

3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs (representation)
- red-black BSTs (operations)
- context

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Symbol table review

implementation	guarantee			ordered ops?	key interface	emoji
	search	insert	delete			
sequential search (unordered list)	n	n	n		equals()	\because
binary search (sorted array)	$\log n$	n	n	\checkmark	compareTo()	\because
BST	n	n	n	\checkmark	compareTo()	\because
goal	$\log n$	$\log n$	$\log n$	\checkmark	compareTo()	θ

Challenge. $\mathrm{O}(\log n)$ time in worst case.

This lecture. 2-3 trees and left-leaning red-black BSTs.

3.3 Balanced Search Trees

- 2-3 search trees
- red-bláck BSTs (representation)

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from the root to a null link has the same length.

2-3 tree demo

Search.

- Compare search key against key(s) in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for H

2-3 tree: insertion

Insertion into a 2 -node at bottom.

- Add new key to 2 -node to create a 3 -node.
insert G

2-3 tree: insertion

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.
insert Z

Balanced search trees: quiz 1

Suppose that you insert P into the following 2-3 tree.
What will be the root of the resulting 2-3 tree?
A. E
B. ER
C. M
D. P
E. R

Balanced search trees: quiz 2

What is the maximum height of a 2-3 tree containing n keys?
A. $\sim \log _{3} n$
B. $\sim \log _{2} n$
C. $\quad \sim 2 \log _{2} n$
D. $\sim n$

2-3 tree: performance

Perfect balance. Every path from the root to a null link has the same length.

Key property. The height of a 2-3 tree containing n keys is $\Theta(\log n)$.

- Min: $\sim \log _{3} n \approx 0.631 \log _{2} n$. [all 3-nodes]
- Max: $\sim \log _{2} n$.
[all 2-nodes]
- Between 18 and 30 for a billion keys.

Bottom line. Search and insert take $\Theta(\log n)$ time in the worst case.

ST implementations: summary

but hidden constant c is large
(depends upon implementation)

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Might need two compares to move one level down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

```
fantasy code
public void put(Key key, Value val) {
    Node x = root;
    while (x.getTheCorrectChild(key) != nul1) {
        x = x.getTheCorrectChildKey();
        if (x.is4Node()) x.split();
    }
    if (x.is2Node()) x.make3Node(key, va1);
    else if (x.is3Node()) x.make4Node(key, val);
}
```

Bottom line. Could do it (see COS 326!), but there's a better way.

3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs (representation)

Algorithms

- red-black BSTs (operations)
- context

Robert Sedgewick । Kevin Wayne
https://algs4.cs.princeton.edu

How to implement 2-3 trees as binary search trees?

Challenge. How to represent a 3 node?

Approach 1. Two BST nodes.

- No way to tell a 3-node from two 2-nodes.
- Can't (uniquely) map from BST back to 2-3 tree.

Approach 2. Two BST nodes, plus red "glue" node.

- Wastes space for extra node.
- Messy code.

Approach 3. Two BST nodes, with red "glue" link.

- Widely used in practice.
- Arbitrary restriction: red links lean left.

Left-leaning red-black BSTs

1. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning red links as "glue" for 3-nodes.

3-node in a 2-3 tree

two nodes in the corresponding red-black BST

Left-leaning red-black BSTs

Key property. 1-1 correspondence between 2-3 trees and LLRB trees.

corresponding red-black BST

Balanced search trees: quiz 3

Which LLRB tree corresponds to the following 2-3 tree?

A.

C. Both A and B.
D. Neither A nor B.

An equivalent definition of LLRB rees (without reference to 2-3 trees)

Def. A red-black BST is a BST such that:

- No node has two red links connected to it.
- Red links lean left.
\longleftarrow color invariants
- Every path from root to null link has the same number of black links.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in child nodes.

```
private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    private boolean color; \longleftarrow color of parent link
}
private boolean isRed(Node h) {
    if (h == null) return false;
    return h.color == RED;
}
null links are black
```

h.7eft.color
is red h h.right.color

Review: the road to LLRB trees

3.3 Balanced Search Trees

- 2-3 search trees
-red-black BSTs (representation)
- red-black BSTs (operations)
- context

Robert Sedgewick । Kevin Wayne
https://algs4.cs.princeton.edu

Search in a red-black BST

Observation. Red-black BSTs are BSTs \Rightarrow search is the same as for BSTs (ignore color).
but runs faster
(because of better balance)

```
public Value get(Key key) {
    Node x = root;
    while (x != nul7) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val;
    }
    return nul7;
}
```

Remark. Many other operations (iteration, floor, rank, selection) are also identical.

Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:

- Symmetric order.
- Perfect black balance.
- [but not necessarily color invariants]

Example violations of color invariants:

right-leaning red link

two red children (a temporary 4-node)

left-left red (a temporary 4-node)

left-right red (a temporary 4-node)

To restore color invariants: perform color flips and rotations.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.


```
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h) {
    assert !isRed(h.7eft);
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.7eft = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h) {
    assert !isRed(h.left);
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.


```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    assert !isRed(h.right);
    Node x = h.left;
    h.1eft = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.

