4. Graphs and Digraphs

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs

https://algs4.cs.princeton.edu
4. Graphs and Digraphs I

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
Graphs

Graph. Set of vertices connected pairwise by edges.

Why study graphs and graph algorithms?

- Hundreds of graph algorithms.
- Thousands of real-world applications.
- Fascinating branch of computer science and discrete math.
Transportation networks

Vertex = subway stop; edge = direct route.
Social networks

Vertex = person; edge = social relationship.

“Visualizing Friendships” by Paul Butler
Twitter followers

Vertex = Twitter account; edge = Twitter follower.
Protein-protein interaction network

Vertex = protein; edge = interaction.
Graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertex</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell phone</td>
<td>phone</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>intersection</td>
<td>street</td>
</tr>
<tr>
<td>internet</td>
<td>router</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>URL link</td>
</tr>
<tr>
<td>social relationship</td>
<td>person</td>
<td>friendship</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein–protein interaction</td>
</tr>
<tr>
<td>circuit</td>
<td>logic gate</td>
<td>wire</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
</tbody>
</table>
Undirected graph terminology

Graph. Set of vertices connected pairwise by edges.

Path. Sequence of vertices connected by edges, with no repeated edges.

Connected. Two vertices are connected if there is a path between them.

Cycle. Path (with \(\geq 1 \) edge) whose first and last vertices are the same.
Directed graph terminology

Digraph. Set of vertices connected pairwise by directed edges.

Directed path. Sequence of vertices connected by directed edges, with no repeated edges.

Reachable. Vertex w is reachable from vertex v if there is a directed path from v to w.

Directed cycle. Directed path (with ≥ 1 edge) whose first and last vertices are the same.
Which of these graphs is best modeled as a directed graph?

A. Facebook: vertex = person; edge = friendship.
B. Web: vertex = webpage; edge = URL link.
C. Internet: vertex = router; edge = fiber optic cable.
D. Molecule: vertex = atom; edge = chemical bond.
Some graph-processing problems

<table>
<thead>
<tr>
<th>graph problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-t path</td>
<td>Find a path between s and t.</td>
</tr>
<tr>
<td>shortest s-t path</td>
<td>Find a path with the fewest edges between s to t.</td>
</tr>
<tr>
<td>cycle</td>
<td>Find a cycle.</td>
</tr>
<tr>
<td>Euler cycle</td>
<td>Find a cycle that uses each edge exactly once.</td>
</tr>
<tr>
<td>Hamilton cycle</td>
<td>Find a cycle that uses each vertex exactly once.</td>
</tr>
<tr>
<td>connected components</td>
<td>Find connected components.</td>
</tr>
<tr>
<td>graph isomorphism</td>
<td>Find an isomorphism between two graphs.</td>
</tr>
<tr>
<td>planarity</td>
<td>Draw in the plane with no crossing edges.</td>
</tr>
</tbody>
</table>

Challenge. Which problems are easy? Difficult? Intractable?
4. **Graphs and Digraphs I**

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs

https://algs4.cs.princeton.edu
Vertex representation.

- This lecture: integers between 0 and $V - 1$.
- Real-world applications: use symbol table to convert between names and integers.

Def. A digraph is **simple** if it has no self-loops or parallel edges.
Digraph API

```java
public class Digraph {
    public Digraph(int V) {
        // create an empty digraph with V vertices
    }
    void addEdge(int v, int w) {
        // add a directed edge v→w
        // our API allows self-loops and parallel edges
    }
    Iterable<Integer> adj(int v) {
        // vertices adjacent from v
    }
    int V() {
        // number of vertices
    }
    Digraph reverse() {
        // reverse digraph
    }
    // ...
}
```

// outdegree of vertex v in digraph G
public static int outdegree(Digraph G, int v) {
 int count = 0;
 for (int w : G.adj(v))
 count++;
 return count;
}

Note: this method is in full Digraph API, so no need to re-implement
Digraph representation: adjacency matrix

Maintain a V-by-V boolean array; for each edge $v \rightarrow w$ in the digraph: $\text{adj}[v][w]$ is true.

Memory. $\Theta(V^2)$ space.
Digraph representation: adjacency lists

Maintain vertex-indexed array of lists: \(\text{adj}[v] \) contains vertices adjacent from vertex \(v \).

