
https://algs4.cs.princeton.edu

Algorithm Design

- analysis of algorithms
- greed
- reduction
- dynamic programming
- divide-and-conquer
- randomization

Algorithm design

Algorithm design patterns.

- Analysis of algorithms.
- Greed.
- Reduction.
- Dynamic programming.
- Divide-and-conquer.
- Randomization.

Want more? See $\operatorname{COS} 240, \operatorname{COS} 343, \operatorname{COS} 423, \operatorname{COS} 445, \operatorname{COS} 451$, MAT $375, \ldots$

Go gle

airbnb

WETFLIX

MorganStanley

facebook

RSA
SECURITY
Cisco Systems
\# slack
in

Algorithm Design

- analysis of algorithms
\rightarrow greed
- reduction
- dynamic programming

Robert Sedgewick । Kevin Wayne

- divide-and-conquer
https://algs 4.cs.princeton.edu
- randomization

Goal. Find T using fewest drops.

EGG DROP

Goal. Find T using fewest drops.

Rules.

- An egg that breaks cannot be reused.
- An egg that survives a fall can be reused.
- The effect of a drop is the same for all eggs.
- An egg can break on floor 1 or survive on floor n.

EGG DROP

Goal. Find T using fewest drops.
Variant 0. 1 egg.

Solution. Use sequential search: drop on floors $1,2,3, \ldots$ until egg breaks.

Analysis. 1 egg and $\leq n$ drops.
Analysis. 1 egg and T drops.

EGG DROP

Goal. Find T using fewest drops.
Variant 1. ∞ eggs.

Solution. Binary search for T.

- Initialize $[10, h i]=[0, n+1]$.
- Maintain invariant: egg breaks on floor hi but not on lo.
- Repeat until length of interval is 1 :
- drop on floor mid $=\lfloor(l o+h i) / 2\rfloor$.
- if it breaks, update $h i=$ mid .

EGG DROP

Goal. Find T using fewest drops.
Variant $1^{\prime} . \infty$ eggs and $\Theta(\log T)$ drops.

Solution. Use repeated doubling; then binary search.

- Drop on floors $1,2,4,8,16, \ldots, x$ to find a floor

Algorithm design: quiz 1

Goal. Find T using fewest drops.
Variant 2. 2 eggs.

As a function of \mathbf{n}, what is the fewest drops that an algorithm can guarantee?
A. $\quad \Theta(1)$
B. $\Theta(\log n)$
C. $\Theta(\sqrt{n})$
D. $\Theta(n)$

EGG DROP (ASYMMETRIC SEARCH)

Goal. Find T using fewest drops.
Variant 2. 2 eggs.

Solution. Use gridding; then sequential search.

- Drop at floors $\sqrt{n}, 2 \sqrt{n}, 3 \sqrt{n}$, until first egg breaks, say at floor $c \sqrt{n}$.
- Sequential search in interval $[(c-1) \sqrt{n}, c \sqrt{n}]$

Analysis. At most $2 \sqrt{n}$ drops.

- First egg: $\leq \sqrt{n}$ drops.
- Second egg: $\leq \sqrt{n}$ drops.

Signing bonus 1. Use 2 eggs and at most $\sqrt{2 n}$ drops.
Signing bonus 2. Use 2 eggs and $O(\sqrt{T})$ drops.
Signing bonus 3. Use 3 eggs and $O\left(n^{1 / 3}\right)$ drops.

Algorithm Design

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

- analysis of algorithms
- greed
- reduction
- dynamic programming
- divide-and-conquer
- randomization

Greedy algorithms

Make locally optimal, irrevocable, choices at each step.

Familiar examples.

- Prim's algorithm. [for MST]
- Kruskal's algorithm. [for MST]
- Dijkstra's algorithm. [for shortest paths]

More classic examples.

- A* search algorithm.
- Huffman's algorithm for data compression.
- Gale-Shapley algorithm for stable marriage.
- Greedy algorithm for matroids.
- ...

Caveat. Greedy algorithms rarely lead to provably optimal solutions.
[but often used anyway in practice, especially for intractable problems]

COIN CHANGING PROBLEM AND CASHIER'S ALGORITHM

Goal. Given U. S. coin denominations $\{1,5,10,25,100\}$, devise a method to pay amount to customer using fewest coins.

Ex. 344.

EX. 344.
6 coins

Cashier's (greedy) algorithm. Repeatedly add the coin of the largest value that does not exceed the remaining amount to be paid.

Ex. \$2.89.

