A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

GEOMETRIC APPLICATIONS OF BSTs

» 1d range search
> line segment intersection

» k-d trees

» confext

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Overview

This lecture. Intersections among geometric objects.

2d orthogonal range search

|7
- |I

line segment intersection

Applications. CAD, games, movies, virtual reality, databases, GIS, ...

Efficient solutions. Binary search trees (and extensions).

Overview

This lecture. Only the tip of the iceberg.

Mark de Berg
Otfried Cheong

Marc van Kreveld
Mark Overmars

Computer Science 451
Computational Geometry

D J

i,

Computational

L DET) CIGET]
ST O™ g Geometry
Alg.crith‘m‘s and Applications
Princeton University Bernard Chazelle S
Computer Science

Department

A .
&) Springer

GEOMETRIC APPLICATIONS OF BSTs

» 1d range search

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

1d range search

Extension of ordered symbol table.
* |nsert key-value pair.
« Search for key «.
* Delete key k (and associated value).
« Range search: find all keys between k, and «%,.

« Range count: number of keys between k, and k..

Application. Database queries.

insert B B
insert D B D
Geometric interpretation. insert A ABD
+ Keys are point on a line. Insert | ABDI
Find _ _ _ 1d i | insert H ABDHTI
. N lven interval.
Ind/count points in a give terva e ABDEHI
insert P ABDFHIP
IS , searchGtoK H I
o o0 o o0 QOEQ @ 00:00 o 060 o o
""""""""""""" count G to K 2

Geometric applications of BSTs: quiz 1

Suppose that the keys are stored in a sorted array of length .

What is the worst-case running time for range search as a function of both m and n?

N\

number of matching keys

A. O(logm)
B. ©O(ogn)
C. Odogn + m)

D. Om+n)

1d range search: elementary implementations

Unordered list. Slow insert; slow range search.

Sorted array. Slow insert; fast range search.

order of growth of running time for 1d range search

data structure m range count range search

unordered list

sorted array log n logn+m

goal log n log n log n+m

m = number of keys that match
n = number of keys

1d range search: BST implementation

1d range search. Find all keys between &, and k,.
« Recursively find all keys in left subtree (if any could fall in range).
 Check key in current node.

« Recursively find all keys in right subtree (if any could fall in range).

range search [D...Q] Q

v I Om

assuming BST is balanced

/

Proposition. Takes ®(log n + m) time in the worst case.

Pf. Nodes examined = {search pathtok, } U {search pathtok, } U { matches }.
O(log n) O(log n) O(m)

1d range search: summary of performance

Unordered list. Slow insert; slow range search.
Sorted array. Slow insert; fast range search.

BST. Fast insert; fast range search/count.

order of growth of running time for 1d range search

data structure m range count range search

unordered list
sorted array n log n logn+m

balanced BST log n log n logn+m

e

e el) e m = number of keys that match

n = number of keys

GEOMETRIC APPLICATIONS OF BSTs

> line segment intersection

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Orthogonal line segment intersection

Given n horizontal and vertical line segments, find all intersections.

Brute-force ®(n?) algorithm. Check all pairs of line segments for intersection.

11

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

* Very Large Scale Integration (VLSI).
 Computer-Aided Design (CAD).

Design-rule checking.
* Certain wires cannot intersect.
« Certain spacing needed between different types of wires.

 Debugging = line segment (or rectangle) intersection.

12

Orthogonal line segment intersection: sweep-line algorithm

Non-degeneracy assumption. All x- and y-coordinates are distinct.

® O

3 e °

—e D

13

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
 Horizontal segment (left endpoint): insert y-coordinate into BST.
 Horizontal segment (right endpoint): remove y-coordinate from BST.

« Vertical segment: range search for interval of y-endpoints.

—® O
o

—e N

y-coordinates
(of horizontal lines that intersect sweep line) 14

Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes ©(n log n + m) time in the worst case

to find all m intersections among n horizontal and vertical line segments.

