2.4 PRIORITY QUEUES

- APIs
- elementary implementations
- binary heaps
- heapsort

https://algs4.cs.princeton.edu
2.4 Priority Queues

- APIs
- Elementary implementations
- Binary heaps
- Heapsort

https://algs4.cs.princeton.edu
Collections

A **collection** is a data type that stores a group of items.

<table>
<thead>
<tr>
<th>data type</th>
<th>core operations</th>
<th>data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>Push, Pop</td>
<td>singly linked list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resizable array</td>
</tr>
<tr>
<td>queue</td>
<td>Enqueue, Dequeue</td>
<td>doubly linked list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resizable array</td>
</tr>
<tr>
<td>deque</td>
<td>ADD–FIRST, REMOVE–FIRST, ADD–LAST, REMOVE–LAST</td>
<td></td>
</tr>
<tr>
<td>priority queue</td>
<td>INSERT, DELETE–MAX</td>
<td>binary heap</td>
</tr>
<tr>
<td>symbol table</td>
<td>Put, Get, Delete</td>
<td>binary search tree</td>
</tr>
<tr>
<td>set</td>
<td>ADD, CONTAINS, DELETE</td>
<td>hash table</td>
</tr>
</tbody>
</table>
Priority queue

Collections. Insert and remove items. Which item to remove?

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

A sequence of operations on a priority queue
triage in an emergency room
(priority = urgency of wound/illness)

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>insert X</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert M</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>insert P</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert L</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>
Max-oriented priority queue API

```
public class MaxPQ<Key extends Comparable<Key>> {
    public MaxPQ() { /* create an empty priority queue */ }
    public void insert(Key key) { /* insert a key */ }
    public Key delMax() { /* return and remove a largest key */ }
    public Key max() { /* return a largest key */ }
    public boolean isEmpty() { /* is the priority queue empty? */ }
    public int size() { /* number of keys in the priority queue */ }
}
```

Note 1. Keys are generic, but must be Comparable.

Note 2. Duplicate keys allowed; delMax() removes and returns any maximum key.
Min-oriented priority queue API

Analogous to `MaxPQ`.

```java
public class MinPQ<Key extends Comparable<Key>> {
    MinPQ() // create an empty priority queue
    void insert(Key key) // insert a key
    Key delMin() // return and remove a smallest key
    Key min() // return a smallest key
    boolean isEmpty() // is the priority queue empty?
    int size() // number of keys in the priority queue
}
```

Warmup client. Sort a stream of integers from standard input.
Priority queue: applications

- Event–driven simulation. [customers in a line, colliding particles]
- Discrete optimization. [bin packing, scheduling]
- Artificial intelligence. [A* search]
- Computer networks. [web cache]
- Data compression. [Huffman codes]
- Operating systems. [load balancing, interrupt handling]
- Graph searching. [Dijkstra’s algorithm, Prim’s algorithm]
- Number theory. [sum of powers]
- Spam filtering. [Bayesian spam filter]
- Statistics. [online median in data stream]
2.4 Priority Queues

- APIs
- elementary implementations
- binary heaps
- heapsort
Unordered list. Store keys in a singly linked list.

Performance. INSERT takes $\Theta(1)$ time; DELETE-MAX takes $\Theta(n)$ time.
Priority queue: elementary implementations

Ordered array. Store keys in an array in ascending (or descending) order.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
<td>44</td>
<td>55</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ordered array implementation of a MaxPQ
Priority queues: quiz 1

What are the worst-case running times for \textsc{Insert} and \textsc{Delete-Max}, respectively, in a MaxPQ implemented with an ordered array?

A. $\Theta(1)$ and $\Theta(n)$

B. $\Theta(1)$ and $\Theta(\log n)$

C. $\Theta(\log n)$ and $\Theta(1)$

D. $\Theta(n)$ and $\Theta(1)$

ignore array resizing

ordered array implementation of a MaxPQ
Priority queue: implementations cost summary

Elementary implementations. Either **INSERT** or **DELETE-MAX** takes $\Theta(n)$ time.

<table>
<thead>
<tr>
<th>implementation</th>
<th>INSERT</th>
<th>DELETE-MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with n items

Challenge. Implement both **INSERT** and **DELETE-MAX** efficiently.

Solution. “Somewhat-ordered” array.
2.4 Priority Queues

- APIs
- elementary implementations
- binary heaps
- heapsort

https://algs4.cs.princeton.edu
Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees (left and right subtrees).

Complete tree. Every level (except possibly the last) is completely filled; the last level is filled from left to right.

Property. Height of complete binary tree with n nodes is $\lceil \log_2 n \rceil$.

Pf. As you successively add nodes, height increases (by 1) only when n is a power of 2.
A complete binary tree in nature (of height 4)
Binary heap: representation

Binary heap. Array representation of a heap–ordered complete binary tree.