Algorithm design: quiz 2

Is the cashier's algorithm optimal for U.S. coin denominations $\{1,5,10,25,100\}$?
A. Yes, greedy algorithms are always optimal.
B. Yes, for any set of coin denominations $d_{1}<d_{2}<\ldots<d_{n}$ provided $d_{1}=1$.
C. Yes, because of special properties of U.S. coin denominations.
D. No.

Properties of any optimal solution (for U.S. coin denominations)

Property 1. Number of pennies $P \leq 4$.
Pf. Replace 5 pennies with 1 nickel.

Property 2. Number of nickels $N \leq 1$.
replace 2 nickels with 1 dime
Property 3. Number of dimes $D \leq 2$. replace 3 dimes with 1 quarter and 1 nickel

Property 4. Number of quarters $Q \leq 3$. \qquad replace 4 quarters with 1 dollar

Property 5. $N+D \leq 2$.
Pf.

- Properties 2 and $3 \Rightarrow N \leq 1$ and $D \leq 2$.
- If $N=1$ and $D=2$, replace with 1 quarter.
significance: total amount of change from pennies, nickels, dimes, and quarters

Optimality of cashier's algorithm (for U.S. coin denominations)

Proposition. Cashier's algorithm yields unique optimal solution for denominations $\{1,5,10,25,100\}$.

Pf. [for dollar coins]

- Suppose we are changing amount $\$ x . y z$.
- Cashier's algorithm takes x dollar coins.
- Suppose (for the sake of contradiction) that an optimal solution takes fewer than x dollar coins.
- Then, optimal solution satisfies $P+5 N+10 D+25 Q \geq 100$.
- This contradicts Property 6:

$$
P+5 N+10 D+25 Q \leq 99
$$

must make change for $\geq 100 ¢$ using only pennies, nickels, dimes, and quarters
[similar arguments justify greedy strategy for quarters, dimes, and nickels]

Algorithm Design

- analysis of algorithms
\rightarrow greed

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

- reduction
- dynamic programming
- divide-and-conquer
- randomization

Reductions

Problem X reduces to problem Y if you can solve X by using an algorithm for Y.

Ex 1. Finding the median reduces to sorting.
Ex 2. Bipartite matching reduces to maxflow.

Many many problems reduce to:

- Sorting.
- Maxflow.
- Suffix array. \qquad see $\operatorname{COS} 343$
- Shortest path.
- Minimum spanning tree.
- Linear/semidefinite programming. \qquad see ORF 307 or ORF 363
- ...

Note. Reductions also play central role in computational complexity (e.g., NP-completeness).

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is colored orange or black, find shortest path from s to t that uses at most k orange edges.

G

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is colored orange or black, find shortest path from s to t that uses at most k orange edges.

A redution to shortest paths:

- Create $k+1$ copies of the vertices in digraph G, labeled $G_{0}, G_{1}, \ldots, G_{k}$.
- For each black edge $v \rightarrow w$: add edge from vertex v in graph G_{i} to vertex w in G_{i}.
- For each orange edge $v \rightarrow w$: add edge from vertex v in graph G_{i} to vertex w in G_{i+1}.

G

- Compute shortest path from s to any copy of t.
G_{0}

G_{1}

$k=2$

Algorithm design: quiz 3

What is worst-case running time of algorithm as a function of k, the number of vertices V, and the number of edges E ? Assume $E \geq V$ and $k>0$.
A. $\Theta(E \log V)$
B. $\quad \Theta(k E)$
C. $\Theta(k E \log V)$
D. $\Theta\left(k^{2} E \log V\right)$

Algorithm Design

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

- analysis of algorithms
\rightarrow greed
- reduction
- dynamic programming
- divide-and-conquer
- randomization

Dynamic programming

- Break up problem into a series of overlapping subproblems.
- Build up solutions to larger and larger subproblems.
[caching solutions to subproblems in a table for later reuse]

Familiar examples.

- Bellman-Ford.

Richard Bellman, *46

- Seam carving.
- Shortest paths in DAGs.

More classic examples.

- Unix diff.
- Viterbi algorithm for hidden Markov models.
- CKY algorithm for parsing context-free grammars.
- Needleman-Wunsch/Smith-Waterman for DNA sequence alignment.
- ...

House coloring problem

Goal. Paint a row of n houses red, green, or blue so that:

- Minimize total cost, where cost(i,color) is cost to paint i given color.
- No two adjacent houses have the same color.

