
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/7/23 8:36 AM

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣Kruskal’s algorithm

‣ Prim’s algorithm
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A motivating example

Install minimum number of paving stones to connect all of the houses.

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

3

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

4

graph G

spanning tree T

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

5

not connected

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

6

not acyclic

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

7

not spanning

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

8

6 5

9

78 10 14

21

16

24

4 23 18

11

edge-weighted graph G

edge weight

not necessarily proportional
to “length” in drawing

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.
Output. A spanning tree of minimum weight.
 
 
 
 
 
 
 
 
 
 
 
 
 
Brute force. Try all spanning trees?

9

minimum spanning tree T
(weight = 50 = 4 + 6 + 5 + 8 + 9 + 11 + 7)

8 14

21

16

23

edge weight

6 5

9

78

4

11

10

18

24

Minimum spanning trees: quiz 1

Let T be any spanning tree of a connected graph G with V vertices.  
Which of the following properties must hold?

A. Removing any edge from T disconnects it.

B. Adding any edge to T creates a cycle.

C. T contains exactly V − 1 edges.

D. All of the above.

10spanning tree T of graph G

moreover, if you then remove
any other edge from the cycle,

you get back another spanning tree

Network design

Network. Vertex = network component; edge = potential connection; edge weight = cost.

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

11

electrical, computer, telecommunication, transportation

Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

12

Reference: Botstein & Brown group

gene 1

gene n

gene expressed
gene not expressed

More MST applications

13

slime mold vs. rail networkMST dithering

Figure 2: A street scene (320 × 240 color image), and the segmentation results pro-

duced by our algorithm (σ = 0.8, k = 300).

Figure 3: A baseball scene (432 × 294 grey image), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

Figure 4: An indoor scene (image 320 × 240, color), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

17

image segmentation

phylogenetic sub-groups, A01 and A02. The first one contains the
A.Br.Ames lineage (strains Ames Ancestor, Ames, A2012 and
A0248) and three strains isolated in China (A16), Japan (Ba103)
(Kuroda et al., 2010) or Indonesia (A0389). The A01 sub-group (also
termed ‘‘Ames sub-group’’) radiates very shortly after the A01-A02
divergence (1 SNP) into at least three sub-branches (Fig. 1).

The A02 sub-group (also termed ‘‘Sterne sub-group’’) includes
the terminal reference Sterne vaccine strain. The six Dutch
A.Br.001/002 isolates cluster within the A02 sub-group that also
contains French A.Br.001/002 strains (08-8_20) isolated from the
Doubs department in the North East of France (Girault et al.,
2014a). Five of the Dutch A.Br.001/002 isolates are closely related
to each other, differing by a maximum of three chromosomal
SNPs. Similar SNP patterns were found using both virulence plas-
mids data (Fig. 2).These isolates were collected during a series of
anthrax outbreaks on a livestock farm in Winsum (Groningen).
The first case in July 1991 (CVI127491-V08551) involved the death
of a bull. Apparently the possibility of anthrax was not taken into
account and the carcass was opened on the farm, leading to con-
tamination of the premises. Until November 1991 at least four
additional outbreaks occurred among dairy and beef cattle on the
farm: on August 14th (CVI128268), October 19th (CVI131185),
October 28th (CVI131959) and October 30th (CVI-128268)
(Table 2). These ultimately resulted in nine animal casualties.
During this period the herd was vaccinated and animals with ele-
vated body temperature were treated with antiserum produced by

CVI. We identified 63 SNPs that differentiated these isolates from
the sixth Dutch A.Br.001/002 isolate, of which 32 were unique to
the above Dutch sub-cluster and 28 unique to the CVI-un1 strain.
No information is available on the origin of this isolate from 1968.

The A.Br.001/002 group may have originated in China
(Simonson et al., 2009) but is also distributed at higher latitudes
in Western Europe. It accounts for a significant part of the
European B. anthracis distribution in Denmark, Belgium, the
United Kingdom, the Netherlands and was also found in northeast-
ern France (Derzelle and Thierry, 2013; Girault et al., 2014a).

