 
x to its predecessor (in key order) with the path from x 
to its successor (in key order), by merging them in 
decreasing rank order, breaking ties in favor of smaller 
keys, to form a single path P.  Replace x as a child of its 
parent by the top node of P. 
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A Zip Tree

(image from Street Art on    
               Pinterest) 



Zip Trees
• Tree height is O(log n) with high probability, making 

insertions and deletions efficient as well as simple

• Inserts and deletes can be implemented to proceed  
purely top-down

• Inserts and deletes do O(1) expected restructuring: 
Most of the changes are in the bottom of the tree

• Can modify to support frequency-biased access

• https://arxiv.org/abs/1806.06726



Classic way to make BST’s efficient: keep the 
tree balanced

Maintain a local balance condition so that all path lengths are O(log n)

AVL trees: Adelson-Velsky, Landis 1971
red-black trees: Bayer 1972, Guibas and Sedgewick 1978
MANY others…

Need:
 A balance condition
 A way to restructure the tree during an update to maintain  
 balance  



A red-black tree
(image from Wikipedia)



Restructuring primitive: rotation

 rotate at x                                              rotate at y
y

x

x

y

A B

C A

B C

z z

right

left

46



Rebalancing

During an insertion, do rotations and update balance data to restore 
balance

Red-black tree insertion: can rebalance either bottom-up after 
insertion or top-down during the access

Guarantees O(log n) access, insertion (and deletion) time 



Balanced tree drawbacks

Rebalancing algorithms have many cases
 typically 6 for insert, 8 for delete
Must store balance data (but maybe only 1 or 2 bits)

In practice, access is not uniform

Is there a way to take advantage of non-uniform access?



Self-adjusting binary search tree

Idea: move each accessed key to the root, via rotations
If the key is accessed again soon, this access will be fast

First try: move to root via bottom-up rotations   



Bad example: access in order

        
n accesses in sorted order take n2/2 node visits 

and reproduce the original tree!   
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Second try: Splay Trees (Sleator and T 1983)

Splay: to spread out
splay(x): moves x to root via rotations, two at a time.  

Rotation order is generally bottom-up, but if the 
current node and its parent are both left or both right 
children, the top rotation is done first

x.p = parent of node x
splay(x): while x.p ¹ null do
    if x.p.p = null then rotate(x)                       zig
    else if x is left and x.p is right or x is right and   
        x.p is left then {rotate(x), rotate(x)}     zig-zag
    else {rotate(x.p), rotate(x)}                        zig-zig    
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A Self-Adjusting Tree 

(image by Jorge Stolfi)



Splay: pure zig-zag
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Splay: pure zig-zig
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Operations on splay trees

Access x: follow access path to x, then splay(x)
Insert x: follow access path to null, replace by x, splay(x)
Delete x: follow access path to x, swap with successor if x is in a node 

with two children, delete x, splay at old parent of x

Time for an operation is proportional to number of nodes on access 
path, including one rotation per node on path (except root)



Catenate(T1, T2) (all items in T1 < all items in T2):
    splay at last node x in T1; x.right ¬ root(T2).
Split(T, x): splay(x); detach x.right = root of tree 

containing all items > x. 
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Efficiency of Splay Trees

One operation can take many steps, even n
But long sequences of operations are fast:

m operations take O(mlogn) time: amortized time per operation is 
O(logn) 
Fixed access frequencies: splaying matches the best static tree (to 
within a small constant factor)
Splaying exploits space or time locality just as well as complicated 
customized data structures (to within a small constant factor)



Just how good is splaying?

Dynamic optimality conjecture: 
 Given an initial tree and any access sequence, splaying is as fast 

(to within a constant factor) as the best BST algorithm for the 
given sequence, even an algorithm that knows the entire 
sequence in advance

(Each access must be done by moving the accessed item to the root via 
rotations, at a cost of one plus the number of rotations)
 



For more, 
take COS 

423!


