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Graphs

Graph. Set of vertices connected pairwise by edges.

Why study graphs and graph algorithms?
- Broadly useful abstraction.
« Hundreds of graph algorithms.
« Thousands of real-world applications.

- Fascinating branch of computer science and discrete math.
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Transportation networks

Vertex = subway stop; edge = direct route.
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Social networks

Vertex = person; edge = social relationship.

December 2010

“Visualizing Friendships” by Paul Butler




Twitter followers

Twitter follower subgraph

edge = Twitter follower.
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Protein-protein interaction network
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Reference: Jeong et al, Nature Review | Genetics



Graph applications

“

cell phone phone placed call
infectious disease person infection
financial stock, currency transactions
transportation intersection street
internet router fiber cable
web web page URL link
social relationship person friendship
object graph object pointer
protein network protein protein—protein interaction
circuit gate, register, processor wire

neural network neuron syhapse



Undirected graph terminology

Graph. Set of vertices connected pairwise by edges.

Path. Sequence of vertices connected by edges, with no repeated edges.

Def. Two vertices are connected if there is a path between them.

Cycle. Path (with = 1 edge) whose first and last vertices are the same.

vertex 6 edge 6-8
(of degree 3) (incident to vertices 6 and 8)

\

0—O

path between 0 and 2 @
(of length 3) ~ @

(2

—— cycle
(of length 4)




Directed graph terminology

Digraph. Set of vertices connected pairwise by directed edges.
Directed path. Sequence of vertices connected by directed edges, with no repeated edges.
Def. Vertex w is reachable from vertex v if there is a directed path from v to w.

Directed cycle. Directed path (with = 1 edge) whose first and last vertices are the same.

vertex 6

directed edge 7—6
outdegree = 4

/7 is adjacent to 6

indegree = 2 _ _
a \ 6 is adjacent from 7

directed path
from O to 2
(of length 3)

0
(2 0—

9/ ©

«—— directed cycle
(of length 3)




Graphs and digraphs: quiz 1

Which of these graphs is best modeled as a directed graph?

A. Facebook: vertex = person; edge = friendship.
B. Web: vertex = webpage; edge = URL link.
C. Internet: vertex = router; edge = fiber optic cable.

D. Molecule: vertex = atom; edge = chemical bond.

11



Some graph-processing problems

Find a path between s and t.

s—-t path
shortest s-t path
cycle
Euler cycle
Hamilton cycle
connectivity
graph isomorphism

planarity

Challenge. Which problems

Find a path with the fewest edges between s to t.
Find a cycle.
Find a cycle that uses each edge exactly once.
Find a cycle that uses each vertex exactly once.
Is there a path between every pair of vertices ?

Are two graphs isomorphic?

Draw the graph in the plane with no crossing edges.

are easy? Difficult? Intractable?

digraph versions

12
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Digraph representation

Vertex representation.
« This lecture: integers between 0 and V- 1.

« Applications: use symbol table to convert between names and integers.

symbol table

Def. A digraph is simple if it has no self-loops or parallel edges.

self |00p\A
Cm

parallel edges




Digraph API

public class Digraph

Digraph(int V)
void addEdge(int v, 1nt w)
Iterable<Integer> adj(int v)

int V()

public static 1int outdegree(Digraph G,
{
int count = 0O;
for (int w : G.adj(v))
count++;
return count;

create an empty digraph with V vertices

int v)

add a directed edge v—w = this APl allows self loops and parallel edges

vertices adjacent from v

number of vertices

<

Note: this method is in full Digraph API,
SO no need to re-implement

15



Adjacency-matrix representation

true.

Maintain a V-by-V boolean array; for each edge v—w in the digraph: adj[v][w]

to

12

11

10

16



Graphs and digraphs: quiz 2

What is the running time of the following code fragment?

Assume adjacency-matrix representation, V = # vertices, E = # edges.

for (int v =0; v < G.V(); v++)
for (intw : G.adj(v))
StdOut.println(v + "->" + w);

print each edge once

A. OC)

B. OE+YV)
C. OV ?)
D. O(EYV)

10

11

12

o o o o o o o o o o (o o o | o

o o o o o o o o o o O o (ol
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adjacency-matrix representation

o O O pBp O O O O o o o o o

o o©oO O pBp O O O O o o o o o

©c rBr B O O O O O O O o o o
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Adjacency-lists representation

Maintain vertex-indexed array of lists.

adj [

O 00 N OO Uvi b W N = O

R
=

77TV

=
N

]

5 1
0 3
5 2
3 2
4

9 4

0 9
0
11 10
12
4 12

18



Graphs and digraphs: quiz 3

What is the running time of the following code fragment?

Assume adjacency-lists representation, V = # vertices, E = # edges.

for (int v =0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.println(v + "->" + w);

adj [

print each edge once 0

1

2

3

4

A. OW) Z
7

B. OFE +V) 8
9

C. OWw? 10
11

D. O(EYV) Le

]

VZ /AN

11

~ 10

12

- 12

19



Digraph representations

In practice. Use adjacency-lists representation.

