Dynamic Programming

- introduction
- Fibonacci numbers
- interview problems
- shortest paths in DAGs
- seam carving

https://algs4.cs.princeton.edu
DYNAMIC PROGRAMMING

› introduction
› Fibonacci numbers
› interview problems
› shortest paths in DAGs
› seam carving

https://algs4.cs.princeton.edu
Dynamic programming

Algorithm design paradigm.

- Break up a problem into a series of overlapping subproblems.
- Build up solutions to larger and larger subproblems.
(caching solutions to subproblems for later reuse)

Application areas.

- Operations research: multistage decision processes, control theory, optimization, ...
- Computer science: AI, compilers, systems, graphics, databases, robotics, theory,
- Economics.
- Bioinformatics.
- Information theory.
- Tech job interviews.

Bottom line. Powerful technique; broadly applicable.
Dynamic programming algorithms

Some famous examples.

• System R algorithm for optimal join order in relational databases.
• Needleman–Wunsch/Smith–Waterman for sequence alignment.
• Cocke–Kasami–Younger for parsing context-free grammars.
• Bellman–Ford–Moore for shortest path.
• De Boor for evaluating spline curves.
• Viterbi for hidden Markov models.
• Unix diff for comparing two files.
• Avidan–Shamir for seam carving.
• NP-complete graph problems on trees (vertex color, vertex cover, independent set, ...).
• ...

see Assignment 6
Dynamic programming books

pp. 284–289
DYNAMIC PROGRAMMING

- introduction
- Fibonacci numbers
- interview problems
- shortest paths in DAGs
- seam carving
Fibonacci numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

\[F_i = \begin{cases}
0 & \text{if } i = 0 \\
1 & \text{if } i = 1 \\
F_{i-1} + F_{i-2} & \text{if } i > 1
\end{cases} \]

Leonardo Fibonacci
Fibonacci numbers: naïve recursive approach

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

\[
F_i = \begin{cases}
0 & \text{if } i = 0 \\
1 & \text{if } i = 1 \\
F_{i-1} + F_{i-2} & \text{if } i > 1
\end{cases}
\]

Goal. Given \(n \), compute \(F_n \).

Naïve recursive approach:

```java
public static long fib(int i) {
    if (i == 0) return 0;
    if (i == 1) return 1;
    return fib(i-1) + fib(i-2);
}
```
Dynamic programming: quiz 1

How long to compute fib(80) using the naïve recursive algorithm?

A. Less than 1 second.
B. About 1 minute.
C. More than 1 hour.
D. Overflows a 64–bit long integer.
Fibonacci numbers: recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.

Ex. To compute fib(6):

- fib(5) is called 1 time.
- fib(4) is called 2 times.
- fib(3) is called 3 times.
- fib(2) is called 5 times.
- fib(1) is called $F_n = F_6 = 8$ times.

$$F_n \sim \phi^n, \quad \phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

Running time = # subproblems × cost per subproblem
Fibonacci numbers: top-down dynamic programming (memoization)

Memoization.
- Maintain an array (or symbol table) to remember all computed values.
- If value to compute is known, just return it;
 otherwise, compute it; remember it; and return it.

```java
public static long fib(int i) {
    if (i == 0) return 0;
    if (i == 1) return 1;
    if (f[i] == 0) f[i] = fib(i-1) + fib(i-2);
    return f[i];
}
```

Impact. Solves each subproblem F_i only once; $\Theta(n)$ time and space to compute F_n.

assume global long array f[], initialized to 0 (unknown)
Fibonacci numbers: bottom-up dynamic programming (tabulation)

Tabulation.

- Build computation from the “bottom up.”
- Solve small subproblems and save solutions.
- Use those solutions to solve larger subproblems.

```java
class Fibonacci {
    public static long fib(int n) {
        long[] f = new long[n+1];
        f[0] = 0;
        f[1] = 1;
        for (int i = 2; i <= n; i++)
            f[i] = f[i-1] + f[i-2];
        return f[n];
    }
}
```

Impact. Solves each subproblem F_i only once; $\Theta(n)$ time and space to compute F_n; no recursion.
Fibonacci numbers: further improvements

Performance improvements.