Pf.
» Sort x-coordinates.
* |nsert y-coordinates into BST.
« Delete y-coordinates from BST.

« Range searches in BST.

Bottom line. Sweep line reduces 2d orthogonal line segment intersection to 1d range search.

15

Sweep-line algorithm: context

The sweep-line algorithm is a powerful technique in computational geometry.

Geometric intersection.

* General line-segment intersection.

» Axis-aligned rectangle intersection.

More problems.

* Convex hull (Andrew’s algorithm).

* Voronoi diagram (Fortune’s algorithm).

 Rendering computer graphics (scanline algorithm).

>< =

16

GEOMETRIC APPLICATIONS OF BSTs

Algorithms > k-d trees

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two-dimensional orthogonal range search

Extension of ordered symbol table to 2d keys.
* |[nsert a 2d key.
» Search for a 2d key.

« 2d orthogonal range search: find all keys that lie in a 2d range.

« 2d orthogonal range count: number of keys that lie in a 2d range.

Applications. Networking, circuit design, databases, ...

Geometric interpretation.
» Keys are point in the plane.
- Find/count points in a given i—v rectangle. . ¢ i * .

rectangle is axis-aligned o

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

Quadtree. Recursively divide space into four quadrants.

(2d tree. Recursively divide space into two halfplanes.)

BSP tree. Recursively divide space into two regions.

Grid Quadtree 2d tree BSP tree

Space-partitioning trees: applications

Applications.
* Ray tracing.
* Flight simulators.
 N-body simulation.
» Collision detection.
* Astronomical databases.
* Nearest neighbor search.

« Adaptive mesh generation.

» 2d orthogonal range search.
* Accelerate rendering in Doom.

* Hidden surface removal and shadow casting.

..

Grid Quadtree 2d tree BSP tree

2d tree construction

Recursively partition plane into two halfplanes.

® N

M

__

Geometric applications of BSTs: quiz 2

Where to insert point K in the 2d tree below?

A. Left child of G.

B. Left child of J.

C. Right child of J.

D. Right child of I.

22

2d tree implementation

Data structure. BST, but alternate using x- and y-coordinates as key.

 Even levels: compare x-coordinates.

* Odd levels: compare y-coordinates.

even levels

HO
F o ¢ A
|
C C
P
.—._.
E AO B
® D F G
P
G ‘ E
°
J
®
® D

0o

odd levels

23

2d tree demo: range search

Goal. Find all points in a query rectangle.
* Check if query rectangle contains point in node.
» Recursively search left/bottom and right/top subtrees.

« Optimization: prune subtree if it can’t contain a point in rectangle.

H®
A
query .
rectangle P ® C
| .
C
®
D F G
° A ®
E E
B
®
® G
J
®

__

2d tree demo: range search

Goal. Find all points in a query rectangle.

* Check if query rectangle contains point in node.
» Recursively search left/bottom and right/top subtrees.

« Optimization: prune subtree if it can’t contain a point in rectangle.

query
i rectangle P
C
s
e A ®
E
® D

done

25

Geometric applications of BSTs: quiz 4

Suppose we explore the right/top subtree before the left/bottom subtree

in range search. What effect would it have on typical inputs?

A. Returns wrong answer.
B. Explores more nodes.
C. Both A and B.

D. Neither A nor B.

26

Range search in a 2d tree analysis

Typical case. O(logn + m).

Worst case (assuming tree is balanced). @ n + m).

query
i rectangle P
C
s
e A ®
E
® D

27

2d tree demo: nearest neighbor

Goal. Find closest point to query point.

H®
o ®
query i |
point
C
Q\ o
A®
- B
®
® C
J
®
® D

28

2d tree demo: nearest neighbor

* Check distance from point in node to query point.

« Recursively search left/bottom and right/top subtrees.

 Optimization 1: prune subtree if it can’t contain a closer point.

* Optimization 2: explore subtree toward the query point first.

__

nearest neighbor = E

29

Geometric applications of BSTs: quiz 6

Suppose we always explore the left/bottom subtree before the right/top subtree in

hearest-neighbor search. What effect will it have on typical inputs?

