4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm

https://algs4.cs.princeton.edu
Shortest path in an edge-weighted digraph

Given an edge–weighted digraph, find a shortest path from one vertex to another vertex.

edge-weighted digraph

4→5 0.35
5→4 0.35
4→7 0.37
5→7 0.28
7→5 0.28
5→1 0.32
0→4 0.38
0→2 0.26
7→3 0.39
1→3 0.29
2→7 0.34
6→2 0.40
3→6 0.52
6→0 0.58
6→4 0.93

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52)
Shortest path applications

- PERT/CPM.
- Map routing.
- **Seam carving.**
- Texture mapping.
- Robot navigation.
- Typesetting in \(\text{TeX} \).
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?
- Source–destination: from one vertex to another vertex.
- Single source: from one vertex to every vertex.
- Single destination: from every vertex to one vertex.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?
- Non–negative weights.
- Euclidean weights.
- Arbitrary weights.

Directed cycles?
- Prohibit.
- Allow.

Simplifying assumption. Each vertex is reachable from \(s \).
Shortest paths: quiz 1

Which variant in car GPS? Hint: drivers make wrong turns occasionally.

A. Source–destination: from one vertex to another vertex.
B. Single source: from one vertex to every vertex.
C. Single destination: from every vertex to one vertex.
D. All pairs: between all pairs of vertices.
4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm
Data structures for single-source shortest paths

Goal. Find a shortest path from s to every vertex.

Observation 1. There exists a shortest path from s to v that is simple.

Observation 2. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- $\text{distTo}[v]$ is length of a shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on a shortest path from s to v.

$$\text{parent-link representation}$$

<table>
<thead>
<tr>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>1</td>
<td>5->1 0.32</td>
</tr>
<tr>
<td>2</td>
<td>0->2 0.26</td>
</tr>
<tr>
<td>3</td>
<td>7->3 0.37</td>
</tr>
<tr>
<td>4</td>
<td>0->4 0.38</td>
</tr>
<tr>
<td>5</td>
<td>4->5 0.35</td>
</tr>
<tr>
<td>6</td>
<td>3->6 0.52</td>
</tr>
<tr>
<td>7</td>
<td>2->7 0.34</td>
</tr>
</tbody>
</table>

shortest-paths tree from 0
Edge relaxation

Relax edge \(e = v \rightarrow w \).

- \(\text{distTo}[v] \) is length of shortest known path from \(s \) to \(v \).
- \(\text{distTo}[w] \) is length of shortest known path from \(s \) to \(w \).
- \(\text{edgeTo}[w] \) is last edge on shortest known path from \(s \) to \(w \).
- If \(e = v \rightarrow w \) yields shorter path from \(s \) to \(w \), via \(v \), update \(\text{distTo}[w] \) and \(\text{edgeTo}[w] \).
What are the values of $\text{distTo}[v]$ and $\text{distTo}[w]$ after relaxing edge $e = v \rightarrow w$?

A. 10.0 and 15.0
B. 10.0 and 17.0
C. 12.0 and 15.0
D. 12.0 and 17.0
Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex \(v \): \(\text{distTo}[v] = \infty \).
For each vertex \(v \): \(\text{edgeTo}[v] = \text{null} \).
\(\text{distTo}[s] = 0 \).
Repeat until \(\text{distTo}[v] \) values converge:
 - Relax any edge.

Key properties. Throughout the generic algorithm,
• \(\text{distTo}[v] \) is either infinity or the length of a (simple) path from \(s \) to \(v \).
• \(\text{distTo}[v] \) does not increase.
Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: $\text{distTo}[v] = \infty$.
For each vertex v: $\text{edgeTo}[v] = \text{null}$.
$\text{distTo}[s] = 0$.
Repeat until $\text{distTo}[v]$ values converge:
 - Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed to guarantee convergence?

