3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Symbol table implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>red-black BST</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>hashing</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>1†</td>
</tr>
</tbody>
</table>

Q. Can we do better?

A. Yes, but only with different access to the symbol table keys.

† subject to certain technical assumptions
Hashing: basic plan

Save key-value pairs in a key-indexed table, where the index is a function of the key.

Hash function: Mathematical function that maps (hashes) a key to an array index.

Collision: Two distinct keys that hash to same index.

Issue. Collisions are unavoidable.

- How to limit collisions?
 [good hash functions]
- How to accommodate collisions?
 [novel algorithms and data structures]
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Designing a hash function

Required properties. [for correctness]
- Deterministic.
- Each key hashes to a table index between 0 and \(m - 1 \).

Desirable properties. [for performance]
- Very fast to compute.
- For any subset of \(n \) input keys, each table index gets approximately \(n / m \) keys.

leads to good hash-table performance
\((m = 10, n = 20) \)

leads to poor hash-table performance
\((m = 10, n = 20) \)
Designing a hash function

Required properties. [for correctness]
- Deterministic.
- Each key hashes to a table index between 0 and $m - 1$.

Desirable properties. [for performance]
- Very fast to compute.
- For any subset of n input keys, each table index gets approximately n / m keys.

Ex 1. $[m = 10,000]$ Last 4 digits of U.S. Social Security number.

Ex 2. $[m = 10,000]$ Last 4 digits of phone number.
Which is the last digit of your day of birth?

A. 0 or 1
B. 2 or 3
C. 4 or 5
D. 6 or 7
E. 8 or 9
Hash tables: quiz 2

Which is the last digit of your year of birth?

A. 0 or 1
B. 2 or 3
C. 4 or 5
D. 6 or 7
E. 8 or 9
Java’s hashCode() conventions

All Java classes inherit a method `hashCode()`, which returns a 32-bit `int`.

Required. [for correctness] If `x.equals(y)`, then `x.hashCode() == y.hashCode()`.

Highly desirable. [for efficiency] If `!x.equals(y)`, then `x.hashCode() != y.hashCode()`.

![Diagram](image)

Customized implementations. Integer, Double, String, java.net.URL, ...

Legal (but highly undesirable) implementation. Always return 17.

User-defined types. Users are on their own.
Implementing `hashCode()`: integers and doubles

Java library implementations

```java
public final class Integer {
    private final int value;
    ...
    public int hashCode() {
        return value;
    }
}

public final class Double {
    private final double value;
    ...
    public int hashCode() {
        long bits = doubleToLongBits(value);
        return (int) (bits ^ (bits >>> 32));
    }
}
```

- Convert to IEEE 64-bit representation;
- XOR most significant 32-bits with least significant 32-bits
- If used only least significant 32 bits, all integers between -2^{21} and 2^{21} would have same hash code (0)
Implementing `hashCode()`: user-defined types

31x + y rule.

- Initialize hash to 1.
- Repeatedly multiply hash by 31 and add hash of each significant field.

```java
public final class Transaction {
    private final String who;
    private final Date when;
    private final double amount;

    public int hashCode() {
        int hash = 1;
        hash = 31*hash + who.hashCode();
        hash = 31*hash + when.hashCode();
        hash = 31*hash + ((Double) amount).hashCode();
        return hash;
    }
}
```

- For reference types, use `hashCode()`;
- For primitive types, use `hashCode()` of wrapper type.
Implementing hashCode(): user-defined types

31x + y rule.
- Initialize hash to 1.
- Repeatedly multiply hash by 31 and add hash of each significant field.

```java
public final class Transaction {
    private final String who;
    private final Date when;
    private final double amount;

    public int hashCode() {
        return Objects.hash(who, when, amount);
    }
}
```

A varargs method that applies the 31x + y rule to its arguments.
Implementing `hashCode()`

“Standard” recipe for user-defined types.