	1	2	3	4	5	6
$\operatorname{cost}(i$, red $)$	7	6	7	8	9	20
$\operatorname{cost}(i$, green $)$	3	8	9	22	12	8
$\operatorname{cost}(i$, blue $)$	16	10	4	2	5	7

cost to paint house i the given color
$(3+6+4+8+5+8=34)$

House coloring problem: dynamic procramming formulation

Goal. Paint a row of n houses red, green, or blue so that:

- Minimize total cost, where cost $(i$, color $)$ is cost to paint i given color.
- No two adjacent houses have the same color.

Subproblems.

- $R(i)=\min$ cost to paint houses $1, \ldots, i$ with i red.
- $G(i)=\min$ cost to paint houses $1, \ldots, i$ with i green.
- $B(i)=\min$ cost to paint houses $1, \ldots, i$ with i blue.
- Optimal cost $=\min \{R(n), G(n), B(n)\}$.

Dynamic programming recurrence.

- $R(0)=G(0)=B(0)=0$
- $R(i)=\operatorname{cost}(i, r e d)+\min \{G(i-1), B(i-1)\}$
- $G(i)=\operatorname{cost}(i$, green $)+\min \{B(i-1), R(i-1)\}$
- $B(i)=\operatorname{cost}(i$, blue $)+\min \{R(i-1), G(i-1)\}$
"optimal substructure
(optimal solution can be constructed from optimal solutions to smaller subproblems)

Bottom-up DP trace. Given $R(i), G(i)$, and $B(i)$, easy to compute $R(i+1), G(i+1)$, and $B(i+1)$.

$$
\begin{aligned}
B(6) & =\operatorname{cost}(6, \text { blue })+\min \{R(5), G(5)\} \\
& =7+\min \{29,32\} \\
& =36
\end{aligned}
$$

	0	1	2	3	4	5	6
$R(i)$	0	7	9	20	21	29	46
$G(i)$	0	3	15	18	35	$32 \longrightarrow 34$	
$B(i)$	0	16	13	13	20	26	36

House Coloring: вOTIOM-UP IMPLEMENTATION

Bottom-up DP implementation.

```
int[] r = new int[n+1];
int[] g = new int[n+1];
int[] b = new int[n+1];
for (int i = 1; i <= n; i++) {
    r[i] = cost[i][RED] + Math.min(g[i-1], b[i-1]);
    g[i] = cost[i][GREEN] + Math.min(b[i-1], r[i-1]);
    b[i] = cost[i][BLUE] + Math.min(r[i-1], g[i-1]);
}
return min3(r[n],g[n], b[n]);
```

Proposition. Takes $\Theta(n)$ time and uses $\Theta(n)$ extra space.

Algorithm Design

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

- analysis of algorithms
greed
- reduction
- dynamic programming
- divide-and-conquer
- randomization

Divide and conquer

- Break up problem into two or more independent subproblems.
- Solve each subproblem recursively.
- Combine solutions to subproblems to form solution to original problem.

Familiar examples.

- Mergesort.
- Quicksort.

More classic examples.

- Closest pair.
- Convolution and FFT.
- Matrix multiplication.
- Integer multiplication.

needs to take COS 226 ?

Prototypical usage. Turn brute-force $\Theta\left(n^{2}\right)$ algorithm into $\Theta(n \log n)$ one.

Personalized recommendations

Music site tries to match your song preferences with others.

- Your ranking of songs: $0,1, \ldots, n-1$.
- My ranking of songs: $a_{0}, a_{1}, \ldots, a_{n-1}$.
- Music site consults database to find people with similar tastes.

Kendall-tau distance. Number of inversions between two rankings.
Inversion. Songs i and j are inverted if $i<j$, but $a_{i}>a_{j}$.

	A	B	C	D	E	F	G	H
you	0	1	2	3	4	5	6	7
me	0	2	3	1	4	5	7	6

3 inversions: 2-1, 3-1, 7-6

Counting inversions

Problem. Given a permutation of length n, count the number of inversions.

0	2	3	1	4	5	7	6

3 inversions: 2-1, 3-1, 7-6

Brute-force $\Theta\left(n^{2}\right)$ algorithm. For each $i<j$, check if $a_{i}>a_{j}$.
A bit better. Run insertion sort; return number of exchanges.

Goal. $\Theta(n \log n)$ time (or better).

COUNTING INVERSIONS: DIVIDE-AND-CONQUER

input
count inversions in left subarray

count inversions in right subarray

count inversions with one element in each subarray

COUNTING INVERSIONS: DIVIDE-AND-CONQUER

input	0	4	3	7	9	1	5	8	2	6

count inversions in left subarray and sort
\square
count inversions in right subarray and sort
count inversions with one element in each sorted subarray

Algorithm design: quiz 5

What is running time of algorithm as a function of n ?
A. $\quad \Theta(n)$
B. $\quad \Theta(n \log n)$
C. $\Theta\left(n \log ^{2} n\right)$
D. $\Theta\left(n^{2}\right)$

Algorithm Design

- analysis of algorithms
greed

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

- reduction
- dynamic programming
- divide-and-conquer
- randomization

Randomized algorithms

Algorithm whose performance (or output) depends on the results of random coin flips.

