

Dynamic Programming

- introduction
- Fibonacci numbers
- interview problems
- shortest paths in DAGs
- seam carving
https://algs4.cs.princeton.edu

Dynamic Programming

- introduction
\rightarrow Fibonácci numbers

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Dynamic programming

Algorithm design paradigm.

- Break up a problem into a series of overlapping subproblems.
- Build up solutions to larger and larger subproblems.
(caching solutions to subproblems for later reuse)

Richard Bellman, *46

Application areas.

- Operations research: multistage decision processes, control theory, optimization, ...
- Computer science: Al, compilers, systems, graphics, databases, robotics, theory, ...
- Economics.
- Bioinformatics.
- Information theory.
- Tech job interviews.

Bottom line. Powerful technique; broadly applicable.

Dynamic programming algorithms

Some famous examples.

- System R algorithm for optimal join order in relational databases.
- Needleman-Wunsch/Smith-Waterman for sequence alignment.
- Cocke-Kasami-Younger for parsing context-free grammars.
- Bellman-Ford-Moore for shortest path. \qquad shortest paths lecture
- De Boor for evaluating spline curves.
- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Avidan-Shamir for seam carving. \qquad
\square
\qquad see Assignment 6
- NP-complete graph problems on trees (vertex color, vertex cover, independent set, ...).
- ...

Dynamic programming books

Dynamic Programming | HANDBOOK of | Dynamic Programmi |
| :--- | :--- |
| LEARNING | and Optimal Control | Applied Dynamic

Programming for
Optimizaion or
Dpmamical Svstem Optimization of
Dynamical Systems Til

Dynamic Programming

- introduction
- Fibonacci numbers

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Fibonacci numbers

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34,55,89, \ldots$

$$
F_{i}= \begin{cases}0 & \text { if } i=0 \\ 1 & \text { if } i=1 \\ F_{i-1}+F_{i-2} & \text { if } i>1\end{cases}
$$

Leonardo Fibonacci

3

5

34

8

55

13

89

Fibonacci numbers: naïve recursive approach

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34,55,89, \ldots$

$$
F_{i}= \begin{cases}0 & \text { if } i=0 \\ 1 & \text { if } i=1 \\ F_{i-1}+F_{i-2} & \text { if } i>1\end{cases}
$$

Goal. Given n, compute F_{n}.

Naïve recursive approach:

```
public static long fib(int i) {
    if (i == 0) return 0;
    if (i == 1) return 1;
    return fib(i-1) + fib(i-2);
}
```


Dynamic programming: quiz 1

How long to compute $\mathrm{fib}(80)$ using the naïve recursive algorithm?
A. Less than 1 second.
B. About 1 minute.
C. More than 1 hour.
D. Overflows a 64-bit long integer.

Fibonacci numbers: recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.
Ex. To compute fib(6):

- fib(5) is called 1 time.
- fib(4) is called 2 times.

$$
F_{n} \sim \phi^{n}, \quad \phi=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

- fib(3) is called 3 times.
- fib(2) is called 5 times.
- fib(1) is called $F_{n}=F_{6}=8$ times.
fib(6)

running time $=$ \# subproblems \times cost per subproblem

Fibonacci numbers: top-down dynamic programming (memoization)

Memoization.

- Maintain an array (or symbol table) to remember all computed values.
- If value to compute is known, just return it; otherwise, compute it; remember it; and return it.

```
public static long fib(int i) {
    if (i == 0) return 0;
    if (i == 1) return 1;
    if (f[i] == 0) f[i] = fib(i-1) + fib(i-2);
    return f[i];
}
```

assume global 1ong array f[], initialized to 0 (unknown)

Impact. Solves each subproblem F_{i} only once; $\Theta(n)$ time and space to compute F_{n}.

Fibonacci numbers: bottom-up dynamic programming (tabulation)

Tabulation.