- Reduce space by maintaining only two most recent Fibonacci numbers.

```java
public static long fib(int n) {
    int f = 0, g = 1;
    for (int i = 0; i < n; i++) {
        g = f + g;
        f = g - f;
    }
    return f;
}
```

- Exploit additional properties of problem:

\[
F_n = \begin{bmatrix}
\phi^n \\
\sqrt{5}
\end{bmatrix}, \quad \phi = \frac{1 + \sqrt{5}}{2}
\]

\[
\begin{bmatrix}1 & 1 \\ 1 & 0\end{bmatrix}^i = \begin{bmatrix}F_{i+1} & F_i \\ F_i & F_{i-1}\end{bmatrix}^i
\]
Dynamic programming recap

Dynamic programming.

- Divide a complex problem into a number of simpler overlapping subproblems.
 [define $n + 1$ subproblems, where subproblem i is computing Fibonacci number i]

- Define a recurrence relation to solve larger subproblems from smaller subproblems.
 [easy to solve subproblem i if we know solutions to subproblems $i-1$ and $i-2$]

\[
F_i = \begin{cases}
0 & \text{if } i = 0 \\
1 & \text{if } i = 1 \\
F_{i-1} + F_{i-2} & \text{if } i > 1
\end{cases}
\]

- Store solutions to each of these subproblems, solving each subproblem only once.
 [store solution to subproblem i in array entry $f[i]$]

- Use stored solutions to solve the original problem.
 [solution to subproblem n is original problem]
Dynamic Programming

- introduction
- Fibonacci numbers
- interview problems
- shortest paths in DAGs
- seam carving
Goal. Given a row of \(n \) black houses, paint some orange so that:

- Maximize total profit, where \(\text{profit}(i) = \text{profit from painting house } i \) orange.
- Constraint: no two adjacent houses painted orange.

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{profit}(i))</td>
<td>10</td>
<td>9</td>
<td>13</td>
<td>20</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>

profit for painting houses 1, 4, and 6 orange
\((10 + 20 + 25 = 55) \)
Goal. Given a row of n black houses, paint some orange so that:
- Maximize total profit, where $\text{profit}(i) =$ profit from painting house i orange.
- Constraint: no two adjacent houses painted orange.

Subproblems. $\text{OPT}(i) = \max$ profit to paint houses $1, \ldots, i$.

Optimal value. $\text{OPT}(n)$.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{profit}(i)$</td>
<td>10</td>
<td>9</td>
<td>13</td>
<td>20</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>$\text{OPT}(i)$</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>23</td>
<td>30</td>
<td>53</td>
<td>55</td>
</tr>
</tbody>
</table>

$\text{OPT}(6) = \max \{ \text{OPT}(5), \text{profit}(6) + \text{OPT}(4) \}$

$= \max \{ 53, 25 + 30 \}$

$= 55$
Goal. Given a row of n black houses, paint some orange so that:

- Maximize total profit, where $\text{profit}(i)$ = profit from painting house i orange.
- Constraint: no two adjacent houses painted orange.

Subproblems. $OPT(i) =$ max profit to paint houses $1, ..., i$.

Optimal value. $OPT(n)$.

Binary choice. To compute $OPT(i)$, either:

- Don't paint house i orange: $OPT(i - 1)$.
- Paint house i orange: $\text{profit}(i) + OPT(i - 2)$.

Dynamic programming recurrence.

$$
OPT(i) = \begin{cases}
0 & \text{if } i = 0 \\
\text{profit}(1) & \text{if } i = 1 \\
\max \{ OPT(i - 1), \text{profit}(i) + OPT(i - 2) \} & \text{if } i \geq 2
\end{cases}
$$
Naïve recursive approach:

```java
private int opt(int i) {
    if (i == 0) return 0;
    if (i == 1) return profit[1];
    return Math.max(opt(i-1), profit[i] + opt(i-2));
}
```

Dynamic programming recurrence.

\[
OPT(i) = \begin{cases}
0 & \text{if } i = 0 \\
profit(1) & \text{if } i = 1 \\
\max\{ OPT(i-1), profit(i) + OPT(i-2) \} & \text{if } i \geq 2
\end{cases}
\]
Dynamic programming: quiz 2

What is running time of the naïve recursive algorithm as a function of n?

A. $\Theta(n)$

B. $\Theta(n^2)$

C. $\Theta(c^n)$ for some $c > 1$.

D. $\Theta(n!)$

private int opt(int i) {
 if (i == 0) return 0;
 if (i == 1) return profit[1];
 return Math.max(opt(i-1), profit[i] + opt(i-2));
}
“Those who cannot remember the past are condemned to repeat it.”