Heap–ordered tree.
- Keys in nodes.
- Child’s key no larger than parent’s key.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- No explicit links!

```
0  1  2  3  4  5  6  7  8  9  10  11
- T S R P N O A E I H G
```
Consider the node at index k in a binary heap. Which Java expression produces the index of its parent?

A. $(k - 1) / 2$
B. $k / 2$
C. $(k + 1) / 2$
D. $2 \times k$
Binary heap: properties

Proposition. Largest key is at index 1, which is root of binary tree.

Proposition. Can use array indices to move up or down tree.

- Parent of key at index \(k \) is at index \(k/2 \).
- Children of key at index \(k \) are at indices \(2^*k \) and \(2^*k + 1 \).
Binary heap demo

Insert. Add node at end, then *swim* it up.

Remove the maximum. Exchange root with node at end, then *sink* it down.

heap ordered
Binary heap: promotion

Scenario. Key in node becomes larger than key in parent’s node.

To eliminate the violation:
- Exchange key in child node with key in parent node.
- Repeat until heap order restored.

```
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

parent of node at k is at k/2

Peter principle. Node promoted to level of incompetence.
Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.

Cost. At most $1 + \log_2 n$ compares.

```java
public void insert(Key x) {
    pq[++n] = x;
    swim(n);
}
```
Binary heap: demotion

Scenario. Key in node becomes *smaller* than one (or both) of keys in childrens' nodes.

To eliminate the violation:
- Exchange key in parent node with key in larger child’s node.
- Repeat until heap order restored.

```java
private void sink(int k) {
    // children of node at k are at 2*k and 2*k+1
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1))
            j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down.

Cost. At most $2 \log_2 n$ compares.

```java
public Key delMax() {
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = null;
    return max;
}
```

- **remove the maximum**
- **key to remove**
- **exchange key with root**
- **violates heap order**
- **remove node from heap**
- **sink down**
- **prevent loitering**
Binary heap: Java implementation

```java
public class MaxPQ<Key extends Comparable<Key>> {
    private Key[] a;
    private int n;

    public MaxPQ(int capacity) {
        a = (Key[]) new Comparable[capacity+1];
    }

    public void insert(Key key) { // see previous code
        public Key delMax() { // see previous code
            private void swim(int k) { // see previous code
                private void sink(int k) { // see previous code
                    private boolean less(int i, int j) {
                        return a[i].compareTo(a[j]) < 0;
                    }

                    private void exch(int i, int j) {
                        Key temp = a[i]; a[i] = a[j]; a[j] = temp;
                    }
                }
            }
        }
    }
}
```

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html
Goal. Implement both \textsc{Insert} and \textsc{Delete-Max} in $\Theta(\log n)$ time.

<table>
<thead>
<tr>
<th>implementation</th>
<th>\textsc{Insert}</th>
<th>\textsc{Delete-Max}</th>
<th>\textsc{Max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with n items
Binary heap: considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace `less()` with `greater()`.
- Implement `greater()`.

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they’re on the PQ.
- Best practice: use immutable keys.

leads to $O(\log n)$ amortized time per op
(\textit{how to make worst case?})

can implement efficiently with sink() and swim()
\textit{[stay tuned for Prim/Dijkstra]}

\textit{immutable in Java:} String, Integer, Double, ...
Goal. Design an efficient data structure to support the following API:

- **INSERT:** insert a key.
- **DELETE-MAX:** return and remove a largest key.
- **SAMPLE:** return a random key.
- **DELETE-RANDOM:** return and remove a random key.
Multiway heaps

Multiway heaps.

- Complete d–way tree.
- Child’s key no larger than parent’s key.

Property. Height of complete d–way tree on n nodes is $\sim \log_d n$.

Property. Children of key at index k at indices $3k - 1$, $3k$, and $3k + 1$; parent at $\left\lfloor \frac{(k + 1)}{3} \right\rfloor$.

3–way heap
In the worst case, how many compares to `INSERT` and `DELETE-MAX` in a `d`-way heap as function of both `n` and `d`?

A. $\sim \log_d n$ and $\sim \log_d n$

B. $\sim \log_d n$ and $\sim d \log_d n$

C. $\sim d \log_d n$ and $\sim \log_d n$

D. $\sim d \log_d n$ and $\sim d \log_d n$
Priority queue: implementation cost summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Insert</th>
<th>Delete-Max</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>log n</td>
<td>log n</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>log<sub>d</sub> n</td>
<td>d log<sub>d</sub> n</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>log n</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*order-of-growth of running time for priority queue with *n* items*

- *sweet spot: d = 4*
- *see COS 423*
- *why impossible?*
2.4 PRIORITY QUEUES

- APIs
- elementary implementations
- binary heaps
- heapsort

https://algs4.cs.princeton.edu
What are the properties of this sorting algorithm?

```java
public void sort(String[] a) {
    int n = a.length;
    MinPQ<String> pq = new MinPQ<String>();

    for (int i = 0; i < n; i++)
        pq.insert(a[i]);

    for (int i = 0; i < n; i++)
        a[i] = pq.delMin();
}
```