- Build computation from the "bottom up."
- Solve small subproblems and save solutions.
- Use those solutions to solve larger subproblems.

```
public static long fib(int n) {
    long[] f = new long[n+1];
    f[0] = 0;
    f[1] = 1;
    for (int i = 2; i <= n; i++)
        f[i] = f[i-1] + f[i-2];
    return f[n];
}

Impact. Solves each subproblem \(F_{i}\) only once; \(\Theta(n)\) time and space to compute \(F_{n}\); no recursion.

\section*{Fibonacci numbers: further improvements}

\section*{Performance improvements.}
- Reduce space by maintaining only two most recent Fibonacci numbers.
```

public static long fib(int n) {
int f = 0, g = 1;
for (int i = 0; i < n; i++) {
g = f + g;
f=g-f;
}
return f;
}

```
- Exploit additional properties of problem:
 but our goal here is to
\[
F_{n}=\left[\begin{array}{c}
\phi^{n} \\
\sqrt{5}
\end{array}\right], \quad \phi=\frac{1+\sqrt{5}}{2} \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{i}=\left(\begin{array}{cc}
F_{i+1} & F_{i} \\
F_{i} & F_{i-1}
\end{array}\right)^{i}
\]

\section*{Dynamic programming recap}

Dynamic programming.
- Divide a complex problem into a number of simpler overlapping subproblems.
[ define \(n+1\) subproblems, where subproblem \(i\) is computing Fibonacci number \(i\) ]
- Define a recurrence relation to solve larger subproblems from smaller subproblems.
[ easy to solve subproblem \(i\) if we know solutions to subproblems \(i-1\) and \(i-2\) ]
\[
F_{i}= \begin{cases}0 & \text { if } i=0 \\ 1 & \text { if } i=1 \\ F_{i-1}+F_{i-2} & \text { if } i>1\end{cases}
\]
- Store solutions to subproblems, solving each subproblem only once.
[ store solution to subproblem \(i\) in array entry f[i] ]
- Use stored solutions to solve the original problem.
[ solution to subproblem \(n\) is original problem ]

\section*{Dynamic Programming}

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Goal. Given a row of \(n\) black houses, paint some orange so that:
- Maximize total profit, where profit( \((i)=\) profit from painting house \(i\) orange.
- Constraint: no two adjacent houses painted orange.

profit for painting houses 1,4 , and 6 orange
\((10+20+25=55)\)

Goal. Given a row of \(n\) black houses, paint some orange so that:
- Maximize total profit, where profit( \(i\) ) = profit from painting house \(i\) orange.
- Constraint: no two adjacent houses painted orange.

Subproblems. \(O P T(i)=\) max profit to paint houses \(1, \ldots, i\).
Optimal value. \(O P T(n)\).

keep house 6 black paint house 6 orange
\[
\begin{aligned}
O P T(6) & =\max \{O P T(5), \operatorname{profit}(6)+O P T(4)\} \\
& =\max \{53,25+30\} \\
& =55
\end{aligned}
\]

\section*{House painting problem: dynamic programming formulation}

Goal. Given a row of \(n\) black houses, paint some orange so that:
- Maximize total profit, where profit \((i)=\) profit from painting house \(i\) orange.
- Constraint: no two adjacent houses painted orange.

Subproblems. \(O P T(i)=\) max profit to paint houses \(1, \ldots, i\).
Optimal value. \(O P T(n)\).
optimal substructure
Binary choice. To compute \(O P T(i)\), either:
- Don't paint house \(i\) orange: \(O P T(i-1)\).

- Paint house \(i\) orange: \(\operatorname{profit}(i)+O P T(i-2)\).

Dynamic programming recurrence.
\[
O P T(i)= \begin{cases}0 & \text { if } i=0 \\ \operatorname{profit}(1) & \text { if } i=1 \\ \max \{O P T(i-1), & \operatorname{profit}(i)+O P T(i-2)\} \\ \text { if } i \geq 2\end{cases}
\]

\section*{House painting: naïve recursive implementation}

Naïve recursive approach:
```

private int opt(int i) {
if (i == 0) return 0;
if (i == 1) return profit[1];
return Math.max(opt(i-1), profit[i] + opt(i-2));
}

```

Dynamic programming recurrence.
\[
O P T(i)= \begin{cases}0 & \text { if } i=0 \\ \operatorname{profit}(1) & \text { if } i=1 \\ \max \{O P T(i-1), \quad \operatorname{profit}(i)+O P T(i-2)\} & \text { if } i \geq 2\end{cases}
\]

\section*{Dynamic programming: quiz 2}

What is running time of the naïve recursive algorithm as a function of \(n\) ?
A. \(\Theta(n)\)
B. \(\Theta\left(n^{2}\right)\)
C. \(\Theta\left(c^{n}\right)\) for some \(c>1\).
D. \(\Theta(n!)\)
```