3.4. A.Br.008/009 phylogenetic analysis

The two TransEurasian (TEA) Dutch A.Br.008/009 isolates CVI-
260187 and CVI-un2 were recovered in 1986 (A.Br.011/009) and
1976 (A.B.008/011) respectively. Unfortunately documentation
on their origin is lacking. These isolates were found to be phyloge-
netically related to (i) the Carbosap vaccine and all French strains
(including 99-100) belonging to the third branch of the A.Br.011/
009 sub-groups previously described (Girault et al., 2014a); or to
(ii) heroin-associated strains of the A.Br.008/011 sub-group iso-
lated during the heroin outbreaks occurring among drug users in
Europe from 2000 to 2013 (Price et al., 2012; Hanczaruk et al.,
2014). The TEA group has been found in most European countries.
It is well established in Southern and Eastern Europe and repre-
sents the dominant subgroup in Italy, Bulgaria, Hungary and

Fig. 1. Position of the eleven Dutch strains on the B. anthracis phylogenetic tree based on whole-genome SNP analysis. Minimum spanning tree based on 6316 chromosomal
SNPs. The 13 different canSNP groups are color-coded: C.Br.A1055 in white, B.Br.CNEVA in yellow, B.Br.001/002 and B.Br.Kruger in orange, A.Br.011/009 in light blue, A.Br.008/
011 in blue, A.Br.WNA in dark blue, A.Br.005/006 in pink, A.Br003/004 in red, A.Br001/002 in green, A.Br.WNA in dark green, A.Br.Aust94 in brown and A.Br.Vollum in purple.
The position of the 11 newly sequenced isolates from the Netherlands (bold and underlined), the African IEMVT89 strain and 40 available whole genome-sequenced strains is
marked. The length of each branch is proportional (logarithmic scale) to the number of SNPs identified between strains. Indicated in red is the position of some new or
published SNPs specific to various canSNP sub-groups: A.Br.13, A.Br.14, A.Br.15, A.Br.26 and A.Br.27 (A.Br.Aust94); SNP 111199 and AVO/A2a0 (A.Br.Vollum); A02/A and A02/
B1-NL (A.Br.001/002 subgroup A02); A08/D (A.Br.008/011) and A11/3 (A.Br.011/009 Branch 3). Total tree size is 6457, i.e. it contains approximately 2.2% of homoplasia. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S. Derzelle et al. / Infection, Genetics and Evolution 32 (2015) 370–376 373

phylogeny tree reconstruction

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:

・The graph is connected. ⇒ MST exists.

・The edge weights are distinct. ⇒ MST is unique.
 
Note. Today’s algorithms all work with duplicate edge weights.

15

6

1

2
4

7
10

5

9

12

14

20

16

8

13

no two edge
weights are equal

11

3

see Exercise 4.3.3
(solved on booksite)

but assumption simplifies the analysis

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.
 
Cut property. For any cut, its min-weight crossing edge is in the MST.

16

a crossing edge has one gray endpoint
and one white endpoint

min-weight crossing edge
must be in the MST

10

5

20

16

11

3

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.
Def. A crossing edge of a cut is an edge that has one endpoint in each set.
 
Cut property. For any cut, its min-weight crossing edge is in the MST.
 
Note. A cut may have multiple edges in the MST.

17

6

1

2
4

9
8

other crossing edges may
or may not be in the MST

3

min-weight crossing edge
must be in the MST

Minimum spanning trees: quiz 2

Which is the min-weight edge crossing the cut { 2, 3, 5, 6 } ?

A. 0–7 (0.16)

B. 2–3 (0.17)

C. 0–2 (0.26)

D. 5–7 (0.28)

18

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

two white

two gray

crossing edge (but not min-weight)

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two nonempty sets.  
Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge e is in the MST.
Pf. [by contradiction] Suppose e is not in the MST T.

・Adding e to T creates a unique cycle.

・Some other edge f in cycle must also be a crossing edge.

・Removing f and adding e to T yields a different spanning tree T ʹ.

・Since weight(e) < weight(f), we have weight(T ʹ) < weight(T).

・Contradiction. ▪

19

the MST T does
not contain e

adding e to MST T
creates a unique cycle

f

e

Framework for minimum spanning tree algorithms

 
 
 
 
 
 
 
 
 
Efficient implementations.

・Which cut?

・How to compute min-weight crossing edge?
 
Ex 1. Kruskal’s algorithm.
Ex 2. Prim’s algorithm.
Ex 3. Borüvka’s algorithm.