— Dynamic Programming

(Jorge Agustín Nicolás Ruiz de Santayana y Borrás)
Bottom-up DP implementation.

```java
int[] opt = new int[n+1];
opt[0] = 0;
opt[1] = profit[1];
for (int i = 2; i <= n; i++)
    opt[i] = Math.max(opt[i-1], profit[i] + opt[i-2]);
```

Proposition. Computing $OPT(n)$ takes $\Theta(n)$ time and uses $\Theta(n)$ extra space.
Bottom-up DP implementation trace.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$profit(i)$</td>
<td>10</td>
<td>9</td>
<td>13</td>
<td>20</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>$OPT(i)$</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>23</td>
<td>30</td>
<td>53</td>
<td>55</td>
</tr>
</tbody>
</table>

$OPT(i) = \max$ profit for painting houses 1, 2, ..., i
Q. We computed the optimal value. How to reconstruct an optimal solution?
A. Trace back path that led to optimal value.
Problem. Given \(n \) coin denominations \(\{d_1, d_2, \ldots, d_n\} \) and a target value \(V \), find the fewest coins needed to make change for \(V \) (or report impossible).

Ex. Coin denominations = \(\{1, 10, 25, 100\} \), \(V = 131 \).

Greedy (8 coins). \(131\text{¢} = 100 + 25 + 1 + 1 + 1 + 1 + 1 + 1 \).

Optimal (5 coins). \(131\text{¢} = 100 + 10 + 10 + 10 + 1 \).

Remark. Greedy algorithm is optimal for U.S. coin denominations \(\{1, 5, 10, 25, 100\} \).
Dynamic programming: quiz 3

Which subproblems for coin changing problem?

A. \(OPT(i) = \) fewest coins needed to make change for target value \(V \)
 using only coin denominations \(d_1, d_2, ..., d_i \).

B. \(OPT(v) = \) fewest coins needed to make change for amount \(v \),
 for \(v = 0, 1, 2, ..., V \).

C. Either A or B.

D. Neither A nor B.
Problem. Given \(n \) coin denominations \(\{ d_1, d_2, \ldots, d_n \} \) and a target value \(V \), find the fewest coins needed to make change for \(V \) (or report impossible).

Subproblems. \(OPT(v) \) = fewest coins needed to make change for amount \(v \).

Optimal value. \(OPT(V) \).

Ex. Coin denominations \(\{ 1, 5, 8 \} \) and \(V = 10 \).

\[
\begin{array}{cccccccccccc}
 v & 0\text{¢} & 1\text{¢} & 2\text{¢} & 3\text{¢} & 4\text{¢} & 5\text{¢} & 6\text{¢} & 7\text{¢} & 8\text{¢} & 9\text{¢} & 10\text{¢} \\
 \# \text{ coins} & 0 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 1 & 2 & 2 \\
\end{array}
\]

\[
OPT(10) = \min \{ 1 + OPT(10 - 1), 1 + OPT(10 - 5), 1 + OPT(10 - 8) \} \\
= \min \{ 1 + 2, 1 + 1, 1 + 2 \} \\
= 2
\]
Coin Changing: Dynamic Programming Formulation

Problem. Given n coin denominations $\{d_1, d_2, \ldots, d_n\}$ and a target value V, find the fewest coins needed to make change for V (or report impossible).

Subproblems. $OPT(v)$ = fewest coins needed to make change for amount v.

Optimal value. $OPT(V)$.

Multiway choice. To compute $OPT(v)$,
- Select a coin of denomination $d_i \leq v$ for some i.
- Use fewest coins to make change for $v - d_i$.

Dynamic programming recurrence.

$$OPT(v) = \begin{cases}
0 & \text{if } v = 0 \\
\min_{i : d_i \leq v} \{ 1 + OPT(v - d_i) \} & \text{if } v > 0
\end{cases}$$

- notation: \min is over all coin denominations of value $\leq v$
- optimal substructure
- take best (among all coin denominations)
Coin changing: bottom-up implementation

Bottom-up DP implementation.

```java
int[] opt = new int[V+1];
opt[0] = 0;

for (int v = 1; v <= V; v++)
{
    // opt[v] = min_i { 1 + opt[v - d[i]] }
    opt[v] = INFINITY;
    for (int i = 1; i <= n; i++)
        if (d[i] <= v)
            opt[v] = Math.min(opt[v], 1 + opt[v - d[i]]);
}
```

\[
OPT(v) = \begin{cases}
0 & \text{if } v = 0 \\
\min_{i \leq d_i \leq v} \{ 1 + OPT(v - d_i) \} & \text{if } v > 0
\end{cases}
\]

Proposition. DP algorithm takes \(\Theta(n V)\) time and uses \(\Theta(V)\) extra space.

