

4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm
https://algs4.cs.princeton.edu

4.3 Minimum Spanning Trees

- introduction
- cut property
- edge-weighted graph API
- Kruskal's algorithm
- Prim's algorithm

A motivating example

Install minimum number of paving stones to connect all of the houses.

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

not acyclic

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

not spanning

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

edge-weighted graph G

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.
Output. A spanning tree of minimum weight.

minimum spanning tree T
$($ weight $=50=4+6+5+8+9+11+7)$

Brute force. Try all spanning trees?

Let T be any spanning tree of a connected graph G with V vertices.

Which of the following properties must hold?
A. Removing any edge from T disconnects it.
B. Adding any edge to T creates a cycle.
C. $\quad T$ contains exactly $V-1$ edges.
D. All of the above.

spanning tree T of graph G

Network design

Network. Vertex = network component; edge = potential connection; edge weight = cost.
electrical, computer, telecommunication, transportation

Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

phylogeny tree reconstruction

4.3 Minimum Spanning Trees

- introduction
- cut property

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:

- The graph is connected. $\quad \Rightarrow$ MST exists.
- The edge weights are distinct. \Rightarrow MST is unique. \longleftarrow see Exercise 4.3.3 (solved on booksite)

Note. Today's algorithms all work with duplicate edge weights.
but assumption simplifies the analysis

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.

Note. A cut may have multiple edges in the MST.

Minimum spanning trees: quiz 2

Which is the min-weight edge crossing the cut $\{2,3,5,6\}$?
A. $0-7(0.16)$
B. 2-3 (0.17)
C. 0-2 (0.26)
$\begin{array}{ll}0-7 & 0.16\end{array}$
$\begin{array}{ll}\text { 2-3 } & 0.17\end{array}$
1-7 0.19
0-2 0.26
$\begin{array}{ll}5-7 & 0.28\end{array}$
$\begin{array}{ll}1-3 & 0.29\end{array}$
$\begin{array}{ll}1-5 & 0.32\end{array}$
$\begin{array}{ll}2-7 & 0.34\end{array}$
$\begin{array}{ll}4-5 & 0.35\end{array}$
$\begin{array}{ll}1-2 & 0.36\end{array}$
$\begin{array}{ll}4-7 & 0.37\end{array}$
$\begin{array}{ll}0-4 & 0.38\end{array}$
$\begin{array}{lll}6-2 & 0.40\end{array}$
$\begin{array}{lll}\text { 3-6 } & 0.52\end{array}$
6-0 0.58
6-4 $\quad 0.93$

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge e is in the MST.
Pf. [by contradiction] Suppose e is not in the MST T.

- Adding e to T creates a unique cycle.
- Some other edge f in cycle must also be a crossing edge.
- Removing f and adding e to T yields a different spanning tree T^{\prime}.
- Since weight (e) < weight (f), we have weight $\left(T^{\prime}\right)<$ weight (T).
- Contradiction.

Framework for minimum spanning tree algorithms

```
Generic algorithm (to compute MST in G)
\(\mathrm{T}=\varnothing\).
Repeat until T is a spanning tree: \(\longleftarrow V-1\) edges
    - Find a cut in G.
    - \(\mathrm{e} \leftarrow\) min-weight crossing edge.
    \(-T \leftarrow T \cup\{e\}\).
```


Efficient implementations.

- Which cut? $\longleftarrow 2^{V-2}$ distinct cuts
- How to compute min-weight crossing edge?

Ex 1. Kruskal's algorithm.
Ex 2. Prim's algorithm.
Ex 3. Borüvka's algorithm.

4.3 Minimum Spanning Trees

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Weighted edge API

API. Edge abstraction for weighted edges.

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge> {
    private final int v, w;
    private final double weight;
    public Edge(int v, int w, double weight) {
        this.v = v;
        this.w = w;; < constructor
        this.weight = weight;
    }
    public int either() {
        return v;; either endpoint
    }
    public int other(int vertex) {
        if (vertex == v) return w; «}\mathrm{ other endpoint
        else return v;
    }
    public int compareTo(Edge that) {
        return Double.compare(this.weight, that.weight);
    }
}
```


Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.
public class EdgeWeightedGraph

	EdgeWeightedGraph(int V$)$	edge-weighted graph with V vertices (and no edges)
void	addEdge(Edge e)	add weighted edge e to this graph
Iterable<Edge>	adj(int $v)$	edges incident to v

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph {
    private final int V;
    private final Bag<Edge>[] adj; same as Graph (but adjacency lists of Edge objects)
    pub1ic EdgeWeightedGraph(int V) {
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<> ();
    }
    public void addEdge(Edge e) {
        int v = e.either(), w = e.other(v);
        adj[v].add(e);
        adj[w].add(e);
    }
    public Iterable<Edge> adj(int v) {
        return adj[v];
    }
}
```


Minimum spanning tree API

Q. How to represent the MST?
A. Technically, an MST is an edge-weighted graph.

For convenience, we represent it as a set of edges.
public class MST

	MST(EdgeWeightedGraph G)	constructor
Iterable<Edge>	edges()	edges in MST
double	weight()	weight of MST
\vdots	\vdots	

4.3 Minimum Spanning Trees

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to T unless doing so would create a cycle.

Minimum spanning trees: quiz 3

In which order does Kruskal's algorithm select edges in MST?
A. $1,2,4,5,6$
B. $1,2,4,5,8$
C. $1,2,5,4,8$
D. $8,2,1,5,4$

6

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.
[Case $1 \Rightarrow$] Kruskal's algorithm adds edge $e=v-w$ to T.

