3.3 **Balanced Search Trees**

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (operations)
- context

https://algs4.cs.princeton.edu
Symbol table review

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>ordered ops?</th>
<th>key interface</th>
<th>emoji</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td></td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>equals()</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td>😞</td>
</tr>
<tr>
<td>binary search</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>compareTo()</td>
</tr>
<tr>
<td>(sorted array)</td>
<td></td>
<td></td>
<td></td>
<td>😞</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>compareTo()</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>😞</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>compareTo()</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>😊</td>
</tr>
</tbody>
</table>

Challenge. $O(\log n)$ time in worst case.

This lecture. 2–3 trees and left-leaning red-black BSTs.

- Optimized for teaching and coding (introduced in COS 226)
- Co-invented by Bob Sedgewick in the 1970s
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (operations)
- context
Allow 1 or 2 keys per node.
 • 2–node: one key, two children.
 • 3–node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.

Perfect balance. Every path from the root to a null link has the same length.
2–3 tree demo

Search.

- Compare search key against key(s) in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H
2–3 tree: insertion

Insertion into a 2–node at bottom.
- Add new key to 2–node to create a 3–node.

insert G
2–3 tree: insertion

Insertion into a 3–node at bottom.

• Add new key to 3–node to create temporary 4–node.
• Move middle key in 4–node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it’s a 4–node, split it into three 2–nodes.
Suppose that you insert P into the following 2–3 tree. What will be the root of the resulting 2–3 tree?

A. E
B. E R
C. M
D. P
E. R
What is the maximum height of a 2–3 tree containing \(n \) keys?

A. \(\sim \log_3 n \)
B. \(\sim \log_2 n \)
C. \(\sim 2 \log_2 n \)
D. \(\sim n \)
2–3 tree: performance

Perfect balance. Every path from the root to a null link has the same length.

![Diagram of a 2-3 tree](image)

Key property. The height of a 2–3 tree containing \(n \) keys is \(\Theta(\log n) \).

- Min: \(\sim \log_3 n \approx 0.631 \log_2 n \). [all 3-nodes]
- Max: \(\sim \log_2 n \). [all 2-nodes]
- Between 18 and 30 for a billion keys.

Bottom line. Search and insert take \(\Theta(\log n) \) time in the worst case.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>ordered ops?</th>
<th>key interface</th>
<th>emoji</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td></td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>equals()</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>✔</td>
</tr>
<tr>
<td>(sorted array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>✔</td>
</tr>
<tr>
<td>2–3 trees</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>✔</td>
</tr>
</tbody>
</table>

but hidden constant c is large (depends upon implementation)
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Might need two compares to move one level down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

Bottom line. Could do it (see COS 326!), but there’s a better way.
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (operations)
- context

https://algs4.cs.princeton.edu
How to implement 2–3 trees as binary search trees?

Challenge. How to represent a 3 node?

Approach 1. Two BST nodes.
- No way to tell a 3-node from two 2-nodes.
- Can’t (uniquely) map from BST back to 2–3 tree.

Approach 2. Two BST nodes, plus red “glue” node.
- Wastes space for extra node.
- Messy code.

Approach 3. Two BST nodes, with red “glue” link.
- Widely used in practice.
- Arbitrary restriction: red links lean left.
1. Represent 2–3 tree as a BST.
2. Use “internal” left-leaning red links as “glue” for 3-nodes.
Key property. 1-1 correspondence between 2-3 trees and LLRB trees.
Balanced search trees: quiz 3

Which LLRB tree corresponds to the following 2–3 tree?

A.

B.

C. Both A and B.

D. Neither A nor B.
An equivalent definition of LLRB trees (without reference to 2–3 trees)

Def. A red–black BST is a BST such that:

- No node has two red links connected to it.
- Red links lean left.
- Every path from root to null link has the same number of black links.

