4. Graphs and Digraphs I

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs
https://algs4.cs.princeton.edu

4. Graphs and Digraphs I

Algorithms

Robert Sedgewick । Kevin Wayne
https://algs4.cs.princeton.edu

Graphs

Graph. Set of vertices connected pairwise by edges.

Why study graphs and graph algorithms?

- Hundreds of graph algorithms.
- Thousands of real-world applications.
- Fascinating branch of computer science and discrete math.

Transportation networks

Vertex = subway stop; edge = direct route.

Social networks

Vertex $=$ person; edge $=$ social relationship.

facebook

Twitter followers

Vertex = Twitter account; edge = Twitter follower.

Protein-protein interaction network

Vertex $=$ protein; edge $=$ interaction.

yeast protein interaction map

Graph applications

graph	vertex	edge
cell phone	phone	placed call
infectious disease	person	infection
financial	stock, currency	transactions
transportation	intersection	street
internet	router	fiber optic cable
web	web page	URL link
social relationship	person	friendship
object graph	object	pointer
protein network	protein	protein-protein interaction
circuit	logic gate	wire
neural network	neuron	synapse

Undirected graph terminology

Graph. Set of vertices connected pairwise by edges.
Path. Sequence of vertices connected by edges, with no repeated edges.
Connected. Two vertices are connected if there is a path between them.
Cycle. Path (with ≥ 1 edge) whose first and last vertices are the same.

Directed graph terminology

Digraph. Set of vertices connected pairwise by directed edges.
Directed path. Sequence of vertices connected by directed edges, with no repeated edges.
Reachable. Vertex w is reachable from vertex v if there is a directed path from v to w.
Directed cycle. Directed path (with ≥ 1 edge) whose first and last vertices are the same.

Graphs and digraphs I: quiz 1

Which of these graphs is best modeled as a directed graph?
A. Facebook: vertex = person; edge = friendship.
B. Web: vertex = webpage; edge = URL link.
C. Internet: vertex $=$ router; edge $=$ fiber optic cable.
D. Molecule: vertex = atom; edge = chemical bond.

Some graph-processing problems

	graph problem	description
(1a)	s-t path	Find a path between s and t.
(a)	shortest s-t path	Find a path with the fewest edges between s to t.
(a)	cycle	Find a cycle.
(a)	Euler cycle	Find a cycle that uses each edge exactly once.
(1)	Hamilton cycle	Find a cycle that uses each vertex exactly once.
(A)	connected components	Find connected components.
4	graph isomorphism	Find an isomorphism between two graphs.
\bigcirc	planarity	Draw in the plane with no crossing edges.

Challenge. Which problems are easy? Difficult? Intractable?

4. Graphs and Digraphs I

- introduction
- graph representation

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs 4.cs.princeton.edu

Digraph representation

Vertex representation.

- This lecture: integers between 0 and $V-1$.
- Real-world applications: use symbol table to convert between names and integers.

symbol table

Def. A digraph is simple if it has no self-loops or parallel edges.

Digraph API

Digraph representation: adjacency matrix

Maintain a V-by- V boolean array; for each edge $v \rightarrow w$ in the digraph: adj[v][w] is true.

Memory. $\Theta\left(V^{2}\right)$ space.

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists: adj [v] contains vertices adjacent from vertex v.

Memory. $\Theta(E+V)$ space.

Graphs and digraphs I: quiz 2

What is the running time of the following code fragment?
Assume adjacency-lists representation, $V=\#$ vertices, $\mathrm{E}=$ \# edges.

```
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.print7n(v + "->" + w);
```

print each edge once
A. $\quad \Theta(V)$
B. $\quad \Theta(E+V)$
C. $\quad \Theta\left(V^{2}\right)$
D. $\Theta(E V)$

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real-world graphs tend to be sparse (not dense).

representation	space	add edge from v to w	has edge from v to w?	iterate over vertices adjacent from v?
adjacency matrix	V^{2}	1	1	$V \dagger$
adjacency lists	$E+V$	1	outdegree($v)$	outdegree (v)

Digraph representation (adjacency lists): Java implementation

```
public class Digraph {
    private final int V;
    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
        adj[v] = new Bag<> ();
    }
    public void addEdge(int v, int w) {
        adj[v].add(w);
    }
    pub1ic Iterable<Integer> adj(int v) {
```



``` iterator for vertices adjacent from v
        return adj[v];
    }
}
```


4. Graphs and Digraphs I

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

Depth-first search. A systematic method to explore all vertices reachable from s.

