6.4 **Maximum Flow**

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation (see textbook)
- applications

https://algs4.cs.princeton.edu
6.4 Maximum Flow

› introduction
› Ford–Fulkerson algorithm
› maxflow–mincut theorem
› analysis of running time
› Java implementation
› applications
Mincut problem

Input. A digraph with positive edge weights, source vertex s, and target vertex t.

![Diagram with edge weights and capacities]
Mincut problem

Def. A *st-cut (cut)* is a partition of the vertices into two disjoint sets, with s in one set A and t in the other set B.

Def. Its *capacity* is the sum of the capacities of the edges from A to B.

\[\text{capacity} = 10 + 5 + 15 = 30 \]
Def. A *st*-cut (cut) is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

Def. Its *capacity* is the sum of the capacities of the edges from *A* to *B*.

\[
\text{capacity} = 10 + 8 + 16 = 34
\]

don’t count edges from B to A
Def. A *st-cut (cut)* is a partition of the vertices into two disjoint sets, with \(s \) in one set \(A \) and \(t \) in the other set \(B \).

Def. Its *capacity* is the sum of the capacities of the edges from \(A \) to \(B \).

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

\[
\text{capacity} = 10 + 8 + 10 = 28
\]
What is the capacity of the cut \{ A, E, F, G \}?

A. 11 \((20 + 25 - 8 - 11 - 9 - 6)\)
B. 34 \((8 + 11 + 9 + 6)\)
C. 45 \((20 + 25)\)
D. 79 \((20 + 25 + 8 + 11 + 9 + 6)\)
“Free world” goal. Disrupt rail network (if Cold War turns into real war).

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)
Though maximum flow algorithms have a long history, revolutionary progress is still being made.

BY ANDREW V. GOLDBERG AND ROBERT E. TARJAN

Efficient Maximum Flow Algorithms

Efficient Maximum Flow Algorithms by Andrew Goldberg and Bob Tarjan
https://vimeo.com/100774435
Maxflow problem

Input. A digraph with positive edge weights, source vertex s, and target vertex t.
Def. An *st*-flow (flow) is an assignment of values to the edges such that:

- Capacity constraints: $0 \leq \text{edge's flow} \leq \text{edge's capacity}$.
- Flow conservation constraints: inflow = outflow at every vertex (except s and t).

Maxflow problem

![Diagram](image)

\[\text{inflow at } v = 5 + 5 + 0 = 10 \]

\[\text{outflow at } v = 10 + 0 = 10 \]
Maxflow problem

Def. An \textit{st}-flow (flow) is an assignment of values to the edges such that:
\begin{itemize}
 \item Capacity constraints: $0 \leq \text{edge's flow} \leq \text{edge's capacity}$.
 \item Flow conservation constraints: inflow = outflow at every vertex (except s and t).
\end{itemize}

Def. The \textit{value} of a flow is the inflow at t.

\begin{align*}
\text{value} &= 5 + 10 + 10 = 25
\end{align*}

we assume no edges incident to s or from t
Maxflow problem

Def. An \textit{st-flow (flow)} is an assignment of values to the edges such that:

- Capacity constraints: \(0 \leq \text{edge's flow} \leq \text{edge's capacity}\).
- Flow conservation constraints: inflow = outflow at every vertex (except \(s\) and \(t\)).

Def. The \textit{value} of a flow is the inflow at \(t\).

Maximum \textit{st-flow (maxflow)} problem. Find a flow of maximum value.

\[\text{value} = 8 + 10 + 10 = 28 \]
Maxflow application (Tolstoǐ 1930s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)
Summary

Input. A digraph with positive edge weights, source vertex s, and target vertex t.

Mincut problem. Find a cut of minimum capacity.

Maxflow problem. Find a flow of maximum value.

Remarkable fact. These two problems are dual! [stay tuned]
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Initialization. Start with 0 flow.

![Graph of the Ford–Fulkerson algorithm with flow and capacity labels.](image)
Ford–Fulkerson algorithm demo

Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

1st augmenting path

![Diagram with annotated edges and flows](image-url)

- **forward edge (not full)**: Flow 10 on edge from s to t, with capacity 10.
- **bottleneck capacity** = 10.

Impact: Increases value of flow, while maintaining capacity and flow conservation constraints.