Ex 1. Bellman–Ford algorithm.
Ex 2. Dijkstra’s algorithm.
Ex 3. Topological sort algorithm.
4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm

https://algs4.cs.princeton.edu
Weighted directed edge API

```java
public class DirectedEdge {
    DirectedEdge(int v, int w, double weight) {
        int from()
        int to()
        double weight()
    }

    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
        }
    }
}
```

Relaxing an edge $e = v \rightarrow w$.

```
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Weighted directed edge: implementation in Java

API. Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge {
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from() { return v; }

    public int to() { return w; }

    public double weight() { return weight; }
}
```

from() and to() replace either() and other()
Edge-weighted digraph API

API. Same as `EdgeWeightedGraph` except with `DirectedEdge` objects.

```java
public class EdgeWeightedDigraph

    EdgeWeightedDigraph(int V)  // edge-weighted digraph with V vertices
    void addEdge(DirectedEdge e)  // add weighted directed edge e
    Iterable<DirectedEdge> adj(int v)  // edges incident from v
    int V()  // number of vertices

    ;
    ;
```
Implementation. Almost identical to EdgeWeightedGraph.

```java
public class EdgeWeightedDigraph {
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[][]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP

  SP(EdgeWeightedDigraph G, int s)  // shortest paths from $s$ in digraph $G$

  double distTo(int v)  // length of shortest path from $s$ to $v$

  Iterable<DirectedEdge> pathTo(int v)  // shortest path from $s$ to $v$

  boolean hasPathTo(int v)  // is there a path from $s$ to $v$?
```
4.4 Shortest Paths

- properties
- APIs
 - Bellman–Ford algorithm
 - Dijkstra’s algorithm

https://algs4.cs.princeton.edu
Bellman–Ford algorithm

For each vertex v: distTo[v] = ∞.
For each vertex v: edgeTo[v] = null.
distTo[s] = 0.
Repeat V–1 times:
 - Relax each edge.

private void relax(DirectedEdge e)
{
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
}

for (int i = 1; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);

number of calls to relax() in pass i =
 outdegree(0) + outdegree(1) + outdegree(2) + ... = E

Running time. Algorithm takes Θ(E V) time and uses Θ(V) extra space.
Bellman–Ford algorithm demo

Repeat $V - 1$ times: relax all E edges.

An edge-weighted digraph:

- $0 \rightarrow 1$: 5.0
- $0 \rightarrow 4$: 9.0
- $0 \rightarrow 7$: 8.0
- $1 \rightarrow 2$: 12.0
- $1 \rightarrow 3$: 15.0
- $1 \rightarrow 7$: 4.0
- $2 \rightarrow 3$: 3.0
- $2 \rightarrow 6$: 11.0
- $3 \rightarrow 6$: 9.0
- $4 \rightarrow 5$: 4.0
- $4 \rightarrow 6$: 20.0
- $4 \rightarrow 7$: 5.0
- $5 \rightarrow 2$: 1.0
- $5 \rightarrow 6$: 13.0
- $7 \rightarrow 5$: 6.0
- $7 \rightarrow 2$: 7.0
Repeat $V - 1$ times: relax all E edges.

Bellman–Ford algorithm demo

shortest-paths tree from vertex s

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Bellman–Ford algorithm: correctness proof

Proposition. Let \(s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k = v \) be any path from \(s \) to \(v \) containing \(k \) edges. Then, after pass \(k \), \(\text{distTo}[v_k] \leq \text{weight}(e_1) + \text{weight}(e_2) + \cdots + \text{weight}(e_k) \).

Pf. [by induction on number of passes \(i \)]

- **Base case:** initially, \(0 = \text{distTo}[v_0] \leq 0 \).
- **Inductive hypothesis:** after pass \(i \), \(\text{distTo}[v_i] \leq \text{weight}(e_1) + \text{weight}(e_2) + \cdots + \text{weight}(e_i) \).
- This inequality continues to hold because \(\text{distTo}[v_i] \) cannot increase.
- Immediately after relaxing edge \(e_{i+1} \) in pass \(i+1 \), we have

 \[
 \text{distTo}[v_{i+1}] \leq \text{distTo}[v_i] + \text{weight}(e_{i+1}) \leq \text{weight}(e_1) + \text{weight}(e_2) + \cdots + \text{weight}(e_i) + \text{weight}(e_{i+1}).
 \]
- This inequality continues to hold because \(\text{distTo}[v_{i+1}] \) cannot increase. ■
Proposition. Let $s = v_0 \to v_1 \to \ldots \to v_k = v$ be any path from s to v containing k edges. Then, after pass k, $\text{distTo}[v_k] \leq \text{weight}(e_1) + \text{weight}(e_2) + \ldots + \text{weight}(e_k)$.