Memory. \(\Theta(E + V) \) space.
What is the running time of the following code fragment?
Assume \textbf{adjacency-lists} representation, \(V = \# \text{ vertices}, E = \# \text{ edges}. \)

```java
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + " -> " + w);
```

print each edge once

A. \(\Theta(V) \)
B. \(\Theta(E + V) \)
C. \(\Theta(V^2) \)
D. \(\Theta(EV) \)
Digraph representations

In practice. Use adjacency–lists representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real–world graphs tend to be **sparse** (not **dense**).

![Adjacency Matrix and Adjacency Lists Comparison]

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>add edge from v to w</th>
<th>has edge from v to w?</th>
<th>iterate over vertices adjacent from v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1</td>
<td>1</td>
<td>V †</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>outdegree(v)</td>
<td>outdegree(v)</td>
</tr>
</tbody>
</table>

† disallows parallel edges
Digraph representation (adjacency lists): Java implementation

```java
public class Digraph {

    private final int V;
    private Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- **adjacency lists**
 (could use a stack or queue instead of a bag)

- **create empty digraph with V vertices**

- **add edge v→w**
 (parallel edges and self-loops allowed)

- **iterator for vertices adjacent from v**

4. Graphs and Digraphs I

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices \textit{reachable} from s.
Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

Depth-first search. A systematic method to explore all vertices reachable from s.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked vertices w adjacent from v.
Directed depth-first search demo

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent from v.

A directed graph

4→2
2→3
3→2
6→0
0→1
2→0
11→12
12→9
9→10
9→11
8→9
10→12
11→4
4→3
3→5
6→8
8→6
5→4
0→5
6→4
6→9
7→6
Directed depth-first search demo

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent from v.
Run DFS using the given adjacency-lists representation of digraph G, starting at vertex 0. In which order is dfs(G, v) called?

A. 0 1 2 4 5 3 6
B. 0 1 2 4 5 6 3
C. 0 1 3 2 6 4 5
D. 0 1 2 6 4 5 3

adjacency-lists representation

digraph G
```java
public class DirectedDFS {

    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean isReachable(int v) {
        return marked[v];
    }
}
```

marked[v] = true if v is reachable from s
constructor marks vertices reachable from s
recursive DFS does the work
is v reachable from s?
Depth-first search: running time

Proposition. DFS marks all vertices reachable from \(s \) in \(\Theta(E + V) \) time in the worst case.

Pf.
- Initializing the marked[] array takes \(\Theta(V) \) time.
- Each vertex is visited at most once.
- Visiting a vertex takes time proportional to its outdegree:

\[
\text{outdegree}(v_0) + \text{outdegree}(v_1) + \text{outdegree}(v_2) + \ldots = E
\]

\[\uparrow\]

in worst case, all \(V \) vertices are reachable from \(s \)

Note. If all vertices are reachable from \(s \), then \(E \geq V - 1 \) and running time simplifies to \(\Theta(E) \).
What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?

A. Marks a vertex not reachable from s.
B. Compile-time error.
C. Infinite loop / stack overflow.
D. None of the above.

```java
private void dfs(Digraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
    marked[v] = true;
}
```
Reachability application: program control-flow analysis

Every program is a digraph.
 • Vertex = basic block of instructions (straight-line program).
 • Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Reachability application: mark–sweep garbage collector

Every data structure is a digraph.
 • Vertex = object.
 • Edge = reference/pointer.

Roots. Objects known to be directly accessible by program (e.g., stack frame).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark–sweep garbage collector

Mark–sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS function–call stack).
4. Graphs and Digraphs I

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs

https://algs4.cs.princeton.edu
Directed paths DFS demo

Goal. DFS determines which vertices are reachable from s. How to reconstruct paths?

Solution. Use parent-link representation.
Depth-first search: path finding

Parent–link representation of paths from s.

- Maintain an integer array edgeTo[].
- Interpretation: $\text{edgeTo}[v]$ is the next–to–last vertex on a path from s to v.
- To reconstruct path from s to v, trace $\text{edgeTo}[]$ backward from v to s (and reverse).

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>
Depth-first search (with path finding): Java implementation

