4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm

https://algs4.cs.princeton.edu
Google maps
Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex to another vertex.

edge-weighted digraph

4→5 0.35
5→4 0.35
4→7 0.37
5→7 0.28
7→5 0.28
5→1 0.32
0→4 0.38
0→2 0.26
7→3 0.39
1→3 0.29
2→7 0.34
6→2 0.40
3→6 0.52
6→0 0.58
6→4 0.93

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52)
Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?
- Source-destination: from one vertex to another vertex.
- Single source: from one vertex to every vertex.
- Single destination: from every vertex to one vertex.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?
- Non-negative weights.
- Euclidean weights.
- Arbitrary weights.

Directed cycles?
- Prohibit.
- Allow.

Simplifying assumption. Each vertex \(v \) is reachable from \(s \).
Shortest paths: quiz 1

Which shortest path variant for car GPS?
Hint: drivers make wrong turns occasionally.

A. Source–destination: from one vertex to another vertex.
B. Single source: from one vertex to every vertex.
C. Single destination: from every vertex to one vertex.
D. All pairs: between all pairs of vertices.
4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm

https://algs4.cs.princeton.edu
Data structures for single-source shortest paths

Goal. Find a shortest path from s to every vertex.

Observation 1. There exists a shortest path from s to v that is simple.

Observation 2. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent shortest paths with two vertex-indexed arrays:
- $\text{distTo}[v]$ is length of a shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on a shortest path from s to v.

\[
\begin{array}{c|cc}
 v & \text{distTo[]} & \text{edgeTo[]} \\
\hline
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & 14.0 & 5\rightarrow1 \\
3 & 17.0 & 2\rightarrow3 \\
4 & 9.0 & 0\rightarrow4 \\
5 & 13.0 & 4\rightarrow5 \\
6 & 25.0 & 2\rightarrow6 \\
7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

shortest-paths tree from 0

parent-link representation
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ yields shorter path from s to w, via v, update $\text{distTo}[w]$ and $\text{edgeTo}[w]$.
What are the values of $\text{distTo}[v]$ and $\text{distTo}[w]$ after relaxing edge $e = v \rightarrow w$?

A. 10.0 and 15.0
B. 10.0 and 17.0
C. 12.0 and 15.0
D. 12.0 and 17.0
Framework for shortest-paths algorithm

Key properties. Throughout the generic algorithm,
- \(\text{distTo}[v] \) is either infinity or the length of a (simple) path from \(s \) to \(v \).
- \(\text{distTo}[v] \) does not increase.

Generic algorithm (to compute a SPT from \(s \))

For each vertex \(v \): \(\text{distTo}[v] = \infty \).
For each vertex \(v \): \(\text{edgeTo}[v] = \text{null} \).
\(\text{distTo}[s] = 0 \).
Repeat until \(\text{distTo}[v] \) values converge:
 - Relax any edge.
Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

- For each vertex v: distTo[v] = \(\infty\).
- For each vertex v: edgeTo[v] = null.
- distTo[s] = 0.
- Repeat until distTo[v] values converge:
 - Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed to guarantee convergence?

Ex 1. Bellman–Ford algorithm.

Ex 2. Dijkstra’s algorithm.

Ex 3. Topological sort algorithm.
4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm
Weighted directed edge API

API.

```
public class DirectedEdge

    DirectedEdge(int v, int w, double weight) {
        create weighted edge v→w
    }

    int from() {
        vertex v
    }

    int to() {
        vertex w
    }

    double weight() {
        weight of this edge
    }

private void relax(DirectedEdge e) {

    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Ex. Relax edge $e = v \rightarrow w$.

```
distTo[v] = 3.1      distTo[w] = 7.2
        \hspace{2cm} 4.4

\hspace{2cm} \overset{1.3}{v} \rightarrow w
```
Weighted directed edge: implementation in Java

```java
public class DirectedEdge {
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from() {
        return v;
    }

    public int to() {
        return w;
    }

    public double weight() {
        return weight;
    }
}
```
Edge-weighted digraph API

API. Same as `EdgeWeightedGraph` except with `DirectedEdge` objects.