DFS (to visit a vertex v)
Mark vertex \mathbf{v}.
Recursively visit all unmarked
vertices \mathbf{w} adjacent from \mathbf{v}.

Directed depth-first search demo

To visit a vertex v :
$4 \rightarrow 2$

- Mark vertex v.
$2 \rightarrow 3$
- Recursively visit all unmarked vertices adjacent from v.
$3 \rightarrow 2$
$6 \rightarrow 0$
$0 \rightarrow 1$

$2 \rightarrow 0$
$11 \rightarrow 12$
$12 \rightarrow 9$
$9 \rightarrow 10$
$9 \rightarrow 11$
$8 \rightarrow 9$
$10 \rightarrow 12$
$11 \rightarrow 4$
$4 \rightarrow 3$
$3 \rightarrow 5$
$6 \rightarrow 8$
$8 \rightarrow 6$
$5 \rightarrow 4$
$0 \rightarrow 5$
$6 \rightarrow 4$
$6 \rightarrow 9$
$7 \rightarrow 6$

Directed depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent from v.

v	marked[]	
0	T	
1	T	
2	T	reachable
3	T	from vertex 0
4	T	
5	T	
6	F	
7	F	
8	F	
9	F	
10	F	
11	F	
12	F	

Graphs and digraphs I: quiz 3

Run DFS using the given adjacency-lists representation of digraph G, starting at vertex 0 . In which order is dfs(G, v) called?

DFS preorder
A. 0124536
B. 0124563
C. 0132645
D. 0126453

digraph G

Depth-first search: Java implementation

```
public class DirectedDFS {
    private boolean[] marked; « marked[v]=true ifv is reachable from s
    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
            dfs(G, w);
    }
    public boolean isReachable(int v) {
        return marked[v];
    }
}
```


Depth-first search: running time

Proposition. DFS marks all vertices reachable from s in $\Theta(E+V)$ time in the worst case. Pf.

- Initializing the marked[] array takes $\Theta(V)$ time.
- Each vertex is visited at most once.
- Visiting a vertex takes time proportional to its outdegree:

```
outdegree}(\mp@subsup{v}{0}{})+\operatorname{outdegree}(\mp@subsup{v}{1}{})+\operatorname{outdegree}(\mp@subsup{v}{2}{})+\ldots=
                                    \uparrow
                                    in worst case,
```

all V vertices are reachable from s

Note. If all vertices are reachable from s, then $E \geq V-1$ and running time simplifies to $\Theta(E)$.

Graphs and digraphs I: quiz 4

What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?
A. Marks a vertex not reachable from s.
B. Compile-time error.
C. Infinite loop / stack overflow.
D. None of the above.

```
private void dfs(Digraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
    marked[v] = true;
}
```


Reachability application: program control-flow analysis

Every program is a digraph.

- Vertex = basic block of instructions (straight-line program).
- $E d g e=$ jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge $=$ reference/pointer.

Roots. Objects known to be directly accessible by program (e.g., stack frame).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS function-call stack).

4. Graphs and Digraphs I

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Directed paths DFS demo

Goal. DFS determines which vertices are reachable from s. How to reconstruct paths?
Solution. Use parent-link representation.

Depth-first search: path finding

Parent-link representation of paths from s.

- Maintain an integer array edgeTo[].
- Interpretation: edgeTo[v] is the next-to-last vertex on a path from s to v.
- To reconstruct path from s to v, trace edgeTo[] backward from v to s (and reverse).

Depth-first search (with path finding): Java implementation

```
public class DepthFirstDirectedPaths {
private boolean[] marked;
private int[] edgeTo; \longleftarrow edgeTo[v] = previous vertex
private int s;
                                on path from s to v
public DepthFirstDirectedPaths(Digraph G, int s) {
    dfs(G, s);
}
```

```
private void dfs(Digraph G, int v) {
```

private void dfs(Digraph G, int v) {
marked[v] = true;
marked[v] = true;
for (int w : G.adj(v)) {
for (int w : G.adj(v)) {
if (!marked[w]) {
if (!marked[w]) {
dfs(G, w);
dfs(G, w);
edgeTo[w] = v;
edgeTo[w] = v;
}
}
}
}
v->w is edge that led
v->w is edge that led
}
}
to the discovery of w

```
to the discovery of w
```


Graphs and digraphs I: quiz 5

Suppose there are many paths from s to \mathbf{v}. Which one does DepthFirstDirectedPaths find?
A. A shortest path (fewest edges).
B. A longest path (most edges).
C. Depends on digraph representation.