20

T = ∅.
Repeat until T is a spanning tree:
 - Find a cut in G.

 - e ← min-weight crossing edge.

 - T ← T ∪ { e }.

Generic algorithm (to compute MST in G)

V − 1 edges

2V−2 distinct cuts

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

API. Edge abstraction for weighted edges.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Idiom for processing an edge e. int v = e.either(), w = e.other(v).

public class Edge

Edge(int v, int w, double weight) create a weighted edge v–w

int either() either endpoint

int other(int v) the endpoint that’s not v

int compareTo(Edge that) compare edges by weight

 ⋮ ⋮

Weighted edge API

22

v
weight

w
edge e = v–w

implements Comparable<Edge>

Weighted edge: Java implementation

23

public class Edge implements Comparable<Edge> {
 private final int v, w;
 private final double weight;

}

public Edge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
}

public int either() {
 return v;
}

public int other(int vertex) {
 if (vertex == v) return w;
 else return v;
}

public int compareTo(Edge that) {
 return Double.compare(this.weight, that.weight);
}

constructor

either endpoint

other endpoint

compare edges by weight

Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.

24

public class EdgeWeightedGraph

EdgeWeightedGraph(int V) edge-weighted graph with V vertices (and no edges)

void addEdge(Edge e) add weighted edge e to this graph

Iterable<Edge> adj(int v) edges incident to v

 ⋮ ⋮

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

25

Edge-weighted graph representation

adj[]
0

1

2

3

4

5

6

7

6 0 .58 0 2 .26 0 4 .38 0 7 .16 Bag
objects

8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29 1 2 .36 1 7 .19 1 5 .32

6 2 .40 2 7 .34 1 2 .36 0 2 .26 2 3 .17

3 6 .52 1 3 .29 2 3 .17

6 4 .93 0 4 .38 4 7 .37 4 5 .35

1 5 .32 5 7 .28 4 5 .35

6 4 .93 6 0 .58 3 6 .52 6 2 .40

2 7 .34 1 7 .19 0 7 .16 5 7 .28 4 7 .37

references to the
same Edge object

tinyEWG.txt
V

E

Edge-weighted graph: adjacency-lists implementation

26

public class EdgeWeightedGraph {
 private final int V;
 private final Bag<Edge>[] adj;

}

same as Graph (but adjacency lists of Edge objects)

public EdgeWeightedGraph(int V) {
 this.V = V;
 adj = (Bag<Edge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<>();
}

public void addEdge(Edge e) {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
}

public Iterable<Edge> adj(int v) {
 return adj[v];
}

add same Edge object to both adjacency lists

constructor

Minimum spanning tree API

Q. How to represent the MST?
A. Technically, an MST is an edge-weighted graph.
 For convenience, we represent it as a set of edges.

27

public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

 ⋮ ⋮

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Kruskal’s algorithm demo

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

29

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

graph edges
sorted by weight

an edge-weighted graph

Minimum spanning trees: quiz 3

In which order does Kruskal’s algorithm select edges in MST?  

A. 1, 2, 4, 5, 6

B. 1, 2, 4, 5, 8

C. 1, 2, 5, 4, 8

D. 8, 2, 1, 5, 4

30

8

1 6

42

7

9 3 5

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.  

Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.
 
[Case 1 ⇒] Kruskal’s algorithm adds edge e = v–w to T.

・Vertices v and w are in different connected components of T.

・Cut = set of vertices connected to v in T.

・By construction of cut, e is a crossing edge and no crossing edge
– is currently in T
– was considered by Kruskal before e

・Thus, e is a min weight crossing edge.

・Cut property ⇒ e is in the MST.

31

adding edge to tree
would create a cycle

add edge to tree

v
w

Kruskal considers edges
in ascending order by weight

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.  
 
Pf. Kruskal’s algorithm adds edge e to T if and only if e is in the MST.
 
[Case 2 ⇐] Kruskal’s algorithm discards edge e = v–w.

・From Case 1, all edges currently in T are in the MST.

・The MST can’t contain a cycle, so it can’t also contain e. ▪

32

adding edge to tree
would create a cycle

add edge to tree

v w

Challenge. Would adding edge v–w to T create a cycle? If not, add it.  

Efficient solution. Use the union–find data structure.

・Maintain a set for each connected component in T, initially each vertex in its own set.