A. Returns wrong answer.
B. Explores more nodes.
C. Both A and B.

D. Neither A nor B.

30

Geometric applications of BSTs: quiz 7

Which of the following is a worst-case input for nearest-neighbor search?

-." * . " < '
. : ~ - e . .
. v R - . ° . :' . 2o .
‘v \ o ’ . . - . - . - .- -
| Y e % ’.'. o"' .t . = . . & L. 2 .
. . DR -t . ‘. . 0
. . . » [T "*?." §Ye e <" . % Mg, *0 s
¢ e . ool s e, = .. -~ M
- Q'. , > . - ..; r 2NE DA TS .Q{- LY - . ‘-’
. * N e R 1 5 IS -
’ ~ . . . - :’ ':f - "4 . - ™
. 2 ! . MRS . A .-"‘,' '.-':'!' _‘}l". \‘-’?{?“ v e
‘- R " 1‘..-.‘.., .".\S.. .‘;-,., A 3] U
= * e — 2 . P N v.-s._ e U L ."-‘h‘ “o "t Nre -
’ " . 4 * S A :'- ase? 87 42° £, !-,""'.,":' . 2 e—".’fo) *
o - . o2 . * C I gL N g .. s = o
. .. . y . . : LI ..‘ ., 9 < . !‘: . w -‘:,.c “$_. .. A
N T ; .| e Ve wiEL L d R B
'L . . . - ..u v *$.s S & ° we ¢ .'&.g k;
o . " - ® L L - * .5..- = * il ' 8"" e} "Q’ "':‘.
H ’ ° . - L P A . N et e
: : TR L M SR 7 38 S LS RN OO
" . B L . . Jar s 0" 40 . " A ." .
) > F Rl I vt T . . vy §
‘v . .o b o T *“n [T I A SIS L
,_'A o “ . . ‘} " . \'..'x.‘-;; . '..-': .‘\ 5
* S i " -(P "\.‘- et L ® .
- - . o * ot e % * e $ ® ™. e 0T 02 LN A 'y .
o b ".‘ o ’ ., L Lo .. oo in.s .‘._t ,' Q" ., mva. ot [
- o " — 4 \. >, .:. e ‘.N..‘, ‘l".'.';_."~ .
s - N . . - P g be’ o L . el 1: 2. \’.'.3.
\e v ‘c ot . . s g '*f. 2 ‘e R ;-‘ : ‘.;:\.&:. my -‘
e s . * '.‘ k ,'ri.¢'n, o -.5~‘7 !.5‘....,.'
M ’ - . * " N PR - Te vy, ‘ - A\
IR VRS AR P SRR e 2 R
. . .‘ Y. e X el PGS A
e L RVORRE R
. - =
. < .6 - ?.
“ e “ﬁr;.
- .
. .01 ,".. ‘.
. %
L {
L ° o
° ® ° ° ° ° . ° o
) ° C ° ° ° °
| [[[J °)
° ° ® o ° ° °
o e o ° ° ° °
) o ° ° °
° ° ° o ° ° o ° ° ® e o
° ° ° ° o0
[] Y [] °
[J
. PY)) . o ° o ® ° e o °
[] [} ° ° ° L]
[J
[]
°, ° e ° ° ° C . oo o o
L ° ° ° °
° ® o0 ° L °
° i ° ° .’
° ° ® ° °
oo o O ° ° o o o
[] ° () P
o0 o P [[[)
° ° L o
A o o ° o o ©® ° ° °
° C o
° o o ° ° °
[}
) . ° ° °
° ® L °
®oo0 : ° o © P ° ° o0 ¢ °
[° ° ° ° [
° oo © ° .
® o © ® []
® ® L o ° L ° ®
° o © °
[Y L) ° [
[} ® [}
¢ ° ° ® o o °
° ° ° ®, ° C - ® - °

31

Nearest neighbor search in a 2d tree analysis

Typical case. O(log n).