```java
public class DepthFirstDirectedPaths {

    private boolean[] marked;
    private int[] edgeTo;
    private int s;

    public DepthFirstDirectedPaths(Digraph G, int s) {
        ... 
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
                edgeTo[w] = v;
            }
        }
    }

    public boolean hasPathTo(int v) {
        return marked[v];
    }

    // More methods...
}
```

- `marked[v]` is a boolean array that marks if a vertex `v` has been visited.
- `edgeTo[w]` is an integer array that stores the previous vertex on the path from `s` to `v`.
- `dfs(G, s)` is the depth-first search function that starts from vertex `s`.
- `v → w` is the edge that led to the discovery of `w`.

This implementation follows the Breadth-First Search (BFS) approach but with an added edgeTo array to keep track of the previous vertex on the path. It is particularly useful for finding paths in a directed graph.
Suppose there are many paths from s to v. Which one does DepthFirstDirectedPaths find?

A. A shortest path (fewest edges).

B. A longest path (most edges).

C. Depends on digraph representation.
4. **Graphs and Digraphs I**

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
Problem. Implement flood fill (Photoshop magic wand).
Depth-first search in undirected graphs

Connectivity problem. Given an undirected graph G and vertex s, find all vertices connected to s.

Solution. Use DFS. but now, for each undirected edge v–w:

v is adjacent to w and w is adjacent to v

\begin{itemize}
 \item \textbf{Mark vertex v.}
 \item \textbf{Recursively visit all unmarked vertices w adjacent to v.}
\end{itemize}

Proposition. DFS marks all vertices connected to s in $\Theta(E + V)$ time in the worst case.
Depth-first search demo

To visit a vertex v:
- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

Graph G
Depth-first search demo

To visit a vertex v:
- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

```
vertices connected to 0
(and associated paths)
```

```
<table>
<thead>
<tr>
<th>v</th>
<th>marked</th>
<th>edgeTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>
```
How to represent an undirected edge v–w using adjacency lists?

A. Add w to adjacency list for v.
B. Add v to adjacency list for w.
C. Both A and B.
D. None of the above.
Directed graph representation (review)

```java
public class Digraph {
    private final int V;
    private Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- **adjacency lists**
- **create empty digraph with V vertices**
- **add edge v→w**
- **iterator for vertices adjacent from v**

public class Graph {
 private final int V;
 private Bag<Integer>[] adj;

 public Graph(int V) {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<>();
 }

 public void addEdge(int v, int w) {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v) {
 return adj[v];
 }
}

adjacency lists
create empty graph with V vertices
add edge v–w
iterator for vertices adjacent to v

https://algs4.cs.princeton.edu/41graph/Graph.java.html
Depth-first search (in directed graphs)

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean isReachable(int v) {
        return marked[v];
    }
}
```

marked[v] = true if v is reachable from s
constructor marks vertices reachable from s
recursive DFS does the work
is v reachable from s?

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html
Depth-first search (in undirected graphs)

```java
public class DepthFirstSearch {
  private boolean[] marked;

  public DirectedDFS(Graph G, int s) {
    marked = new boolean[G.V()];
    dfs(G, s);
  }

  private void dfs(Graph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v))
      if (!marked[w])
        dfs(G, w);
  }

  public boolean isConnected(int v) {
    return marked[v];
  }
}
```

- `marked[v] = true if v is connected to s`
- `constructor marks vertices connected to s`
- `recursive DFS does the work`
- `is v connected to s ?`

https://algs4.cs.princeton.edu/41graph/DepthFirstSearch.java.html
Depth-first search summary

DFS enables direct solution of several elementary graph and digraph problems.

- Reachability (in a digraph).
- Connectivity (in a graph).
- Path finding (in a graph or digraph).
- Topological sort.
- Directed cycle detection.

DFS is also core of solution to more advanced problems.

- Euler cycle.
- Biconnectivity.
- 2-satisfiability.
- Planarity testing.
- Strong components.
- Nonbipartite matching.

...
<table>
<thead>
<tr>
<th>image</th>
<th>source</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pac–Man Graph</td>
<td>Oatzy</td>
<td></td>
</tr>
<tr>
<td>Pac–Man Game</td>
<td>Old Classic Retro Gaming</td>
<td></td>
</tr>
<tr>
<td>London Tube Map</td>
<td>Transport for London</td>
<td></td>
</tr>
<tr>
<td>London Tube Graph</td>
<td>visualize.org</td>
<td></td>
</tr>
<tr>
<td>Visualizing Friendships</td>
<td>Paul Butler / Facebook</td>
<td></td>
</tr>
<tr>
<td>Twitter Graph</td>
<td>allthingsgraphed.com</td>
<td></td>
</tr>
<tr>
<td>Protein Interaction Graph</td>
<td>Hawing Jeong / KAIST</td>
<td></td>
</tr>
<tr>
<td>PageRank</td>
<td>Wikipedia</td>
<td>public domain</td>
</tr>
<tr>
<td>Control Flow Graph</td>
<td>Stack Exchange</td>
<td></td>
</tr>
<tr>
<td>DFS Graph Visualization</td>
<td>Gerry Jenkins</td>
<td></td>
</tr>
</tbody>
</table>