$0 + 10 = 10$
Augmenting path. Find an undirected path from s to t such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path

$$10 + 10 = 20$$
Ford–Fulkerson algorithm demo

Augmenting path. Find an undirected path from \(s \) to \(t \) such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

3rd augmenting path

\[
\begin{align*}
\text{impact: increases value of flow, while maintaining capacity and flow conservation constraints}

\text{backward edge (not empty)}
\end{align*}
\]
Ford–Fulkerson algorithm demo

Augmenting path. Find an undirected path from \(s \) to \(t \) such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

4th augmenting path

![Diagram](image_url)
Ford–Fulkerson algorithm demo

Termination. All paths from s to t are blocked by either a
- Full forward edge.
- Empty backward edge.

no more augmenting paths

![Diagram](image-url)
Which is an augmenting path?

A. $A \to F \to G \to D \to H$

B. $A \to F \to B \to G \to C \to D \to H$

C. Both A and B.

D. Neither A nor B.
Maxflow: quiz 3

What is the **bottleneck capacity** of the augmenting path \(A \rightarrow F \rightarrow B \rightarrow G \rightarrow C \rightarrow D \rightarrow H \) ?

A. 4

B. 5

C. 6

D. 7
Ford–Fulkerson algorithm

Fundamental questions.

- How to find an augmenting path?
- How many augmenting paths?
- Guaranteed to compute a maxflow?
- Given a maxflow, how to compute a mincut?

Ford–Fulkerson algorithm

Start with 0 flow.
While there exists an augmenting path:
 – find an augmenting path P
 – compute bottleneck capacity of P
 – update flow on P by bottleneck capacity
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Relationship between flows and cuts

Def. Given a flow f, the net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

\[
\text{net flow across cut } = 5 + 10 + 10 = 25
\]

value of flow $= 25$
Def. Given a flow f, the net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

\[
\text{net flow across cut} = 10 + 5 + 10 = 25
\]

\[
\text{value of flow} = 25
\]
Def. Given a flow f, the net flow across a cut (A, B) is the sum of the flows on its edges from A to B minus the sum of the flows on its edges from B to A.

net flow across cut $= (10 + 10 + 10) - (0 + 5 + 0) = 25$

value of flow $= 25$
Maxflow: quiz 4

Given the flow f below, what is the net flow across the cut $\{ A, E, F, G \}$?

A. $11 \ (20 + 25 - 8 - 11 - 9 - 6)$
B. $26 \ (20 + 22 - 8 - 4 - 4 - 0)$
C. $42 \ (20 + 22)$
D. $45 \ (20 + 25)$
Relationship between flows and cuts

Flow–value lemma. Let f be any flow and let (A, B) be any cut. Then, the net flow across the cut (A, B) equals the value of the flow f.

Intuition. Conservation of flow.

Pf. By induction on the number of vertices in B.
- Base case: $B = \{ t \}$.
- Induction step: remains true when moving any vertex v from A to B (because of flow conservation constraint for vertex v)

Corollary. Outflow from $s = $ inflow to $t = $ value of flow.

\[\text{we assume no edges incident to } s \text{ or from } t \]
Relationship between flows and cuts

Weak duality. Let f be any flow and let (A, B) be any cut. Then, the value of flow $f \leq$ the capacity of cut (A, B).

Pf. Value of flow $f = \text{net flow across cut } (A, B) \leq \text{capacity of cut } (A, B)$.

Equivalent. Value of maxflow \leq capacity of mincut.

![Diagram of a network with flow values and cut](image-url)

- **value of flow $f = 27$**
- **capacity of cut $(A, B) = 34$**
Maxflow–mincut theorem

Augmenting path theorem. A flow f is a maxflow if and only if no augmenting paths.

Pf. For any flow f, the following three conditions are equivalent:

i. Flow f is a maxflow.

ii. There is no augmenting path with respect to flow f.

iii. There exists a cut whose capacity equals the value of flow f.

[$i \Rightarrow ii$] We prove contrapositive: $\sim ii \Rightarrow \sim i$.

- Suppose that there is an augmenting path with respect to flow f.
- Can improve f by sending flow along this path.
- Thus, f is not a maxflow. •
Maxflow–mincut theorem

Augmenting path theorem. A flow f is a maxflow if and only if no augmenting paths.

\[\text{Pf. } \text{For any flow } f, \text{ the following three conditions are equivalent:} \]

i. Flow f is a maxflow.

ii. There is no augmenting path with respect to flow f.

iii. There exists a cut whose capacity equals the value of flow f.

\[\text{[iii } \Rightarrow \text{ i]} \]

- Let (A, B) be a cut whose capacity equals the value of flow f.
- Then, the value of any flow $f' \leq$ capacity of $(A, B) = \text{value of } f$.
- Thus, f is a maxflow.