« Algorithms based on iterating over vertices adjacent from v.

- Real-world graphs tend to be sparse (not dense).

T T

O(V) edges O(V?) edges

add edge has edge

representation
P fromvtow from v to w?

adjacency matrix V2 | 1

adjacency lists C E + V) 1 outdegree(v)

iterate over vertices
adjacent from v?

Coutdegree(v) )

T disallows parallel edges

20



Digraph representation (adjacency lists): Java implementation

public class Digraph

{
private final 1nt V;
private Bag<Integer>[] adj; « adjacency lists
public Digraph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V]; -« create empty digraph with V vertices
for (int v =0; v < V; v++)
adjlv] = new Bag<Integer>();
}
public void addEdge(int v, 1nt w) < add edge v—w
{ adjlv].add(w); } (parallel edges and self-loops allowed)
public Iterable<Integer> adj(int v) = iterator for vertices adjacent from v
{ return adjlv]; }
}

https://algs4.cs.princeton.edu/42digraph/Digraph.java.html

21
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Digraph reachability

Problem. Given a digraph G and vertex s, find all vertices reachable from s.

S

H'CTT NN

A
o>

23



Depth-first search

Goal. Systematically traverse a digraph.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent from v.

Typical applications.
- Reachability: find all vertices reachable from a given vertex.

- Path finding: find a directed path from one vertex to another vertex.

24



Directed depth-first search demo

To visit a vertex v:
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent from v.

D

a directed graph

25



Directed depth-first search demo

To visit a vertex v:
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent from v.

v  marked(]
0 T
] T
0 e 2 T ) reachable
3 T from vertex O
4 T
5 T
6 F
\ / F
° g :
e/ 9 F
10 F
11 F
12 F

reachable from O

26



Graphs and digraphs: quiz 4

Run DFS using the following adjacency-lists representation of digraph G,

starting at vertex 0. In which order is dfs(G, v) called?

A.

124536
124563
132645

126453

DFS preorder

adj[/2—>3

0 (4

6 — 4

1 /

2

3 0 ] a
’ — [

5

6 O

adjacency-lists representation digraph G

27



Depth-first search: Java implementation

public class DirectedDFS
{

private boolean[] marked;

public DirectedDFS(Digraph G, int s)
{
marked = new boolean[G.V()];
dfs(G, s);
}

private void dfs(Digraph G, int v)
{
marked|[v] = true;
for (int w : G.adj(v))
1t (!marked[w])
dfs(G, w);

public boolean isReachable(int v)
{ return marked[v]; }

marked[v] = true if v reachable from s

constructor marks vertices reachable from s

recursive DFS does the work

is v reachable from s ?

28



Depth-first search: properties

Proposition. DFS marks all vertices reachable from s in ©(E + V) time in the worst case.

Pf.
« |nitializing an array of length V takes ®(V) time.
« Each vertex is visited at most once.

 Visiting a vertex takes time proportional to its outdegree:

outdegree(vy) + outdegree(vy) + outdegree(v,) +... = E

T

In worst case,
all V vertices reachable from s

Note. If all vertices are reachable from s, then E = V-1, so Vis a lower-order term.

29



Graphs and digraphs: quiz 5

What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?

A. Marks a vertex not reachable from s.
B. Compile-time error.
C. Infinite loop / stack overflow.

D. None of the above.

private void dfs(Digraph G, 1nt v)
{
[marked[v] = true;]
for (Aintw : G.adj(v))
1t (!marked[w])
dfs(G, w);

30



Reachability application: program control-flow analysis

Every program is a digraph.

« Vertex = basic block of instructions (straight-line program).

Dead-code elimination. w

Find (and remove) unreachable code.

- Edge = jump.

2 Logical-And-Left

Infinite-loop detection. 3 Logical-Anc-Right >

Determine whether exit is unreachable.

31



Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
- Vertex = object.

- Edge = reference/pointer.
Roots. Objects known to be directly accessible by program (e.g., stack frame).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

/ J

=
A\-/'/.IJ/{-'

{_/,/-'

32



Reachability application: mark-sweep garbage collector

Mark—-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS function-call stack).

//;i\;,/
/J =Y

33
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Directed paths DFS demo

Goal. DFS determines which vertices are reachable from s. How to reconstruct paths?

Solution. Use parent-link representation.

marked[] edgeTo][]

<

&
\0

0 T =
1 T 0
2 s |
3 T 4
4 T 5
5 T 0
6 F -
\ 7 F _
O s F -
9 F -
10 F —
11 F —
12 F —

reachable from O

parent-link representation
of paths from vertex O

35



Depth-first search: path finding

Parent-link representation of paths from s.
« Maintain an integer array edgeTo[].
 Interpretation: edgeTo[v] is the next-to-last vertex on a path from s to v.