```java
public class EdgeWeightedDigraph

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EdgeWeightedDigraph(int V)</td>
<td>edge-weighted digraph with V vertices (and no edges)</td>
</tr>
<tr>
<td>void addEdge(DirectedEdge e)</td>
<td>add weighted directed edge e</td>
</tr>
<tr>
<td>Iterable&lt;DirectedEdge&gt; adj(int v)</td>
<td>edges incident from v</td>
</tr>
<tr>
<td>int V()</td>
<td>number of vertices</td>
</tr>
</tbody>
</table>
```

::
Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

```java
public class EdgeWeightedDigraph {
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[] ) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```

add edge $e = v \rightarrow w$ only to v's adjacency list
Goal. Find the shortest path from s to every other vertex.

```java
public class SP

SP(EdgeWeightedDigraph G, int s) // shortest paths from s in digraph G
double distTo(int v) // length of shortest path from s to v
Iterable<DirectedEdge> pathTo(int v) // shortest path from s to v
boolean hasPathTo(int v) // is there a path from s to v?
```
4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm

https://algs4.cs.princeton.edu
Bellman–Ford algorithm

Bellman–Ford algorithm

- For each vertex v: $\text{distTo}[v] = \infty$.
- For each vertex v: $\text{edgeTo}[v] = \text{null}$.
- $\text{distTo}[s] = 0$.
- Repeat $V-1$ times:
 - Relax each edge.

For each vertex v: $\text{distTo}[v] = \infty$.

For each vertex v: $\text{edgeTo}[v] = \text{null}$.

$\text{distTo}[s] = 0$.

Repeat $V-1$ times:

- Relax each edge.

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Running time. Algorithm takes $\Theta(E V)$ time and uses $\Theta(V)$ extra space.
Bellman–Ford algorithm demo

Repeat $V - 1$ times: relax all E edges.

an edge-weighted digraph

0→1 5.0
0→4 9.0
0→7 8.0
1→2 12.0
1→3 15.0
1→7 4.0
2→3 3.0
2→6 11.0
3→6 9.0
4→5 4.0
4→6 20.0
4→7 5.0
5→2 1.0
5→6 13.0
7→5 6.0
7→2 7.0
Bellman–Ford algorithm demo

Repeat $V - 1$ times: relax all E edges.

```
shortest-paths tree from vertex s
```

```
v   distTo[]   edgeTo[]
0   0.0       -
1   5.0       0→1
2   14.0      5→2
3   17.0      2→3
4   9.0       0→4
5   13.0      4→5
6   25.0      2→6
7   8.0       0→7
```
Proposition. Let \(s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k = v \) be any path from \(s \) to \(v \) containing \(k \) edges. Then, after pass \(k \), \(\text{distTo}[v_k] \leq \text{weight}(e_1) + \text{weight}(e_2) + \cdots + \text{weight}(e_k) \).

Pf. [by induction on number of passes \(i \)]

- **Base case:** initially, \(0 = \text{distTo}[v_0] \leq 0 \).
- **Inductive hypothesis:** after pass \(i \), \(\text{distTo}[v_i] \leq \text{weight}(e_1) + \text{weight}(e_2) + \cdots + \text{weight}(e_i) \).
- This inequality continues to hold because \(\text{distTo}[v_i] \) cannot increase.
- Immediately after relaxing edge \(e_{i+1} \) in pass \(i+1 \), we have
 \[
 \text{distTo}[v_{i+1}] \leq \text{distTo}[v_i] + \text{weight}(e_{i+1}) \leq \text{weight}(e_1) + \text{weight}(e_2) + \cdots + \text{weight}(e_i) + \text{weight}(e_{i+1}) \]
- This inequality continues to hold because \(\text{distTo}[v_{i+1}] \) cannot increase. \(\blacksquare \)
Bellman–Ford algorithm: correctness proof

Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k = v$ be any path from s to v containing k edges. Then, after pass k, $\text{distTo}[v_k] \leq \text{weight}(e_1) + \text{weight}(e_2) + \ldots + \text{weight}(e_k)$.

![Diagram](image)

Corollary. Bellman–Ford computes shortest path distances.

Pf. [apply Proposition to a shortest path from s to v]

- There exists a simple shortest path P^* from s to v; it contains $k \leq V - 1$ edges.
- The Proposition implies that, after at most $V - 1$ passes, $\text{distTo}[v] \leq \text{length}(P^*)$.
- Since $\text{distTo}[v]$ is the length of some path from s to v, $\text{distTo}[v] = \text{length}(P^*)$. ■
Bellman–Ford algorithm: practical improvement

Observation. If \(\text{distTo}[v] \) does not change during pass \(i \), not necessary to relax any edges incident from \(v \) in pass \(i + 1 \).

Queue–based implementation of Bellman–Ford.