\(\uparrow \)

\(\text{weak duality} \quad \text{by assumption} \)
Maxflow–mincut theorem

[ii ⇒ iii]

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s via a path with no full forward or empty backward edges.
- By definition of cut (A, B), s is in A.
- By definition of cut (A, B) and flow f, t is in B.
- Capacity of cut (A, B) = net flow across cut = value of flow f. □
Computing a mincut from a maxflow

To compute mincut \((A, B)\) from maxflow \(f\):

- By augmenting path theorem, no augmenting paths with respect to \(f\).
- Compute \(A = \) set of vertices connected to \(s\) by an undirected path
 with no full forward or empty backward edges.
- Capacity of cut \((A, B) = \) value of flow \(f \Rightarrow\) mincut.
Maxflow: quiz 5

Given the following maxflow, which is a mincut?

A. \(A = \{ A, F \} \).
B. \(A = \{ A, B, C, F \} \).
C. \(A = \{ A, B, C, E, F \} \).
D. None of the above.
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Important special case. Edge capacities are integers between 1 and U.

Invariant. The flow is integral throughout Ford–Fulkerson.

Pf.

- Bottleneck capacity is an integer.
- Flow on an edge increases/decreases by bottleneck capacity.

Proposition. Number of augmentations \leq value of maxflow $\leq E U$.

Pf. Each augmentation increases the value of the flow by at least one.

Integrality theorem. There exists an integral maxflow.

Pf.

- Proposition + Augmenting path theorem \Rightarrow Ford–Fulkerson terminates with a maxflow.
- Invariant \Rightarrow That maxflow is integral.
Bad case for Ford–Fulkerson

Bad news. Number of augmenting paths can be very large.

initialize with 0 flow

Even when capacities are integral
Bad case for Ford–Fulkerson

Bad news. Number of augmenting paths can be very large.

1st augmenting path
Bad case for Ford–Fulkerson

Bad news. Number of augmenting paths can be very large.

2nd augmenting path
Bad case for Ford–Fulkerson

Bad news. Number of augmenting paths can be very large.
Bad case for Ford–Fulkerson

Bad news. Number of augmenting paths can be very large.
Bad case for Ford–Fulkerson

Bad news. Number of augmenting paths can be very large.
Bad case for Ford–Fulkerson

Bad news. Number of augmenting paths can be very large.

\[\text{exponential in input size} \ (V, E, \log U)\]
How to choose augmenting paths?

Bad news. Some choices lead to exponential–time algorithms.

Good news. Clever choices lead to polynomial–time algorithms.

<table>
<thead>
<tr>
<th>Augmenting Path</th>
<th>Number of Iterations</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS path</td>
<td>$\leq EU$</td>
<td>stack</td>
</tr>
<tr>
<td>Random path</td>
<td>$\leq EU$</td>
<td>randomized queue</td>
</tr>
<tr>
<td>Shortest path (fewest edges)</td>
<td>$\leq \frac{1}{2} EV$</td>
<td>queue</td>
</tr>
<tr>
<td>Fattest path (max bottleneck capacity)</td>
<td>$\leq E \ln(EU)$</td>
<td>priority queue</td>
</tr>
</tbody>
</table>

Flow network with V vertices, E edges, and integer capacities between 1 and U
6.4 Maximum Flow

- introduction
- Ford–Fulkerson algorithm
- maxflow–mincut theorem
- analysis of running time
- Java implementation
- applications
Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.
Bipartite matching problem

Problem. Given n people and n tasks, assign the tasks to people so that:

- Every task is assigned to a qualified person.
- Every person is assigned to exactly one task.
Bipartite matching problem

Problem. Given a bipartite graph, find a perfect matching (if one exists).

![Diagram of a bipartite graph and perfect matching](image)

person 5' is qualified to perform tasks 4 and 5
Maxflow formulation of bipartite matching

- Create source s, target t, one vertex i for each task, and one vertex j' for each person.
- Add edge from s to each task i of capacity 1.
- Add edge from each person j' to t of capacity 1.
- Add edge from task i to qualified person j' of capacity 1.

interpretation: flow on edge $4 \rightarrow 5' = 1$ means assign task 4 to person 5'
Maxflow formulation of bipartite matching

1–1 correspondence between perfect matchings in bipartite graph and integral flows of value \(n \) in flow network.