4. Graphs and Digraphs I

Algorithms

Robert Sedgewick I Kevin Wayne

- introduction
- graph representation
- depth-first search
- path finding
- undirected graphs

Problem. Implement flood fill (Photoshop magic wand).

Depth-first search in undirected graphs

Connectivity problem. Given an undirected graph G and vertex s, find all vertices connected to s. Solution. Use DFS. \qquad
v is adjacent to w and w is adjacent to v

DFS (to visit a vertex v)
Mark vertex v.
Recursively visit all unmarked
vertices \mathbf{w} adjacent to \mathbf{v}.

Proposition. DFS marks all vertices connected to s in $\Theta(E+V)$ time in the worst case.

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

[^0]graph G

Depth-first search demo

To visit a vertex v :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

vertices connected to 0
(and associated paths)

\mathbf{v}	marked[]	edgeTo[]
0	T	-
1	T	0
2	T	0
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

Graphs and digraphs I: quiz 6

How to represent an undirected edge v-w using adjacency lists?
A. Add w to adjacency list for v.
B. Add v to adjacency list for w.
C. Both A and B.
D. None of the above.

Directed graph representation (review)

```
public class Digraph {
    private final int V;
    private Bag<Integer>[] adj;
    public Digraph(int V) { « create empty digraph with V vertices
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
        adj[v] = new Bag<> ();
    }
    public void addEdge(int v, int w) {
        adj[v].add(w);
    }
    public Iterable<Integer> adj(int v) {
```



``` iterator for vertices adjacent from \(v\) return adj[v];
}
}
```


Undirected graph representation

```
public class Graph
    private final int V;
    public Graph(int V) {
    this.V = V;
    adj = (Bag<Integer>[]) new Bag[V];
    for (int v = 0; v < V; v++)
        adj[v] = new Bag<>();
}
public void addEdge(int v, int w) { « « add edge v-w
    adj[v].add(w);
    adj[w].add(v);
}
public Iterable<Integer> adj(int v) { « < iterator for vertices adjacent to v
}
```


Depth-first search (in directed graphs)

```
public class DirectedDFS {
    private boolean[] marked; marked[v]=true if v is reachable from s
    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
            dfs(G, w);
    }
    public boolean isReachable(int v) {
            \longleftarrow
                is v reachable from s?
        return marked[v];
    }
}
```


Depth-first search (in undirected graphs)

```
public class DepthFirstSearch
private boolean[] marked
public DirectedDFS(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
}
private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G,w);
}
```

```
public boolean isConnected(int v) {
```

public boolean isConnected(int v) {
return marked[v];
return marked[v];
}
}

```

\section*{Depth-first search summary}

DFS enables direct solution of several elementary graph and digraph problems.
- Reachability (in a digraph).
- Connectivity (in a graph).
- Path finding (in a graph or digraph).
- Topological sort.
\(\longleftarrow\) next lecture
- Directed cycle detection. \(\qquad\)

DFS is also core of solution to more advanced problems.
- Euler cycle.
- Biconnectivity.
- 2-satisfiability.
- Planarity testing.
- Strong components.
- Nonbipartite matching.

\section*{SIAM J. Compur.}

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS* ROBERT TARJAN \(\dagger\)

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an un\(k_{1} V+k_{2} E+k_{3}\) for some constants \(k_{1} k_{2}\) and \(k_{3}\) where \(V\) is the number of vertices and \(E\) is the number of edges of the graph being examined.

\section*{Credits}
\begin{tabular}{|c|c|c|}
\hline image & source & license \\
\hline Pac-Man Graph & Oatzy & \\
\hline Pac-Man Game & Old Classic Retro Gaming & \\
\hline London Tube Map & Transport for London & \\
\hline London Tube Graph & visualize.org & \\
\hline Visualizing Friendships & Paul Butler / Facebook & \\
\hline Twitter Graph & allthingsgraphed.com & \\
\hline Protein Interaction Graph & Hawing Jeong / KAIST & \\
\hline PageRank & Wikipedia & public domain \\
\hline Control Flow Graph & Stack Exchange & \\
\hline DFS Graph Visualization & Gerry Jenkins & \\
\hline
\end{tabular}

DFS visualization (by Gerry Jenkins)
```


[^0]: tinyG.txt
 $V \rightarrow 13$
 $13 \leftharpoonup E$
 05
 43
 01
 912
 64
 54
 02
 1112
 910
 06
 78
 911
 53