"perfect black balance"
Red–black BST representation

Each node is pointed to by precisely one link (from its parent) ⇒
can encode color of links in child nodes.

```java
private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    private boolean color;

    Node(Key key, Value val) {
        this.key = key;
        this.val = val;
        this.N = 1;
        this.color = RED;
    }

    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }
}
```

null links are black
Review: the road to LLRB trees

BSTs (can get imbalanced)

2–3 trees (balanced but awkward to implement)

3–nodes “glued” together with red links

how we draw LLRB trees (color in links)

how we implement LLRB trees (color in nodes)
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (operations)
- context
Observation. Red–black BSTs are BSTs ⇒ search is the same as for BSTs (ignore color).

but runs faster
(because of better balance)

Remark. Many other operations (iteration, floor, rank, selection) are also identical.
Insertion into a LLRB tree: overview

Basic strategy. Maintain 1–1 correspondence with 2–3 trees.

During internal operations, maintain:

- Symmetric order.
- Perfect black balance.
- [but not necessarily color invariants]

Example violations of color invariants:

- **right-leaning red link**
- **two red children** (a temporary 4-node)
- **left-left red** (a temporary 4-node)
- **left-right red** (a temporary 4-node)

To restore color invariants: perform color flips and rotations.
Elementary red–black BST operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Color flip. Recolor to split a (temporary) 4–node.

![Tree diagram]

Invariants. Maintains symmetric order and perfect black balance.
Left rotation. Orient a (temporarily) right-leaning red link to lean left.

![Diagram of left rotation](image)

Invariants. Maintains symmetric order and perfect black balance.

```java
private Node rotateLeft(Node h) {
    assert !isRed(h.left);
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```
Elementary red–black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```
private Node rotateLeft(Node h) {
    assert !isRed(h.left);
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Right rotation. Orient a left–leaning red link to (temporarily) lean right.

![Diagram of a right rotation](image)

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Right rotation. Orient a left–leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    assert !isRed(h.right);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Which sequence of elementary operations transforms the red–black BST at left to the one at right?

A. Color flip E; left rotate R.
B. Color flip R; left rotate E.
C. Color flip R; left rotate R.
D. Color flip R; right rotate E.
Insertion into a LLRB tree

- Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
 - two left red links in a row? ⇒ rotate right
 - left and right links both red? ⇒ color flip
 - only right link red? ⇒ rotate left

\[\text{to preserve symmetric order and perfect black balance}\]
Insertion into a LLRB tree

- Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
 - two left red links in a row? ⇒ rotate right
 - left and right links both red? ⇒ color flip
 - only right link red? ⇒ rotate left

![Diagram of LLRB tree insertion](image-url)
Red–black BST construction demo

insert S E A R C H X M P L
Insertion into a LLRB tree: Java implementation

- Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
 - only right link red? \(\Rightarrow\) rotate left
 - two left red links in a row? \(\Rightarrow\) rotate right
 - left and right links both red? \(\Rightarrow\) color flip

```java
class Node {
    int key;
    int val;
    boolean isRed = false;
    Node left, right;
}