・If v and w are in same set, then adding v–w to T would create a cycle. [Case 2]

・Otherwise, add v–w to T and merge sets containing v and w. [Case 1]

Kruskal’s algorithm: implementation challenge

v w

33

Case 2: adding v–w creates a cycle

v w

Case 1: add v–w to T and merge sets containing v and w

w

v

connected components

Kruskal’s algorithm: Java implementation

34

public class KruskalMST {
 private Queue<Edge> mst = new Queue<>();

 public KruskalMST(EdgeWeightedGraph G) {
 Edge[] edges = G.edges();
 Arrays.sort(edges);
 UF uf = new UF(G.V());

 for (int i = 0; i < G.E(); i++) {

 }
 }

 public Iterable<Edge> edges() {
 return mst;
 }
}

Edge e = edges[i];
int v = e.either(), w = e.other(v);
if (uf.find(v) != uf.find(w)) {
 mst.enqueue(e);
 uf.union(v, w);
}

sort edges by weight

greedily add edges to MST

edge v–w does not create cycle

merge connected components
add edge e to MST

maintain connected components

edges in the MST

optimization: stop as soon as V−1 edges in T

Kruskal’s algorithm: running time

Proposition. In the worst case, Kruskal’s algorithm computes the MST  
in an edge-weighted graph in Θ(E log E) time and Θ(E) extra space.  

Pf.

・Bottlenecks are sorting and union–find operations.  
 
 
 
 
 
 
 

・Total. Θ(V log V) + Θ(E log V) + Θ(E log E).

35

† using weighted quick union

operation frequency time per op

SORT 1 E log E

UNION V − 1 log V †

FIND 2 E log V †

dominated by Θ(E log E)
since graph is connected

Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree 
that minimizes the sum of the squares of the edge weights?  

A. Run Kruskal’s algorithm using the original edge weights.

B. Run Kruskal’s algorithm using the squares of the edge weights.

C. Run Kruskal’s algorithm using the square roots of the edge weights.

D. All of the above.

36
sum of squares = 42 + 62 + 52 + 102 + 112 + 72 = 347

6

5

7104

11

x < y () x2 < y2 ()
p
x <

p
y

<latexit sha1_base64="hhod+WAkJZX0HprU9ewpXth1fhI=">AAACoXichVHRTtswFHUC2xiDrcDjXiyqSXuqUoYY0/aAtJdN2kOHKCA1XXXj3LQWjh3sm5Eo6ofugX9Z0kZsBSSuZOvonHN97eMoU9JREPzx/LX1Z89fbLzcfLW1/fpNZ2f33JncChwKo4y9jMChkhqHJEnhZWYR0kjhRXT1tdEvfqN10ugzKjMcpzDVMpECqKYmnZuCh5/5l2YrOefhdQ4xD38YPVWYkJXTGYG15qZVil8H//wNfsIfumtLVTG/a1oS5XzS6Qa9YFH8Iei3oMvaGkx2vN0wNiJPUZNQ4NyoH2Q0rsCSFArnm2HuMANxBVMc1VBDim5cLRKa83c1E/PE2Hpp4gv2/44KUufKNKqdKdDM3dca8jFtlFNyPK6kznJCLZaDklxxMryJm8fSoiBV1gCElfVduZiBBUH1p6xMWZydoVh5SVXkWgoT4z1WUUEWlil+auroLrOH4Pyg1//QO/x52D05bvPcYG/ZPnvP+uwjO2Hf2IANmWC33pq35W37Xf+7P/BPl1bfa3v22Er5o78G+s09</latexit>

Maximum Spanning Tree

Problem. Given an undirected graph G with positive edge weights,  
find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes Θ(E log E) time in the worst case.

37
maximum spanning tree T (weight = 104)

14 19

17

712 13 6

5

8

9

18 10 15

16

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Prim’s algorithm demo

・Start with vertex 0 and grow tree T.

・Repeat until V − 1 edges:
– add to T the min-weight edge with exactly one endpoint in T

39

5

4

7

1
3

0

2

6

an edge-weighted graph

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Minimum spanning trees: quiz 5

In which order does Prim’s algorithm select edges in the MST?
Assume it starts from vertex s.  