Worst case (even if tree is balanced). O(®).

__

nearest neighbor = E

32

2d tree: implementation

Q. How to implement a 2d-tree?

each node stores a rectangle
corresponding to subdivision of plane

A. Explicit node data type for binary tree.

private class KdTreeST<Value> {
private Node root;

private class Node {

o N

private Point2D p;
private Value val;

private Node left, right;
privateNode—parent;

private RectHV rect; S O N

. [

very useful for 2D range search
} and nearest neighbor search

GEOMETRIC APPLICATIONS OF BSTs

Algorithms

» confext

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

K-d tree

K-d tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions a la 2d trees.

level =i (mod k)

points

points

. th
whose ith whose i

coordinate coordinate

is less than p’s is greater than p’s

Efficient, simple data structure for processing k-dimensional data.
* Widely used.
» Adapts well to high-dimensional and clustered data.
» Discovered by an undergrad in an algorithms class!

35

Flocking birds

)

Q. Which "natural algorithm” do starlings, migrating geese, cranes,

bait balls of fish, and flashing fireflies use to flock?

36

https://www.youtube.com/watch?v=XH-groCeKbE

Flocking boids |[Craig Reynolds, 1986]

D

Boids. Three simple rules lead to complex emergent flocking behavior:
* Flock centering (cohesion): move toward the center of mass of k£ nearest boids.
« Direction matching (alignment): update velocity toward average velocity of k nearest boids.

« Collision avoidance (separation): point away from k nearest boids.

37

https://www.youtube.com/watch?v=nbbd5uby0sY

N-body simulation

Goal. Simulate the motion of n particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force: F = G ma m

7a2
Running time. Time per step is O(n?).

38

https://www.youtube.com/watch?v=ua7YlN4eL_w

Appel’s algorithm for n-body simulation

Key idea. Suppose that a particle is in a galaxy far, far away from a cluster of particles.
* Treat the cluster of particles as a single aggregate particle.

 Compute force between particle and center of mass of aggregate.

39

Appel’s algorithm for n-body simulation

« Build 3d-tree with »n particles as nodes.
» Store center-of-mass of subtree in each node.
 To compute total force acting on a particle, traverse tree, but stop

as soon as distance from particle to subdivision is sufficiently large.

SIAM J. SCI1. STAT. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, January 1985 008

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPELTY

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N?) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N = 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

Impact. Running time per step is O(nlogn) = enables new research.

Geometric applications of BSTs

problem

1d range search

2d orthogonal line
segment intersection

2d range search
k-d range search

example

binary search tree

sweep line
(reduces to 1d range search)

2d tree
k-d tree

41

Credits

image source license
Iceberg Adobe Stock Education License
Fortune’s Algorithm Kevin Schaal

Return to Castle Wolfenstein
Doom 3
3d-Tree
Starlings on Otmoor
Flocking Boid Simulation
Vivaldi Summer Movement 3
N-Body Simulation
Andromeda Galaxy

Flight of the Starlings

FilmWeb

IXBT Labs

Wikimedia GPL v2

YouTube

Gavin Wood

John Harrison CCBY-SA 3.0

YouTube

Jason Ware / NASA

National Geographic

Lecture Slides © Copyright 2023 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/south-and-north-pole-and-all-things-related/50345538
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=k2P9yWSMaXE
https://www.filmweb.pl/reviews/recenzja-gry-Return+to+Castle+Wolfenstein-20401
http://ixbtlabs.com/articles2/digest3d/pics/pics-doom3.html
https://commons.wikimedia.org/wiki/File:3dtree.png
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://www.youtube.com/watch?v=XH-groCeKbE
https://www.youtube.com/watch?v=nbbd5uby0sY
https://en.wikipedia.org/wiki/File:06_-_Vivaldi_Summer_mvt_3_Presto_-_John_Harrison_violin.ogg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.youtube.com/watch?v=ua7YlN4eL_w
https://www.youtube.com/watch?v=V4f_1_r80RY&t=54s