Note. Not polynomial in input size; underlying problem is **NP-complete**.
Dynamic Programming

- introduction
- Fibonacci numbers
- interview problems
- shortest paths in DAGs
- seam carving
Problem. Given a DAG with positive edge weights, find shortest path from \(s \) to \(t \).

Subproblems. \(\text{distTo}(v) = \) length of shortest \(s \rightarrow v \) path.

Goal. \(\text{distTo}(t) \).

Multiway choice. To compute \(\text{distTo}(v) \):
- Select an edge \(e = u \rightarrow v \) entering \(v \).
- Concatenate with shortest \(s \rightarrow u \) path.

Dynamic programming recurrence.

\[
\text{distTo}(v) = \begin{cases}
0 & \text{if } v = s \\
\min_{e = u \rightarrow v} \{ \text{distTo}(u) + \text{weight}(e) \} & \text{if } v \neq s
\end{cases}
\]

notation: \(\min \) is over all edges that enter \(v \).
Shortest paths in directed acyclic graphs: bottom-up solution

Bottom-up DP implementation. Takes $\Theta(E + V)$ time with two tricks:

- Solve subproblems in **topological order**.
 - ensures that “small” subproblems are solved before “large” ones
- Form reverse digraph G^R (to support iterating over edges incident to vertex v).

Equivalent (but simpler) computation. Relax vertices in topological order.

```java
Topological topological = new Topological(G);
for (int v : topological.order())
    for (DirectedEdge e : G.adj(v))
        relax(e);
```

Backtracing. Can find the shortest paths themselves by maintaining `edgeTo[]` array.
Given a DAG, how to find longest path from s to t in $\Theta(E + V)$ time?

A. Negate edge weights; use DP algorithm to find shortest path.
B. Replace \min with \max in DP recurrence.
C. Either A or B.
D. No poly-time algorithm is known (NP-complete).
DP subproblem dependency digraph.

- Vertex v corresponds to subproblem v.
- Edge $v \rightarrow w$ means subproblem v must be solved before subproblem w.
- Digraph must be a DAG. Why?

Ex 1. Modeling the coin changing problem as a shortest path problem in a DAG.

coin denominations = { 1, 5, 8 }, $V = 10$
Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.

- Vertex v corresponds to subproblem v.
- Edge $v \rightarrow w$ means subproblem v must be solved before subproblem w.
- Digraph must be a DAG. Why?

Ex 2. Modeling the house painting problem as a longest path problem in a DAG.

$n = 6$; profits = \{ 10, 9, 13, 20, 30, 25 \}
DYNAMIC PROGRAMMING

- introduction
- Fibonacci numbers
- interview problems
- shortest paths in DAGs
- seam carving
Content-aware resizing

Seam carving. [Avidan–Shamir] Resize an image without distortion for display on cell phones and web browsers.

https://www.youtube.com/watch?v=vIFCV2spKtg
Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop, ImageMagick, GIMP, ...
To find vertical seam in a picture:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors (SW, S, SE).
- Weight of pixel = “energy function” of 4 neighboring pixels (N, E, S, W).

Content-aware resizing
Content-aware resizing

To find vertical seam in a picture:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors (SW, S, SE).
- Weight of pixel = “energy function” of 4 neighboring pixels (N, E, S, W).
- Seam = shortest path (sum of vertex weights) from top to bottom.
To remove a vertical seam in a picture:

- Delete pixels on seam (one in each row).
Problem. Find a min energy path from top to bottom.

Subproblems. $\text{distTo}(col, \text{row}) = \text{energy of min energy path from any top pixel to pixel } (col, \text{row})$.

Goal. $\min \{ \text{distTo}(col, H-1) \}$.

Dynamic programing recurrence. For you to figure out in Assignment 6.
Summary

How to design a dynamic programming algorithm.

- Find good subproblems.
- Develop DP recurrence for optimal value.
 - optimal substructure
 - overlapping subproblems
- Determine dependency order in which to solve subproblems.
- Cache computed results to avoid unnecessary re-computation.
- Reconstruct the solution: backtrace or save extra state.