private int opt(int i) {
if (i == 0) return 0;
if (i == 1) return profit[1];
return Math.max(opt(i-1), profit[i] + opt(i-2));
}

```
" Those who cannot remember the past are condemned to repeat it.
- Dynamic Programming
(Jorge Agustín Nicolás Ruiz de Santayana y Borrás)

\section*{Housing painting: bottom-up implementation}

Bottom-up DP implementation.
```

int[] opt = new int[n+1];
opt[0] = 0;
opt[1] = profit[1];
for (int i = 2; i <= n; i++)
opt[i] = Math.max(opt[i-1], profit[i] + opt[i-2]);
solutions to smaller subproblems already available

```
\[
O P T(i)= \begin{cases}0 & \text { if } i=0 \\ \operatorname{profit}(1) & \text { if } i=1 \\ \max \{O P T(i-1), & \operatorname{profit}(i)+O P T(i-2)\} \\ \text { if } i \geq 2\end{cases}
\]

\[
\mathrm{OPT}(\mathrm{i})=\max \text { profit for painting houses } 1,2, \ldots, i
\]
Q. We computed the optimal value. How to reconstruct an optimal solution?
A. Trace back path that led to optimal value.


\section*{Coin changing problem}

Problem. Given \(n\) coin denominations \(\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}\) and a target value \(V\), find the fewest coins needed to make change for \(V\) (or report impossible).

Ex. Coin denominations \(=\{1,10,25,100\}, V=131\).
Greedy ( 8 coins). \(131 \not \subset=100+25+1+1+1+1+1+1\).
Optimal ( 5 coins). \(131 \not \subset=100+10+10+10+1\).

vending machine (out of nickels)

Remark. Greedy algorithm is optimal for U.S. coin denominations \(\{1,5,10,25,100\}\).

\section*{Dynamic programming: quiz 3}

\section*{Which subproblems for coin changing problem?}
A. \(\quad O P T(i)=\) fewest coins needed to make change for target value \(V\)
using only coin denominations \(d_{1}, d_{2}, \ldots, d_{i}\).
B. \(O P T(v)=\) fewest coins needed to make change for amount \(v\), for \(v=0,1,2, \ldots, V\).
C. Either A or B.
D. Neither A nor B.

\section*{Coin changing: dynamic programming formulation}

Problem. Given \(n\) coin denominations \(\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}\) and a target value \(V\), find the fewest coins needed to make change for \(V\) (or report impossible).

Subproblems. \(O P T(v)=\) fewest coins needed to make change for amount \(v\).
Optimal value. \(O P T(V)\).

Ex. Coin denominations \(\{1,5,8\}\) and \(V=10\).


\section*{Coin changing: dynamic programming formulation}

Problem. Given \(n\) coin denominations \(\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}\) and a target value \(V\), find the fewest coins needed to make change for \(V\) (or report impossible).

Subproblems. \(O P T(v)=\) fewest coins needed to make change for amount \(v\).
Optimal value. \(O P T(V)\).

Multiway choice. To compute \(O P T(v)\),
- Select a coin of denomination \(d_{i} \leq v\) for some \(i\).
- Use fewest coins to make change for \(v-d_{i}\).
take best
(among all coin denominations)
optimal substructure
Dynamic programming recurrence.
\[
O P T(v)= \begin{cases}0 & \text { if } v=0 \\ \min _{i: d_{i} \leq v}\left\{1+O P T\left(v-d_{i}\right)\right\} & \text { if } v>0\end{cases}
\]

\section*{Coin changing: bottom-up implementation}

Bottom-up DP implementation.
```