- Vertices v and w are in different connected components of T.
- Cut $=$ set of vertices connected to v in T.
- By construction of cut, e is a crossing edge and no crossing edge
- is currently in T

Kruskal considers edges

- was considered by Kruskal before e
- Thus, e is a min weight crossing edge.
in ascending order by weight
- Cut property $\Rightarrow e$ is in the MST.

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.
[Case $2 \Leftarrow$] Kruskal's algorithm discards edge $e=v-w$.

- From Case 1 , all edges currently in T are in the MST.
- The MST can't contain a cycle, so it can't also contain e.

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge $v-w$ to T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T, initially each vertex in its own set.
- If v and w are in same set, then adding $v-w$ to T would create a cycle. [Case 2]
- Otherwise, add $v-w$ to T and merge sets containing v and w. [Case 1]

Case 2: adding v-w creates a cycle

Case 1: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST {
    private Queue<Edge> mst = new Queue<>();
    public Kruska7MST(EdgeWeightedGraph G) {
        Edge[] edges = G.edges();
        Arrays.sort(edges);
        UF uf = new UF(G.V());
        for (int i = 0; i < G.E(); i++) {
            Edge e = edges[i];
            int v = e.either(), w = e.other(v);
            if (uf.find(v) != uf.find(w)) {
                    mst.enqueue(e);
            uf.union(v, w);
            }
        }
    }
    public Iterable<Edge> edges() {
        return mst;
    }
}
```


Kruskal's algorithm: running time

Proposition. In the worst case, Kruskal's algorithm computes the MST in an edge-weighted graph in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are sorting and union-find operations.

operation	frequency	time per op
SORT	1	$E \log E$
UNION	$V-1$	$\log V^{\dagger}$
FIND	$2 E$	$\log V^{\dagger}$

- Total. $\Theta(V \log V)+\Theta(E \log V)+\Theta(E \log E)$.

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?
A. Run Kruskal's algorithm using the original edge weights.
B. Run Kruskal's algorithm using the squares of the edge weights.
C. Run Kruskal's algorithm using the square roots of the edge weights.
D. All of the above.

Problem. Given an undirected graph G with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes $\Theta(E \log E)$ time in the worst case.

maximum spanning tree $T($ weight $=104)$

4.3 Minimum Spanning Trees

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Prim's algorithm demo

- Start with vertex 0 and grow tree T.
- Repeat until $V-1$ edges:
- add to T the min-weight edge with exactly one endpoint in T

Minimum spanning trees: quiz 5

In which order does Prim's algorithm select edges in the MST? Assume it starts from vertex s.
A. $8,2,1,4,5$
B. $8,2,1,5,4$
C. $8,2,1,5,6$
D. $8,2,3,4,5$

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]
Prim's algorithm computes the MST.

Pf. Let $e=$ min-weight edge with exactly one endpoint in T.

- Cut = set of vertices in T.
- Cut property \Rightarrow edge e is in the MST. \quad

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ?

Prim's algorithm: lazy implementation demo

- Start with vertex 0 and grow tree T.
- Repeat until $V-1$ edges:
- add to T the min-weight edge with exactly one endpoint in T

Prim's algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-Min to determine next edge $e=v-w$ to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let w be the unmarked vertex (not in T):
- add e to T and mark w
- add to PQ any edge incident to $w \longleftarrow$ but don't bother if other endpoint is already in T

Prim's algorithm: lazy implementation

```
public class LazyPrimMST {
    private boolean[] marked; // MST vertices
    private Queue<Edge> mst; // MST edges
    private MinPQ<Edge> pq; // PQ of edges
        public LazyPrimMST(WeightedGraph G) {
            pq = new MinPQ<>();
            mst = new Queue<>();
            marked = new boolean[G.V()];
            visit(G, 0); \longleftarrow assume graph G is connected
            while (mst.size() < G.V() - 1) {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (marked[v] && marked[w]) continue;
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
            if (!marked[w]) visit(G, w);
            }
    }
}
```

```
private void visit(WeightedGraph G, int v) {
    marked[v] = true; \longleftarrow addv to tree T
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e)
}
public Iterable<Edge> mst() {
    return mst;
}
```

repeatedly delete the min-weight
edge $e=v-w$ from $P Q$
ignore if both endpoints in tree T
add edge e to tree T
add either v or w to tree T

Lazy Prim's algorithm: running time

Proposition. In the worst case, lazy Prim's algorithm computes the MST in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

operation	frequency	time per op
INSERT	E	$\log E^{\dagger}$
DeLETE-MIN	E	$\log E^{\dagger}$
	\dagger using binary heap	

Prim's algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in T.

Observation. For each vertex v, need only min-weight edge connecting v to T.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; $\Theta(V)$ extra space; $\Theta(E \log V)$ running time in worst case.

MST: algorithms of the day

Credits

image	source	license
Muddy City Problem Microarrays and Clustering Image Segmentation	Botstein and Brown	Felzenszwalb and Huttenlocher
Phylogeny Tree	Derzelle et al.	
MST Dithering author		
Slime Mold vs. Rail Network	$\underline{\text { Mario Klingemann }}$	CC BY-NC 2.0
Mona Singh	$\underline{\text { Princeton University }}$	
Lecture Slides © Copyright 2023 Robert Sedgewick and Kevin Wayne		

A final thought

> " The algorithms we write are only as good as the questions we ask. And the best questions come from collaboration and creative thinking." - Mona Singh