- Combine each significant field using the $31x + y$ rule.
- Shortcut 1: use `Objects.hash()` for all fields (except arrays).
- Shortcut 2: use `Arrays.hashCode()` for array of primitives.

Principle. Every significant field contributes to hash.

In practice. Recipe above works reasonably well; used in Java libraries.
Which Java function maps hashable keys to integers between 0 and m−1?

A.
```java
private int hash(Key key)
{ return key.hashCode() % m; }
```

B.
```java
private int hash(Key key)
{ return Math.abs(key.hashCode()) % m; }
```

C. Both A and B.

D. Neither A nor B.
Modular hashing

Hash code. An int between -2^{31} and $2^{31} - 1$.

Hash function. An int between 0 and $m - 1$ (for use as array index).

```
private int hash(Key key)
{  return key.hashCode() % m;  }
```

m typically a prime or a power of 2

```
private int hash(Key key)
{  return key.hashCode() % m;  }
```

Bug
the remainder operator can evaluate to a negative integer

```
private int hash(Key key)
{  return key.abs(key.hashCode()) % m;  }
```

1-in-a-billion bug

hashCode() of "polygenelubricants" and new Double(-0.0) is -2^{31}

```
private int hash(Key key)
{  return Math.abs(key.hashCode()) % m;  }
```

Correct
Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to any of \(m \) possible indices.

Bins and balls. Toss \(n \) balls uniformly at random into \(m \) bins.

Bad news. [birthday problem]

- In a random group of 23 people, more likely than not that two people share the same birthday.
- Expect two balls in the same bin after \(\sim \sqrt{\frac{\pi m}{2}} \) tosses.

23.9 when \(m = 365 \)
Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to any of \(m \) possible indices.

Bins and balls. Toss \(n \) balls uniformly at random into \(m \) bins.

Good news. [load balancing]

- When \(n >> m \), expect most bins to have approximately \(n / m \) balls.
- When \(n = m \), expect most loaded bin has \(\sim \ln n / \ln \ln n \) balls.
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Collisions

Collision. Two distinct keys that hash to the same index.

- Birthday problem \Rightarrow can’t avoid collisions.
 - unless you have a ridiculous (quadratic) amount of memory

- Load balancing \Rightarrow no index gets too many collisions.
 \Rightarrow ok to scan through all colliding keys.

\[
\begin{array}{c}
\text{hash("USA") = 3} \\
\text{hash("ITA") = 3}
\end{array}
\]
Separate-chaining hash table

Use an array of \(m \) linked lists.

- **Hash**: map key to table index \(i \) between 0 and \(m - 1 \).
- **Insert**: add key-value pair at front of chain \(i \) (if not already in chain).

separate-chaining hash table (\(m = 4 \))

```
put(L, 11)
hash(L) = 3
```
Separate-chaining hash table

Use an array of m linked lists.

- **Hash:** map key to table index i between 0 and $m - 1$.
- **Insert:** add key–value pair at front of chain i (if not already in chain).
- **Search:** perform sequential search in chain i.

separate-chaining hash table ($m = 4$)

get(E)
hash(E) = 1
Separate-chaining hash table: Java implementation

```java
public class SeparateChainingHashST<Key, Value> {
    private int m = 128; // number of chains
    private Node[] st = new Node[m]; // array of chains

    private static class Node {
        private Object key;
        private Object val;
        private Node next;
        ...
    }

    private int hash(Key key) {
        // as before
    }

    public Value get(Key key) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next)
            if (key.equals(x.key)) return (Value) x.val;
        return null;
    }
}
```
Separate-chaining hash table: Java implementation

```java
public class SeparateChainingHashTable<Key, Value> {

    private int m = 128; // number of chains
    private Node[] st = new Node[m]; // array of chains

    private static class Node {
        private Object key;
        private Object val;
        private Node next;
        ...
    }

    private int hash(Key key) {
        /* as before */
    }

    public void put(Key key, Value val) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next)
            if (key.equals(x.key)) { x.val = val; return; }
        st[i] = new Node(key, val, st[i]);
    }
}
```
Analysis of separate chaining

Recall load balancing: Under the uniform hashing assumption, the length of each chain is tightly concentrated around mean $= \frac{n}{m}$.