- Perform vertex relaxations. \(\text{relax vertex } v = \text{relax all edges incident from } v \)
- Maintain queue of vertices whose \(\text{distTo[]} \) values changed since it was last relaxed.

Impact.

- In the worst case, the running time is still \(\Theta(EV) \).
- But much faster in practice on typical inputs.
Problem. Given a digraph G with positive edge weights and vertex s, find a longest simple path from s to every other vertex.

Goal. Design an algorithm that takes $\Theta(EV)$ time in the worst case.

```
longest simple path from 0 to 4
0 → 1 → 2 → 3 → 4
length of path = 18
(1 + 4 + 7 + 6)
```
Bellman–Ford algorithm: negative weights

Remark. The Bellman–Ford algorithm works even if some weights are negative, provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.

Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.
4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm

https://algs4.cs.princeton.edu
"Object-oriented programming is an exceptionally bad idea which could only have originated in California."
-- Edsger Dijkstra
Dijkstra's algorithm

For each vertex v: distTo[v] = \(\infty\).
For each vertex v: edgeTo[v] = null.

\(T = \emptyset\).
distTo[s] = 0.
Repeat until all vertices are marked:
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.
- Relax each edge incident from v.

Key difference with Bellman–Ford. Each edge gets relaxed exactly once!
Dijkstra’s algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest $\text{distTo}[v]$ value.
- Mark v and relax all edges incident from v.

an edge-weighted digraph

0→1 5.0
0→4 9.0
0→7 8.0
1→2 12.0
1→3 15.0
1→7 4.0
2→3 3.0
2→6 11.0
3→6 9.0
4→5 4.0
4→6 20.0
4→7 5.0
5→2 1.0
5→6 13.0
7→5 6.0
7→2 7.0
Dijkstra’s algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest $\text{distTo}[v]$ value.
- Mark v and relax all edges incident from v.

```
\begin{tabular}{c|cc}
v & distTo[] & edgeTo[] \\
0 & 0.0 & - \\
1 & 5.0 & 0→1 \\
2 & 14.0 & 5→2 \\
3 & 17.0 & 2→3 \\
4 & 9.0 & 0→4 \\
5 & 13.0 & 4→5 \\
6 & 25.0 & 2→6 \\
7 & 8.0 & 0→7 \\
\end{tabular}
```

shortest-paths tree from vertex s
Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex \(v \): \(\text{distTo}[v] = d^*(v) \).

Pf. [by induction on number of marked vertices]
- Let \(v \) be next vertex marked.
- Let \(P \) be the path from \(s \) to \(v \) of length \(\text{distTo}[v] \).
- Consider any other path \(P' \) from \(s \) to \(v \).
- Let \(x \rightarrow y \) be first edge in \(P' \) with \(x \) marked and \(y \) unmarked.
- \(P' \) is already as long as \(P \) by the time it reaches \(y \):
 \[
 \text{length}(P) = \text{distTo}[v] \leq \text{distTo}[y] \leq \text{distTo}[x] + \text{weight}(x, y) \leq \text{length}(P') \]
- Dijkstra chose \(v \) instead of \(y \) by construction
- vertex \(x \) is marked (so it was relaxed)
- \(P' \) is a path from \(s \) to \(x \), followed by edge \(x \rightarrow y \), followed by non-negative edges

\[\text{length}(P) = \text{distTo}[v] \leq \text{distTo}[y] \leq \text{distTo}[x] + \text{weight}(x, y) \leq \text{length}(P') \]
Dijkstra’s algorithm: correctness proof

Invariant. For each marked vertex v: $\text{distTo}[v] = d^*(v)$.

Corollary 1. Dijkstra’s algorithm computes shortest path distances.

Corollary 2. Dijkstra’s algorithm relaxes vertices in increasing order of distance from s.

generalizes both level-order traversal in a tree and breadth-first search in a graph

length of shortest path from s to v
Dijkstra’s algorithm: Java implementation

```java
public class DijkstraSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```

- **PQ that supports decreasing the key (stay tuned)**
- **PQ contains the unmarked vertices with finite distTo[] values**
- **relax vertices in increasing order of distance from s**
Dijkstra’s algorithm: Java implementation

When relaxing an edge, also update PQ:

- Found first path from s to w: add w to PQ.
- Found better path from s to w: decrease key of w in PQ.

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (!pq.contains(w)) pq.insert(w, distTo[w]);
        else pq.decreaseKey(w, distTo[w]);
    }
}
```