Balanced search trees: quiz 4

Which sequence of elementary operations transforms the red-black BST at left to the one at right?

A. Color flip E; left rotate R.
B. Color flip R; left rotate E.
C. Color flip R; left rotate R.
D. Color flip R; right rotate E.

Insertion into a LLRB tree

- Do standard BST insert and color new link red.
to preserve symmetric order
- Repeat up the tree until color invariants restored:
- two left red links in a row? $\quad \Rightarrow$ rotate right
- left and right links both red? \Rightarrow color flip
- only right link red?
\Rightarrow rotate left

Insertion into a LLRB tree

- Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
- two left red links in a row? $\quad \Rightarrow$ rotate right
- left and right links both red? \Rightarrow color flip
- only right link red?
\Rightarrow rotate left

insert S E A R C H X M P L

Insertion into a LLRB tree: Java implementation

- Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
- only right link red?
\Rightarrow rotate left
- two left red links in a row? $\quad \Rightarrow$ rotate right
- left and right links both red? \Rightarrow color flip

```
private Node put(Node h, Key key, Value val) {
    if (h == nul7) return new Node(key, val, RED);
        insert at bottom
        (and color it red)
    int cmp = key.compareTo(h.key);
    if (cmp < 0) h.1eft = put(h.1eft, key, val);
    else if (cmp > 0) h.right = put(h.right, key, val);
    else h.val = val;
    if (isRed(h.right) && !isRed(h.1eft)) h = rotateLeft(h);
    if (isRed(h.1eft) && isRed(h.1eft.1eft)) h = rotateRight(h);
    if (isRed(h.1eft) && isRed(h.right)) flipColors(h);
    return h;
}

\section*{Insertion into a LLRB tree: visualization}


255 insertions in random order

\section*{Insertion into a LLRB tree: visualization}


255 insertions in ascending order

\section*{Insertion into a LLRB tree: visualization}


\section*{Balance in LLRB trees}

Proposition. Height of LLRB tree is \(\leq 2 \log _{2} n\).
Pf.
- Black height \(=\) height of corresponding 2-3 tree \(\leq \log _{2} n\).
- Never two red links in a row.
\(\Rightarrow\) height of LLRB tree \(\leq(2 \times\) black height \()+1\)
\[
\leq 2 \log _{2} n+1
\]
- [ A slightly more careful argument shows height \(\leq 2 \log _{2} n\).]


\section*{ST implementations: summary}


\subsection*{3.3 Balanced Search Trees}
- 2-3 search trees
-red-black BSTs (representation)
Algorithms
- red-black BSTs (operations)
- context

Robert Sedgewick । Kevin Wayne
https://algs4.cs.princeton.edu

\section*{Balanced search trees in the wild}

Red-black BSTs are widely used as system symbol tables.
- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: CFQ I/O scheduler, VMAs, linux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs, rank-balanced BSTs, ....


B-trees (and cousins) are widely used for file systems and databases.

btr \(\stackrel{B}{8}_{8}^{8}\)


DATABASE

\section*{Industry story 1: red-black BSTs}

Telephone company contracted with database provider to build a real-time database to store customer information.

Database implementation.
- Red-black BST.
- Exceeding height limit of 80 triggered error-recovery process.
should support up to \(2^{40}\) keys

Database crashed.
- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:
" If implemented properly, the height of a red-black BST with \(n\) keys is at most \(2 \log _{2} n . " \quad-\) expert witness

\section*{Industry story 2：red－black BSTs}

\section*{Celestine Omin＊}
＠cyberomin

\section*{Follow}

I was just asked to balance a Binary Search Tree by JFK＇s airport immigration．Welcome to America．

8：26 AM－ 26 Feb 2017 from Manhattan，NY

\section*{8，025 Retweets 7，087 Likes}
 Q

Celestine Omin ©＠cyberomin•26 Feb 2017
I was too tired to even think of a BST solution．I have e been travelling for 23 hrs ． But I was also asked about 10 CS questions．
Q 8
〔】 164
O 24


Celestine Omin＠cyberomin•26 Feb 2017
sad thing is，if I didn＇t give the Wikipedia definition for these questions，it was considered a wrong answer．
Q 19
〔】 324
\(\bigcirc 703\)


Simon Sharwood＠ssharwood • 26 Feb 2017
Replying to＠cyberomin
seriously？am reporter for＠theregister and would love to know more about your experience
\(Q 2\)
へ】 22
○ 171
https：／／twitter．com／cyberomin／status／835888786462625792

The red-black tree song (by Sean Sandys)

\section*{Credits}
\begin{tabular}{ccc} 
image & source & license \\
\hline Gavel & \(\underline{\text { Adobe Stock }}\) & \(\underline{\text { Education License }}\) \\
Redacted Document & \(\underline{\text { Wikimedia }}\) & public domain \\
Celestine Omin & \(\underline{\text { Twitter }}\) & \\
Red-Black Tree Song & \(\underline{\text { Sean Sandys }}\) & by author \\
Red-Black Tree Song Video & U. Washington CSE Band &
\end{tabular}```