Consequence. Expected number of probes for search/insert is $\Theta\left(\frac{n}{m}\right)$.

- m too small \Rightarrow chains too long.
- m too large \Rightarrow too many empty chains.
- Typical choice: $m \sim \frac{1}{4}n$ \Rightarrow $\Theta(1)$ time for search/insert.

calls to either equals() or hashCode()

m times faster than sequential search

hash value frequencies for words in Tale of Two Cities (m = 97)
Resizing in a separate-chaining hash table

Goal. Average length of chain n/m is $\Theta(1)$.

- Double length m of array when $n/m \geq 8$.
- Halve length m of array when $n/m \leq 2$.
- Note: need to rehash all keys when resizing.

![Diagram of hash table before and after resizing](https://via.placeholder.com/150)

- x.hashCode() does not change; but hash(x) typically does.
Symbol table implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>log n</td>
<td>n</td>
<td>n</td>
<td>log n</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>log n</td>
</tr>
<tr>
<td>red–black BST</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
</tr>
<tr>
<td>separate chaining</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>1†</td>
</tr>
</tbody>
</table>

can achieve $\Theta(1)$ probabilistic, amortized guarantee by choosing a hash function at random (see "universal hashing")

† under uniform hashing assumption
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Linear-probing hash table: insert

- Maintain key–value pairs in two parallel arrays, with one key per cell.
- Resolve collisions by **linear probing**: search successive cells until either finding the key or an unused cell.

Inserting into a linear-probing hash table.

linear-probing hash table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys[]</td>
<td>P</td>
<td>M</td>
<td>A</td>
<td>C</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>vals[]</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

put(K, 14)

hash(K) = 7

K

14
Linear-probing hash table: search

- Maintain key-value pairs in two parallel arrays, with one key per cell.
- Resolve collisions by linear probing:
 search successive cells until either finding the key or an unused cell.

Searching in a linear-probing hash table.

<table>
<thead>
<tr>
<th>keys[]</th>
<th>P</th>
<th>M</th>
<th>A</th>
<th>C</th>
<th>H</th>
<th>L</th>
<th>K</th>
<th>E</th>
<th>R</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>vals[]</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

get(K) hash(K) = 7
get(Z) hash(Z) = 8
Linear-probing hash table demo

Hash. Map key to integer i between 0 and $m - 1$.

Insert. Put at table index i if free; if not try $i + 1, i + 2, \ldots$.

Search. Search table index i; if occupied but no match, try $i + 1, i + 2, \ldots$.

Note. Array length m must be greater than number of key-value pairs n.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>M</td>
<td>A</td>
<td>C</td>
<td>S</td>
<td>H</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
<td>R</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

keys[]

$m = 16$
Linear-probing symbol table: Java implementation

```java
public class LinearProbingHashST<Key, Value>
{
    private int m = 32768;
    private Value[] vals = (Value[]) new Object[m];
    private Key[] keys = (Key[]) new Object[m];

    private int hash(Key key)
    { /* as before */ }

    private void put(Key key, Value val) { /* next slide */ }

    public Value get(Key key)
    {
        for (int i = hash(key); keys[i] != null; i = (i+1) % m)
            if (key.equals(keys[i]))
                return vals[i];
        return null;
    }
}
```
Linear-probing symbol table: Java implementation

```java
public class LinearProbingHashST<Key, Value>
{
    private int m = 32768;
    private Value[] vals = (Value[]) new Object[m];
    private Key[] keys = (Key[]) new Object[m];

    private int hash(Key key)
    { /* as before */ }

    public Value get(Key key) { /* previous slide */ }

    public void put(Key key, Value val)
    {
        int i;
        for (i = hash(key); keys[i] != null; i = (i+1) % m)
            if (keys[i].equals(key))
                break;
        keys[i] = key;
        vals[i] = val;
    }

    // array resizing code omitted
}
```
Hash tables: quiz 4

Under the uniform hashing assumption, where is the next key most likely to be added in this linear-probing hash table (no resizing)?