int[] opt = new int[V+1];
opt[0] = 0;
for (int v = 1; v <= v; v++) {
opt[v] = INFINITY;
for (int i = 1; i <= n; i++) {
if (d[i] <= v)
opt[v] = Math.min(opt[v], 1 + opt[v - d[i]]);
}
}

```

Proposition. DP algorithm takes \(\Theta(n V)\) time and uses \(\Theta(V)\) extra space.

Note. Not polynomial in input size; underlying problem is NP-complete.

\section*{Dynamic Programming}
- introduction
\(\rightarrow\) Fibonácci numbers

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

\section*{Shortest paths in directed acyclic graphs: dynamic programming formulation}

Problem. Given a DAG with positive edge weights, find shortest path from \(s\) to \(t\).
Subproblems. \(\operatorname{distTo}(v)=\) length of shortest \(s \leadsto v\) path.
Goal. distTo(t).

Multiway choice. To compute \(\operatorname{distTo(v)}\) :
- Select an edge \(e=u \rightarrow v\) entering \(v\).

- Concatenate with shortest \(s \leadsto u\) path.
optimal substructure


Dynamic programming recurrence.
\[
\operatorname{distTo}(v)= \begin{cases}0 & \text { if } v=s \\ \min _{e=u \rightarrow v}\{\operatorname{distTo}(u)+\operatorname{weight}(e)\} & \text { if } v \neq s\end{cases}
\]

\section*{Shortest paths in directed acyclic graphs: bottom-up solution}

Bottom-up DP implementation. Takes \(\Theta(E+V)\) time with two tricks:
- Solve subproblems in topological order. \(\qquad\) ensures that "small" subproblems are solved before "large" ones
- Build reverse digraph \(G^{R}\) (to support iterating over edges incident to vertex \(v\) ).

Equivalent (but simpler) computation. Relax vertices in topological order.
```

Topological topologica1 = new Topologica1(G);
for (int v : topological.order())
for (DirectedEdge e : G.adj(v))
relax(e);

```

Backtracing. Can find the shortest paths themselves by maintaining edgeTo[] array.

\section*{Dynamic programming: quiz 4}

Given a DAG, how to find longest path from \(s\) to \(t\) in \(\Theta(E+V)\) time?

longest path from s to \(t\) in a DAG (all edge weights \(=1\) )
A. Negate edge weights; use DP algorithm to find shortest path.
B. Replace min with max in DP recurrence.
C. Either A or B.
D. No poly-time algorithm is known (NP-complete).

\section*{Shortest paths in DAGs and dynamic programming}

DP subproblem dependency digraph.
- Vertex \(v\) corresponds to subproblem \(v\).
- Edge \(v \rightarrow w\) means subproblem \(v\) must be solved before subproblem \(w\).
- Digraph must be a DAG. Why?

Ex 1. Modeling the coin changing problem as a shortest path problem in a DAG.

coin denominations \(=\{1,5,8\}, \mathrm{V}=10\)


\section*{Shortest paths in DAGs and dynamic programming}

DP subproblem dependency digraph.
- Vertex \(v\) corresponds to subproblem \(v\).
- Edge \(v \rightarrow w\) means subproblem \(v\) must be solved before subproblem \(w\).
- Digraph must be a DAG. Why?

Ex 2. Modeling the house painting problem as a longest path problem in a DAG.


\section*{Dynamic Programming}
- introduction
-Fibonácci numbers

Algorithms

Robert Sedgewick । Kevin Wayne
https://algs4.cs.princeton.edu

\section*{Content-aware resizing}

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.


\author{
Shai Avidan \\ Mitsubishi Electric Research Lab \\ Ariel Shamir \\ The interdisciplinary Center \& MERL
}

\section*{Content-aware resizing}

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.


In the wild. Photoshop, ImageMagick, GIMP, ...


\section*{Content-aware resizing}

To find vertical seam in a picture:
- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors (SW, S, SE).
- Weight of pixel = "energy function" of 4 neighboring pixels (N, E, S, W).


\section*{Content-aware resizing}

To find vertical seam in a picture:
- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors (SW, S, SE).
- Weight of pixel = "energy function" of 4 neighboring pixels (N, E, S, W).
- Seam = shortest path (sum of vertex weights) from top to bottom.
seam


\section*{Content-aware resizing}

To remove vertical seam in a picture:
- Delete pixels on seam (one in each row).


\section*{Content-aware resizing: dynamic programming formulation}

Problem. Find a min energy path from top to bottom.
Subproblems. distTo(col, row) = energy of min energy path from any top pixel to pixel (col, row). Goal. \(\min \{\operatorname{distTo}(\) col, \(H-1)\}\).
Dynamic programing recurrence. For you to figure out in Assignment 6.
seam


\section*{Summary}

How to design a dynamic programming algorithm.
- Find good subproblems. \({ }_{\varrho}{ }_{e}^{-}\)
- Develop DP recurrence for optimal value.
- optimal substructure
- overlapping subproblems
- Determine dependency order in which to solve subproblems.
- Cache computed results to avoid unnecessary re-computation.
- Reconstruct the optimal solution via backtracing.


\section*{Credits}


A final thought```