Familiar examples.

- Quicksort.
- Quickselect.
- Karger's algorithm.

More classic examples.

- Miller-Rabin primality testing.
- Rabin-Karp substring search.
- Polynomial identity testing.
- Volume of convex body.
- Universal hashing.
- ...

Probability and Computing Rendomized Algorithms and Probabilisici A Alalses

NUTS AND BOLTS

Problem. A disorganized carpenter has a mixed pile of n nuts and n bolts.

- The goal is to find the corresponding pairs of nuts and bolts.
- Each nut fits exactly one bolt; each bolt fits exactly one nut.
- By fitting a nut and a bolt together, the carpenter can determine which is bigger. \qquad

Brute-force algorithm. Compare each bolt to each nut: $\Theta\left(n^{2}\right)$ compares.
Challenge. Design an algorithm that makes $\mathrm{O}(n \log n)$ compares.

NUTS AND BOLTS

Shuffle. Shuffle the nuts and bolts.

Partition.

bolts

x

- Pick leftmost bolt x and compare against all nuts; divide nuts smaller than x from those that are larger than x.
- Let x^{\prime} be the nut that matches bolt x. Compare x^{\prime} against all bolts; divide bolts smaller than x^{\prime} from those that are larger than x^{\prime}.

Divide-and-conquer. Recursively solve two independent subproblems.

Algorithm design: quiz 6

What is the expected running time of the randomized algorithm as a function of n ?
A. $\quad \Theta(n)$
B. $\quad \Theta(n \log n)$
C. $\Theta\left(n \log ^{2} n\right)$
D. $\Theta\left(n^{2}\right)$

Hiring bonus. Design algorithm that takes $O(n \log n)$ time in the worst case.

Chapter 27
Matching Nuts and Bolts in $O(n \log n)$ Time (Extended Abstract)
János Komlós ${ }^{1,4} \quad$ Yuan Ma $^{2} \quad$ Endre Szemerédi ${ }^{3,4}$

Abstract

Given a set of \boldsymbol{n} nuts of distinct widths and a set of n bolts such that each nut corresponds to a unique bolt of the same width, how should we match every nut with its corresponding bolt by comparing nuts with bolts (no comparison is allowed between two nuts or between two bolts)? The problem can be naturally viewed as a variant of the classic sorting problem as follows. Given two lists of n numbers each such that one list is a permutation of the other, how should we sort the lists by comparisons only between numbers in different lists? We give an $O(n \log n)$-time deterministic algorithm for the problem. This is optimal up to a constant factor and answers an open question posed by Alon, Blum, Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when copies of nuts and bolts are allowed, our algorithm runs in optimal $O(\log n)$ time on n processors in Valiant's parallel comparison tree model. Our algorithm is based on the AKS sorting algorithm with substantial modifications.

Algorithm Design

- analysis of algorithms
greed

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

- reduction
- dynamic programming
- divide-and-conquer
- randomization
- credits

Credits

Co-instructors and graduate student preceptors.

Pedro Paredes

Marcel Dall'Agnoll

Bob Tarjan

Nataliia K.

Dongsheng Yang

Sabhya Chhabria

Wei Luo

Malinda Huang

Shelley Xia

Undergrad graders and lab TAs. Apply to be one next semester!
" Algorithms and data structures are love. Algorithms and data structures are life. "

- anonymous COS 226 student

Credits

image	source	license
Egg Drop	$\underline{\text { New York Times }}$	
Broken Egg	$\underline{\text { Adobe Stock }}$	$\underline{\text { education license }}$
Greed is Good	$\underline{\text { Dennis Dugan }}$	
Coin Changing	$\underline{\text { unknown }}$	
U.S. Coins	$\underline{\text { Adobe Stock Stock }}$	$\underline{\text { education license }}$
Cash Register	$\underline{\text { Zazzle }}$	
Divide-and-Conquer T-Shirt	$\underline{\text { clipground.comse }}$	$\underline{\text { Cdobe BY 4.0 }}$
Coin Toss	$\underline{\text { education license }}$	

[^0]
[^0]: Lecture Slides © Copyright 2023 Robert Sedgewick and Kevin Wayne