Q. How to implement DECREASE-KEY operation in a priority queue?
Indexed priority queue (Section 2.4)

Associate an index between 0 and \(n - 1 \) with each key in a priority queue.
- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

for Dijkstra's algorithm:
\[
\begin{align*}
 n &= V, \\
 \text{index} &= \text{vertex}, \\
 \text{key} &= \text{distance from s}
\end{align*}
\]

```java
public class IndexMinPQ<Key> extends Comparable<Key> {

  IndexMinPQ(int n) { create PQ with indices 0, 1, … , n – 1 }

  void insert(int i, Key key) { associate key with index i }

  int delMin() { remove min key and return associated index }

  void decreaseKey(int i, Key key) { decrease the key associated with index i }

  boolean isEmpty() { is the priority queue empty? }

  ;

  ;
}
```
Goal. Implement DECREASE–KEY operation in a binary heap.
Decrease-Key in a Binary Heap

Goal. Implement **DECREASE-KEY** operation in a binary heap.

Solution.
- Find vertex in heap. How?
- Change priority of vertex and call `swim()` to restore heap invariant.

Extra data structure. Maintain an inverse array `qp[]` that maps from the vertex to the binary heap node index.

<table>
<thead>
<tr>
<th>pq[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v₃</td>
<td>v₅</td>
<td>v₇</td>
<td>v₂</td>
<td>v₀</td>
<td>v₄</td>
<td>v₆</td>
<td>v₁</td>
<td></td>
</tr>
<tr>
<td>qp[]</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>keys[]</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
<td>6.0</td>
<td>8.0</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

*vertex 2 has priority 3.0 and is at heap index 4

decrease key of vertex v₂*
Dijkstra’s algorithm: which priority queue?

Number of PQ operations: \(V \) \textbf{INSERT}, \(V \) \textbf{DELETE-MIN}, \(\leq E \) \textbf{DECREASE-KEY}.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>\textbf{INSERT}</th>
<th>\textbf{DELETE-MIN}</th>
<th>\textbf{DECREASE-KEY}</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>(V)</td>
<td>1</td>
<td>(V^2)</td>
</tr>
<tr>
<td>binary heap</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(E \log V)</td>
</tr>
<tr>
<td>(d)-way heap</td>
<td>(\log_d V)</td>
<td>(d \log_d V)</td>
<td>(\log_d V)</td>
<td>(E \log_{E/V} V)</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(1) \dagger</td>
<td>(\log V) \dagger</td>
<td>(1) \dagger</td>
<td>(E + V \log V)</td>
</tr>
</tbody>
</table>

\(\dagger \text{ amortized} \)

\textbf{Bottom line.}

- Array implementation optimal for complete digraphs.
- Binary heap much faster for sparse digraphs.
- \(4 \)-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but probably not worth implementing.
Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.

- Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).
- Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).
Algorithms for shortest paths

Variations on a theme: vertex relaxations.

- Bellman–Ford: relax all vertices; repeat $V - 1$ times.
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case running time</th>
<th>negative weights †</th>
<th>directed cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman–Ford</td>
<td>$E V$</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>$E \log V$</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>topological sort</td>
<td>E</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

† no negative cycles
Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

- Negative weights (but no “negative cycles”): Bellman–Ford.
- Non-negative weights: Dijkstra.
- DAG: topological sort.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case running time</th>
<th>negative weights †</th>
<th>directed cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman–Ford</td>
<td>$E V$</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>$E \log V$</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>topological sort</td>
<td>E</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

† no negative cycles
Credits

<table>
<thead>
<tr>
<th>Image</th>
<th>Source</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map of Princeton, N.J.</td>
<td>Google Maps</td>
<td></td>
</tr>
<tr>
<td>Broadway Tower</td>
<td>Wikimedia</td>
<td>CC BY 2.5</td>
</tr>
<tr>
<td>Car GPS</td>
<td>Adobe Stock</td>
<td>education license</td>
</tr>
<tr>
<td>Queue for Registration</td>
<td>Noun Project</td>
<td>CC BY 3.0</td>
</tr>
<tr>
<td>Dijkstra T-shirt</td>
<td>Zazzle</td>
<td></td>
</tr>
<tr>
<td>Edsger Dijkstra</td>
<td>Wikimedia</td>
<td>CC BY-SA 3.0</td>
</tr>
</tbody>
</table>
A final thought

“Do only what only you can do.”

— Edsger W. Dijkstra