A. 8, 2, 1, 4, 5

B. 8, 2, 1, 5, 4

C. 8, 2, 1, 5, 6

D. 8, 2, 3, 4, 5

40

s 8

1 5

62

4

9 3 7

Prim’s algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]  
Prim’s algorithm computes the MST.  

Pf. Let e = min-weight edge with exactly one endpoint in T.

・Cut = set of vertices in T.

・Cut property ⇒ edge e is in the MST. ▪
 
 
Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ? 

41

edge e = 7-5 added to tree

Prim’s algorithm: lazy implementation demo

・Start with vertex 0 and grow tree T.

・Repeat until V − 1 edges:
– add to T the min-weight edge with exactly one endpoint in T

42

5

4

7

1
3

0

2

6

an edge-weighted graph

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Prim’s algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ? 

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

・Key = edge; priority = weight of edge.

・DELETE-MIN to determine next edge e = v–w to add to T.

・If both endpoints v and w are marked (both in T), disregard.

・Otherwise, let w be the unmarked vertex (not in T):
– add e to T and mark w
– add to PQ any edge incident to w

43

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T

but don’t bother if other endpoint is already in T

 public Iterable<Edge> mst() {
 return mst;
 }

public class LazyPrimMST {
 private boolean[] marked; // MST vertices
 private Queue<Edge> mst; // MST edges
 private MinPQ<Edge> pq; // PQ of edges

 public LazyPrimMST(WeightedGraph G) {
 pq = new MinPQ<>();
 mst = new Queue<>();
 marked = new boolean[G.V()];
 visit(G, 0);

 }
 ...
}

Prim’s algorithm: lazy implementation

44

while (mst.size() < G.V() - 1) {
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;
 mst.enqueue(e);
 if (!marked[v]) visit(G, v);
 if (!marked[w]) visit(G, w);
}

repeatedly delete the min-weight
edge e = v–w from PQ

ignore if both endpoints in tree T

add either v or w to tree T

assume graph G is connected

add edge e to tree T

private void visit(WeightedGraph G, int v) {
 marked[v] = true;
 for (Edge e : G.adj(v))
 if (!marked[e.other(v)])
 pq.insert(e);
}

for each edge e = v–w:
add e to PQ if w not already in T

add v to tree T

Lazy Prim’s algorithm: running time

Proposition. In the worst case, lazy Prim’s algorithm computes the MST  
in Θ(E log E) time and Θ(E) extra space.
 
Pf.

・Bottlenecks are PQ operations.

・Each edge is added to PQ at most once.

・Each edge is deleted from PQ at most once.

45

operation frequency time per op

INSERT E log E †

DELETE-MIN E log E †

† using binary heap

Prim’s algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in T.
 
Observation. For each vertex v, need only min-weight edge connecting v to T.

・MST includes at most one edge connecting v to T. Why?

・If MST includes such an edge, it must take lightest such edge. Why?
 
Impact. PQ of vertices; Θ(V) extra space; Θ(E log V) running time in worst case.

46

5

4

7

1
3

0

2

6

see te xtbook

for de tai ls

MST: algorithms of the day

47

algorithm visualization bottleneck running time

Kruskal
sorting

union–find
E log E

Prim priority queue E log V

Lecture Slides © Copyright 2023 Robert Sedgewick and Kevin Wayne

Credits

48

image source license

Muddy City Problem CS Unplugged CC BY-NC-SA 4.0

Microarrays and Clustering Botstein and Brown by author

Image Segmentation Felzenszwalb and Huttenlocher

Phylogeny Tree Derzelle et al.

MST Dithering Mario Klingemann CC BY-NC 2.0

Slime Mold vs. Rail Network Harvard Magazine

Mona Singh Princeton University

https://classic.csunplugged.org/documents/activities/minimal-spanning-trees/unplugged-09-minimal_spanning_trees.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://link.springer.com/article/10.1023/B:VISI.0000022288.19776.77
https://www.sciencedirect.com/science/article/pii/S156713481500115X
http://www.flickr.com/photos/quasimondo/2695389651
https://creativecommons.org/licenses/by-nc/2.0/
https://www.youtube.com/watch?v=GwKuFREOgmo
https://www.cs.princeton.edu/people/profile/mona

A final thought

49

 “ The algorithms we write are only as good
 as the questions we ask. And the best
 questions come from collaboration and
 creative thinking. ” — Mona Singh