A. Index 4.
B. Index 17.
C. Either index 4 or 17.
D. All open indices are equally likely.
Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes in a linear-probing hash table of size m that contains $n = \alpha m$ keys is at most

\[
\frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right) \quad \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right)
\]

- search hit
- search miss / insert

Pf. [beyond course scope]

Parameters.
- m too large \Rightarrow too many empty array entries.
- m too small \Rightarrow search time blows up.
- Typical choice: $\alpha = n / m \sim \frac{1}{2}$.

 # probes for search hit is about 3/2
 # probes for search miss is about 5/2
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>red–black BST</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>separate chaining</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>1^\dagger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linear probing</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>1^\dagger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† under uniform hashing assumption
Separate chaining vs. linear probing

Separate chaining.
• Performance degrades gracefully.
• Clustering less sensitive to poorly-designed hash function.

Linear probing.
• Unrivaled data locality.
• More probes because of clustering.
3-SUM (revisited)

3-SUM. Given n distinct integers, find three such that $a + b + c = 0$.

Goal. $\Theta(n^2)$ expected time; $\Theta(n)$ extra space.
3.4 Hash Tables

- hash functions
- separate chaining
- linear probing
- context
Hashing: variations on the theme

Many many improved versions have been studied.

Use different probe sequence, i.e., not \(h(k) \), \(h(k) + 1 \), \(h(k) + 2 \), ...
[quadratic probing, double hashing, pseudo-random probing, ...]

During insertion, relocate some of the keys already in the table.
[Cuckoo hashing, Robin Hood hashing, Hopscotch hashing, ...]

Insert tombstones prophylactically, to avoid primary clustering.
[graveyard hashing]

Google Swiss Table Facebook F14 Python 3

eliminates primary clustering, which enables higher load factor / less memory (but sacrifices data locality)

reduces worst-case time for search

eliminates primary clustering; maintains data locality
Hash tables vs. balanced search trees

Hash tables.
- Simpler to code.
- Typically faster in practice.
- No effective alternative for unordered keys.

Balanced search trees.
- Stronger performance guarantees.
- Support for ordered ST operations.
- Easier to implement `compareTo()` than `hashCode()`.

Java includes both.
- BSTs: `java.util.TreeMap`.

Separate chaining (Java 8: if chain gets too long, use red-black BST for chain)
Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?

A1. Yes: aircraft control, nuclear reactor, pacemaker, HFT, missile-defense system, …

A2. Yes: denial-of-service (DoS) attacks.

Real-world exploits. [Crosby–Wallach 2003]

- Linux 2.4.20 kernel: save files with carefully chosen names.
- Bro server: send carefully chosen packets to DoS the server, using less bandwidth than a dial-up modem.
File verification. When downloading a file from the web:

- Vendor publishes hash of file.
- Client checks whether hash of downloaded file matches.
- If mismatch, file corrupted. (e.g., error in transmission or infected by virus)
Hashing: cryptographic applications

One-way hash function. “Hard” to find a key that will hash to a target value (or two keys that hash to same value).

Ex. MD5, SHA-1, SHA-256, SHA-512, SHA3-512, Whirlpool, BLAKE3,

Applications. File verification, digital signatures, cryptocurrencies, password authentication, blockchain, non-fungible tokens, Git commit identifiers,
ALGORITHM (NOUN)
WORD USED BY
PROGRAMMERS WHEN
THEY DO NOT WANT TO
EXPLAIN WHAT THEY DID.