A. $\Theta(n \log n)$ compares in the worst case.

B. In-place.

C. Stable.

D. All of the above.
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
 we’ll assume 1-indexed for now
- Phase 1 (heap construction): build a max-oriented heap.
- Phase 2 (sortdown): repeatedly remove the maximum key.
 a version of selection sort
Heapsort: top-down heap construction

Phase 1 (top-down heap construction).
- View input array as complete binary tree.
- Insert keys into a max heap, one at a time.

before inserting X

```
  T  
 / 
S   R
 / 
O   X
 / 
M   E
```

max heap untouched

after inserting X

```
  X  
 / 
S   T
 / 
O   R
 / 
M   A
```

max heap untouched

swim(6)
Heapsort: sortdown

Phase 2 (sortdown).
- Remove the maximum, one at a time.
- Leave in array (instead of nulling out).

Before deleting P:

After deleting P:

1. exch(1, 7)
2. sink(1)

Max heap Final sorted order

Max heap Final sorted order
Heapsort: Java implementation

```java
public class HeapTopDown {
    public static void sort(Comparable[] a) {
        // top-down heap construction
        int n = a.length;
        for (int k = 1; k <= n; k++)
            swim(a, k);

        // sortdown
        int k = n;
        while (k > 1) {
            exch(a, 1, k--);
            sink(a, 1, k);
        }
    }

    private static void sink(Comparable[] a, int k, int n) {
        /* as before */
    }

    private static void swim(Comparable[] a, int k) {
        /* as before */
    }

    private static boolean less(Comparable[] a, int i, int j) {
        /* as before */
    }

    private static void exch(Object[] a, int i, int j) {
        /* as before */
    }
}
```

https://algs4.cs.princeton.edu/24pq/HeapTopDown.java.html
Heapsort: mathematical analysis

Proposition. Heapsort uses only $\Theta(1)$ extra space.

Proposition. Heapsort makes $\leq 3n \log_2 n$ compares (and $\leq 2n \log_2 n$ exchanges).
- Top–down heap construction: $\leq n \log_2 n$ compares (and exchanges).
- Sortdown: $\leq 2n \log_2 n$ compares (and $\leq n \log_2 n$ exchanges).

Bottom–up heap construction. [see book] Successively building larger heap from smaller ones.

Proposition. Makes $\leq 2n$ compares (and $\leq n$ exchanges).

![Diagram of a 7-node heap]

- **goal:** 7-node heap
- **3-node heap:** T, M, P, L, E, E, O
Significance. In-place sorting algorithm with $\Theta(n \log n)$ worst-case.

- Mergesort: no, $\Theta(n)$ extra space. \(\rightarrow\) in-place merge possible; not practical
- Quicksort: no, $\Theta(n^2)$ time in worst case. \(\rightarrow\) $\Theta(n \log n)$ worst-case quicksort possible; not practical
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort’s.
- Not stable.
Goal. As fast as quicksort in practice; in place; $\Theta(n \log n)$ worst case.

Introsort.

- Run quicksort.
- Cutoff to heapsort if function–call stack depth exceeds $2 \log_2 n$.
- Cutoff to insertion sort for $n \leq 16$.

In the wild. C++ STL, Microsoft .NET Framework, Go.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th></th>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔️</td>
<td></td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔️</td>
<td>✔️</td>
<td>n</td>
<td>$\frac{1}{4} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>use for small n or partially ordered</td>
</tr>
<tr>
<td>merge</td>
<td>✔️</td>
<td></td>
<td>$\frac{1}{2} n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>$\Theta(n \log n)$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔️</td>
<td></td>
<td>n</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>improves mergesort when pre-existing order</td>
</tr>
<tr>
<td>quick</td>
<td>✔️</td>
<td></td>
<td>$n \log_2 n$</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\Theta(n \log n)$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔️</td>
<td></td>
<td>n</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔️</td>
<td>✔️</td>
<td>$3 n$</td>
<td>$2 n \log_2 n$</td>
<td>$2 n \log_2 n$</td>
<td>$\Theta(n \log n)$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔️</td>
<td>✔️</td>
<td>n</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>

Number of compares to sort an array of n elements
<table>
<thead>
<tr>
<th>image</th>
<th>source</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Room Triage</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Car GPS</td>
<td>Adobe Stock</td>
<td>Education License</td>
</tr>
<tr>
<td>Complete Binary Tree</td>
<td>Shlomit Pinter</td>
<td>by author</td>
</tr>
<tr>
<td>Computer and Supercomputer</td>
<td>New York Times</td>
<td></td>
</tr>
</tbody>
</table>
A final thought