Corollary. Bellman–Ford computes shortest path distances.

Pf. [apply Proposition to a shortest path from s to v]

- There exists a simple shortest path P^* from s to v; it contains $k \leq V - 1$ edges.
- The Proposition implies that, after at most $V - 1$ passes, $\text{distTo}[v] \leq \text{length}(P^*)$.
- Since $\text{distTo}[v]$ is the length of some path from s to v, $\text{distTo}[v] = \text{length}(P^*)$. ■
Bellman–Ford algorithm: practical improvement

Observation. If \(\text{distTo}[v] \) does not change during pass \(i \), not necessary to relax any edges incident from \(v \) in pass \(i + 1 \).

Queue–based implementation of Bellman–Ford.

- Perform vertex relaxations. \(\xrightarrow{\text{relax vertex } v} \) relax vertex \(v = \text{relax all edges incident from } v \)
- Maintain queue of vertices whose \(\text{distTo}[] \) values changed since it was last relaxed.

Impact.
- In the worst case, the running time is still \(\Theta(E V) \).
- But much faster in practice on typical inputs.
Problem. Given a digraph G with positive edge weights and vertex s, find a longest simple path from s to every other vertex.

Goal. Design algorithm that takes $\Theta(EV)$ time in the worst case.

longest simple path from 0 to 4: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
Bellman–Ford algorithm: negative weights

Remark. The Bellman–Ford algorithm works even if some weights are negative, provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.

![Diagram of a negative cycle](image)

Length of negative cycle = 1 + 2 + 3 + -8 = -2

Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.

0 → 1 → 2 → 3 → 4 → 1 → … → 2 → 3 → 4 → 1 → 2 → 5
4.4 Shortest Paths

- properties
- APIs
- Bellman–Ford algorithm
- Dijkstra’s algorithm
"Object-oriented programming is an exceptionally bad idea which could only have originated in California."

-- Edsger Dijkstra
Dijkstra's algorithm

For each vertex v: distTo[v] = ∞.
For each vertex v: edgeTo[v] = null.

T = ∅.
distTo[s] = 0.

Repeat until all vertices are marked:
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.
- Relax each edge incident from v.

Key difference with Bellman-Ford. Each edge gets relaxed exactly once!
Dijkstra’s algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex \(v \) with the smallest \(\text{distTo}[] \) value.
- Mark \(v \) and relax all edges incident from \(v \).

an edge-weighted digraph

\[
\begin{align*}
0 &\rightarrow 1 & 5.0 \\
0 &\rightarrow 4 & 9.0 \\
0 &\rightarrow 7 & 8.0 \\
1 &\rightarrow 2 & 12.0 \\
1 &\rightarrow 3 & 15.0 \\
1 &\rightarrow 7 & 4.0 \\
2 &\rightarrow 3 & 3.0 \\
2 &\rightarrow 6 & 11.0 \\
3 &\rightarrow 6 & 9.0 \\
4 &\rightarrow 5 & 4.0 \\
4 &\rightarrow 6 & 20.0 \\
4 &\rightarrow 7 & 5.0 \\
5 &\rightarrow 2 & 1.0 \\
5 &\rightarrow 6 & 13.0 \\
7 &\rightarrow 5 & 6.0 \\
7 &\rightarrow 2 & 7.0 \\
\end{align*}
\]
Dijkstra’s algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest $\text{distTo}[]$ value.
- Mark v and relax all edges incident from v.

<table>
<thead>
<tr>
<th>v</th>
<th>$\text{distTo}[]$</th>
<th>$\text{edgeTo}[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

shortest-paths tree from vertex s
Dijkstra’s algorithm: correctness proof

Invariant. For each marked vertex v: $\text{distTo}[v] = d^*(v)$.

Pf. [by induction on number of marked vertices]

- Let v be next vertex marked.
- Let P be the path from s to v of length $\text{distTo}[v]$.
- Consider any other path P' from s to v.
- Let $x \rightarrow y$ be first edge in P' with x marked and y unmarked.
- P' is already as long as P by the time it reaches y:

$$\text{length}(P') \leq \text{length}(P)$$

- P' is a path from s to x, followed by edge $x \rightarrow y$, followed by non-negative edges

$$\text{length}(P') \leq \text{distTo}[v] \leq \text{distTo}[y] \leq \text{distTo}[x] + \text{weight}(x, y) \leq \text{length}(P')$$

Dijkstra chose v instead of y by construction.
Dijkstra’s algorithm: correctness proof

Invariant. For each marked vertex \(v \): \(\text{distTo}[v] = d^*(v) \).