class BalancingTreeNode {
    private Node put(Node h, Key key, Value val) {
        if (h == null) return new Node(key, val, RED);
        int cmp = key.compareTo(h.key);
        if (cmp < 0) h.left = put(h.left, key, val);
        else if (cmp > 0) h.right = put(h.right, key, val);
        else h.val = val;
        if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
        if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left) && isRed(h.right)) flipColors(h);
        return h;
    }
}
```

Each method that changes the tree shape returns the root of the resulting subtree. Insert at bottom (and color it red). Only a few extra lines of code provides near-perfect balance.
Insertion into a LLRB tree: visualization

n = 255
height = 9
average depth = 6.3

255 insertions in random order
Insertion into a LLRB tree: visualization

\[n = 255\]
\[\text{height} = 7\]
\[\text{average depth} = 6.0\]

255 insertions in ascending order
Insertion into a LLRB tree: visualization

n = 254
height = 13
average depth = 6.5

254 insertions in descending order
Balance in LLRB trees

Proposition. Height of LLRB tree is $\leq 2 \log_2 n$.

Pf.

- Black height = height of corresponding 2–3 tree $\leq \log_2 n$.
- Never two red links in a row.
 - \Rightarrow height of LLRB tree $\leq (2 \times \text{black height}) + 1$
 $\leq 2 \log_2 n + 1$.
- [A slightly more careful argument shows height $\leq 2 \log_2 n$.]
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>ordered ops?</th>
<th>key interface</th>
<th>emoji</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td></td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>equals()</td>
</tr>
<tr>
<td>binary search (sorted array)</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>✔ compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>✔ compareTo()</td>
</tr>
<tr>
<td>2–3 trees</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>✔ compareTo()</td>
</tr>
<tr>
<td>red-black BSTs</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>✔ compareTo()</td>
</tr>
</tbody>
</table>

hidden constant c is small ($\leq 2 \log_2 n$ compares)
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (operations)
- context

https://algs4.cs.princeton.edu
Balanced search trees in the wild

Red-black BSTs are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: CFQ I/O scheduler, VMAs, linux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs, rank-balanced BSTs,

B–trees (and cousins) are widely used for file systems and databases.
Industry story 1: red–black BSTs

Telephone company contracted with database provider to build a real-time database to store customer information.

Database implementation.

- Red–black BST.
- Exceeding height limit of 80 triggered error-recovery process.

$\text{should support up to } 2^{40} \text{ keys}$

Database crashed.

- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:

 "If implemented properly, the height of a red–black BST with n keys is at most $2 \log_2 n$." — expert witness
Industry story 2: red–black BSTs

I was just asked to balance a Binary Search Tree by JFK's airport immigration. Welcome to America.

8:26 AM - 26 Feb 2017 from Manhattan, NY

8,025 Retweets 7,087 Likes

I was too tired to even think of a BST solution. I have been travelling for 23hrs. But I was also asked about 10 CS questions.

Celestine Omin @cyberomin · 26 Feb 2017

sad thing is, if I didn’t give the Wikipedia definition for these questions, it was considered a wrong answer.

Celestine Omin @cyberomin · 26 Feb 2017

Replying to @cyberomin

seriously? am reporter for @theregister and would love to know more about your experience

Simon Sharwood @ssharwood · 26 Feb 2017

https://twitter.com/cyberomin/status/835888786462625792
I see a brand new node,
I want to paint it black.
We need a balanced tree,
we've got to paint it black.

I see a brand new node,
I want to paint it black.
No time for AVL trees,
We must paint it black.

I want to find my key in log n time—that's all.
Rotating subtrees 'round,
sure can be a ball.
I see a brand new node,
I want to paint it black.
Can't have a lot of red nodes,
we must paint them black.
Unfortunately, coding them can be a $#%.
If we had half a brain,
to splay trees we would switch.

And if they're still confusing,
you should have no fear.
Because outside this class,
of them you'll never hear.
I wanna see it,
painted, painted black.
Black is nice.
I wanna see the nodes painted black.
Black is nice.
I wanna see 'em painted, painted, painted, painted black.

performed by U. Washington CSE Band '02
<table>
<thead>
<tr>
<th>image</th>
<th>source</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gavel</td>
<td>Adobe Stock</td>
<td>Education License</td>
</tr>
<tr>
<td>Redacted Document</td>
<td>Wikimedia</td>
<td>public domain</td>
</tr>
<tr>
<td>Celestine Omin</td>
<td>Twitter</td>
<td></td>
</tr>
<tr>
<td>Red–Black Tree Song</td>
<td>Sean Sandys</td>
<td>by author</td>
</tr>
<tr>
<td>Red–Black Tree Song Video</td>
<td>U. Washington CSE Band</td>
<td></td>
</tr>
</tbody>
</table>