« To reconstruct path from s to v, trace edgeTo[] backward from v to s (and reverse).

@ v  marked[] edgeTol[]

public Iterable<Integer> pathTo(int v)

0 T - t
] T 0 if (!marked[v]) return null;

<::> <::> Stack<Integer> path = new Stack<>();
2 T 3 :

for (int x = v; X !=s; x = edgeTo|[x])

3 v E path.push(x) ;
4 T 5 path.push(s);

<::> 5 T 0 return path;

el 6 ; - }



Depth-first search (with path finding): Java implementation

public class DepthFirstDirectedPaths
{

private 1nt[] edgeTo; = edgeTo[v] = previous vertex on path from s to v
private int s;

v—w is edge that led to w

—

edgeTo[w] = v;

37


https://algs4.cs.princeton.edu/41undirected/DepthFirstPaths.java.html

Graphs and digraphs: quiz 6

Suppose there are many paths from s to v. Which one does DepthFirstDirectedPaths find?

A. A shortest path (fewest edges).
B. A longest path (most edges).

C. Depends on digraph representation.

38
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FLOOD FILL

Problem. Implement flood

fill (Photoshop magic wand).

Y

40



Depth-first search in undirected graphs

Problem. Given an undirected graph G and vertex s, find all vertices connected to s.

Solution. Treat undirected graph as a digraph, replacing each edge with two antiparallel edges.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
- Find all vertices connected to a given vertex.

- Find a path between two vertices.

41



Depth-first search demo

To visit a vertex v:
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent to v.

0 @ @ . tinyG. txt
13

05
4 3
01
(o) (o —9 0 12
6 4
5 4
0 2
3 4 1) @ 11 12
9 10
O 6
/ 8
9 11
5
5 3

graph G

42



Depth-first search demo

To visit a vertex v:
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent to v.

<

marked[] edgeTo]]

0 T —
] T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
/ F —
8 F —
9 F —
10 F —
11 F —
12 F —

vertices connected to O

(and associated paths) 43



Graphs and digraphs: quiz 7

How to represent an undirected edge v-w using adjacency lists?

A. Add w to adjacency list for v.

B. Add v to adjacency list for w.

C. Both A and B.

D. None of the above.

44



Digraph representation (review)

public class Digraph

{
private final int V;
private Bag<Integer>[] adj;
public Digraph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag|[V];
for (Aintv=20; v <V, vi+)
adjlv] = new Bag<Integer>();
¥
public void addEdge(int v, 1nt w)
{
adjv].add(w);
¥
public Iterable<Integer> adj(int v)
{ return adjlv]; }
¥

https://algs4.cs.princeton.edu/42digraph/Digraph.java.html

adjacency lists

create empty digraph with V vertices

add edge v—w
(parallel edges and self-loops allowed)

iterator for vertices adjacent from v

45
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Graph representation

public class Graph

{

private final int V;
private Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;

adj = (Bag<Integer>[]) new Bag|[V];

for (Aintv=20; v <V, vi+)
adjlv] = new Bag<Integer>();

public void addEdge(int v, 1nt w)
{

adjv].add(w);

adj[w].add(v);
¥

public Iterable<Integer> adj(int v)
{ return adjlv]; }

https://algs4.cs.princeton.edu/41lundirected/Graph.java.html

adjacency lists

create empty graph with V vertices

add edge v—w
(parallel edges and self-loops allowed)

iterator for vertices adjacent to v

46
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Depth-first search (in digraphs)

Recall code for digraphs.

public class DirectedFS
{

private boolean[] marked;

public DirectedDFS(Digraph G, int s)
{
marked = new boolean[G.V()];
dfs(G, s);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
1f (!marked[w])
dfs(G, w);

public boolean visited(int v)
{ return marked[v]; }

marked[v] = true if v reachable from s

constructor marks vertices reachable from s

recursive DFS does the work

is vertex v is reachable from s ?

47



Depth-first search (in undirected graphs)

Code for undirected graphs is essentially identical to code for digraphs.

public class DepthFirstSearch
{

private boolean[] marked; < marked[v] = true if v connected to s

public DepthFirstSearch(Graph G, 1nt s)

{
marked = new boolean[G.V()];

dfs(G, s);
}

< constructor marks vertices connected to s

private void dfs(CGraph G, int v) = recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
1f (!marked[w])
dfs(G, w);

public boolean visited(int v) < is vertex v is connected to s ?
{ return marked[v]; }

48



Depth-first search summary

DFS enables direct solution of simple graph and digraph problems.

- Reachability (in a digraph).

« Connectivity (in a graph).

4
4

- Path finding (in a graph or digraph). V¥

- Topological sort.

- Directed cycle detection.

DFS provides basis for solving difficult graph problems.

« Euler cycle.
 2-satisfiability.
 Planarity testing.

« Strong components.

SIAM J. ComMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k,, k,, and k5, where Vis the number of vertices and E is the number
of edges of the graph being examined.
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