Corollary 1. Dijkstra’s algorithm computes shortest path distances.

Corollary 2. Dijkstra’s algorithm relaxes vertices in increasing order of distance from \(s \).
public class DijkstraSP {
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;

 public DijkstraSP(EdgeWeightedDigraph G, int s) {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 pq.insert(s, 0.0);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
}
Dijkstra’s algorithm: Java implementation

When relaxing an edge, also update PQ:

- Found first path from s to w: add w to PQ.
- Found better path from s to w: decrease key of w in PQ.

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (!pq.contains(w)) pq.insert(w, distTo[w]);
        else pq.decreaseKey(w, distTo[w]);
    }
}
```

Q. How to implement DECREASE-KEY operation in a priority queue?
Indexed priority queue (Section 2.4)

Associate an index between 0 and $n - 1$ with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

```java
public class IndexMinPQ<Key extends Comparable<Key>>

    IndexMinPQ(int n)  // create PQ with indices 0, 1, ..., n – 1
    void insert(int i, Key key)  // associate key with index i
    int delMin()  // remove min key and return associated index
    void decreaseKey(int i, Key key)  // decrease the key associated with index i
    boolean isEmpty()  // is the priority queue empty?

    :
```

for Dijkstra's algorithm:

$n = V$,
index = vertex,
key = distance from s
Goal. Implement **DECREASE–KEY** operation in a binary heap.
Goal. Implement \textsc{Decrease-Key} operation in a binary heap.

Solution.

- Find vertex in heap. How?
- Change priority of vertex and call \texttt{swim()} to restore heap invariant.

Extra data structure. Maintain an inverse array $qp[]$ that maps from the vertex to the binary heap node index.

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$v_3$</td>
<td>$v_5$</td>
<td>$v_7$</td>
<td>$v_2$</td>
<td>$v_0$</td>
<td>$v_4$</td>
<td>$v_6$</td>
<td>$v_1$</td>
</tr>
</tbody>
</table>

vertex 2 has priority 3.0 and is at heap index 4
```
Dijkstra’s algorithm: which priority queue?

Number of PQ operations: \(V \text{ INSERT}, V \text{ DELETE-MIN}, \leq E \text{ DECREASE-KEY}. \)

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>INSERT</th>
<th>DELETE-MIN</th>
<th>DECREASE-KEY</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>(V)</td>
<td>1</td>
<td>(V^2)</td>
</tr>
<tr>
<td>binary heap</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(E \log V)</td>
</tr>
<tr>
<td>d-way heap</td>
<td>(\log_d V)</td>
<td>(d \log_d V)</td>
<td>(\log_d V)</td>
<td>(E \log_{E/V} V)</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(1^\dagger)</td>
<td>(\log V^\dagger)</td>
<td>(1^\dagger)</td>
<td>(E + V \log V)</td>
</tr>
</tbody>
</table>

\(^\dagger \) amortized

Bottom line.
- Array implementation optimal for complete digraphs.
- Binary heap much faster for sparse digraphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.

- **Prim:** Choose next vertex that is closest to *any vertex in the tree* (via an undirected edge).
- **Dijkstra:** Choose next vertex that is closest to the *source vertex* (via a directed path).

![Prim's algorithm](image1.png) ![Dijkstra's algorithm](image2.png)
Variations on a theme: vertex relaxations.

- Bellman–Ford: relax all vertices; repeat $V - 1$ times.
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case running time</th>
<th>negative weights †</th>
<th>directed cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman–Ford</td>
<td>$E V$</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>$E \log V$</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>topological sort</td>
<td>E</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

† no negative cycles
Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

- Negative weights (but no “negative cycles”): Bellman–Ford.
- Non-negative weights: Dijkstra.
- DAG: topological sort.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case running time</th>
<th>negative weights †</th>
<th>directed cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman–Ford</td>
<td>$E V$</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>$E \log V$</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>topological sort</td>
<td>E</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

† no negative cycles