Integality theorem + 1–1 correspondence \(\Rightarrow \) Maxflow formulation is correct.
Maxflow: quiz 6

In the worst case, how many augmenting paths does the Ford–Fulkerson algorithm consider in order to find a perfect matching in a bipartite graph with n vertices per side?

A. $\Theta(n)$

B. $\Theta(n^2)$

C. $\Theta(n^3)$

D. $\Theta(n^4)$
Maximum flow algorithms: theory highlights

<table>
<thead>
<tr>
<th>year</th>
<th>method</th>
<th>worst case</th>
<th>discovered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955</td>
<td>augmenting paths</td>
<td>$O(E^2 U)$</td>
<td>Ford–Fulkerson</td>
</tr>
<tr>
<td>1970</td>
<td>shortest augmenting paths</td>
<td>$O(E^2 V), O(E V^2)$</td>
<td>Edmonds–Karp, Dinitz</td>
</tr>
<tr>
<td>1974</td>
<td>blocking flows</td>
<td>$O(V^3)$</td>
<td>Karzanov</td>
</tr>
<tr>
<td>1983</td>
<td>dynamic trees</td>
<td>$O(E V \log V)$</td>
<td>Sleator–Tarjan</td>
</tr>
<tr>
<td>1988</td>
<td>push–relabel</td>
<td>$O(E V \log (V^2 / E))$</td>
<td>Goldberg–Tarjan</td>
</tr>
<tr>
<td>1998</td>
<td>binary blocking flows</td>
<td>$O(E^{3/2} \log (V^2 / E) \log U)$</td>
<td>Goldberg–Rao</td>
</tr>
<tr>
<td>2013</td>
<td>compact networks</td>
<td>$O(E V)$</td>
<td>Orlin</td>
</tr>
<tr>
<td>2014</td>
<td>interior-point methods</td>
<td>$\tilde{O}(E V^{1/2} \log U)$</td>
<td>Lee–Sidford</td>
</tr>
<tr>
<td>2016</td>
<td>electrical flows</td>
<td>$\tilde{O}(E^{10/7} U^{1/7})$</td>
<td>Mądry</td>
</tr>
<tr>
<td>2022</td>
<td>min ratio cycles</td>
<td>$O(E^{1+\epsilon} \log U)$</td>
<td>CKLPGS</td>
</tr>
<tr>
<td>20xx</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max–flow algorithms with E edges, V vertices, and integer capacities between 1 and U
Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting or comparing maxflow algorithm performance in practice.

Computer vision. Specialized algorithms for problems with special structure.

On Implementing Push-Relabel Method for the Maximum Flow Problem

Boris V. Cherkassky¹ and Andrew V. Goldberg²

¹ Central Institute for Economics and Mathematics, Krasikov St. 32, 117418, Moscow, Russia
² Computer Science Department, Stanford University, Stanford, CA 94305, USA

cber@kmit.msk.ru
goldberg@cs.stanford.edu

Abstract. We study efficient implementations of the push-relabel method for the maximum flow problem. The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup is due to the combination of heuristics used in our implementations. We also exhibit a family of problems for which the running time of all known methods seem to have a roughly quadratic growth rate.
Summary

Mincut problem. Find a cut of minimum capacity.

Maxflow problem. Find a flow of maximum value.

Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.
- Ford–Fulkerson (various augmenting–path strategies).
- Preflow–push (various versions).

![Graph with annotated capacities](image)

- **value of flow = 28**
- **capacity of cut = 28**
<table>
<thead>
<tr>
<th>image</th>
<th>source</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warsaw Pact Rail Network</td>
<td>RAND Corporation</td>
<td></td>
</tr>
<tr>
<td>Efficient Max Flow Algorithms</td>
<td>Communications of the ACM</td>
<td></td>
</tr>
<tr>
<td>Liver Segmentation</td>
<td>S. Esneault, T. Pham, K. Torres</td>
<td></td>
</tr>
<tr>
<td>Workers</td>
<td>pictofigo.com</td>
<td>Pictofigo</td>
</tr>
<tr>
<td>Todo List</td>
<td>Adobe Stock</td>
<td>education license</td>
</tr>
<tr>
<td>Question Marks</td>
<td>pikpng.com</td>
<td>non-commercial use</td>
</tr>
<tr>
<td>Theory vs. Practice</td>
<td>Ela Sjolie</td>
<td></td>
</tr>
<tr>
<td>Happy Thanksgiving</td>
<td>Adobe Stock</td>
<td>education license</td>
</tr>
</tbody>
</table>
A final thought

HAPPY Thanksgiving