2.4 PRIORITY QUEUES

- APIs
- elementary implementations
- binary heaps
- heapsort
- event-driven simulation

see chapter 6

https://algs4.cs.princeton.edu
2.4 Priority Queues

- APIs
 - elementary implementations
 - binary heaps
 - heapsort
 - event-driven simulation
A **collection** is a data type that stores a group of items.

<table>
<thead>
<tr>
<th>data type</th>
<th>core operations</th>
<th>data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>Push, Pop</td>
<td>singly linked list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resizing array</td>
</tr>
<tr>
<td>queue</td>
<td>Enqueue, Dequeue</td>
<td></td>
</tr>
<tr>
<td>deque</td>
<td>Add–First, Remove–First, Add–Last, Remove–Last</td>
<td>doubly linked list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resizing array</td>
</tr>
<tr>
<td>priority queue</td>
<td>Insert, Delete–Max</td>
<td>binary heap</td>
</tr>
<tr>
<td>symbol table</td>
<td>Put, Get, Delete</td>
<td>binary search tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hash table</td>
</tr>
<tr>
<td>set</td>
<td>Add, Contains, Delete</td>
<td></td>
</tr>
</tbody>
</table>
Priority queue

Collections. Insert and remove items. Which item to remove?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

A sequence of operations on a priority queue

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

triatge in an emergency room (priority = urgency of wound/illness)
Max-oriented priority queue API

Requirement. Must insert keys of the same (generic) type; type must be Comparable.

```
public class MaxPQ<Key extends Comparable<Key>>

    MaxPQ() create an empty priority queue

    void insert(Key v) insert a key

    Key delMax() return and remove a largest key

    Key max() return a largest key

    boolean isEmpty() is the priority queue empty?

    int size() number of keys in the priority queue
```

Note. Duplicate keys allowed; delMax() removes and returns any maximum key.
Min-oriented priority queue API

Analogous to MaxPQ.

```java
public class MinPQ<Key extends Comparable<Key>> {

    MinPQ()
    create an empty priority queue

    void insert(Key v)
    insert a key

    Key delMin()
    return and remove a smallest key

    Key min()
    return a smallest key

    boolean isEmpty()
    is the priority queue empty?

    int size()
    number of keys in the priority queue
}
```

Warmup client. Sort a stream of integers from standard input.
Priority queue: applications

- Event-driven simulation. [customers in a line, colliding particles]
- Discrete optimization. [bin packing, scheduling]
- Artificial intelligence. [A* search]
- Computer networks. [web cache]
- Data compression. [Huffman codes]
- Operating systems. [load balancing, interrupt handling]
- Graph searching. [Dijkstra's algorithm, Prim's algorithm]
- Number theory. [sum of powers]
- Spam filtering. [Bayesian spam filter]
- Statistics. [online median in data stream]

priority = length of best known path

priority = “distance” to goal board

priority = event time
2.4 Priority Queues

- APIs
- elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Unordered list. Store keys in a linked list.

Performance. \textsc{Insert} takes $\Theta(1)$ time; \textsc{Delete-Max} takes $\Theta(n)$ time.
Priority queue: elementary implementations

Ordered array. Store keys in an array in ascending (or descending) order.

<table>
<thead>
<tr>
<th>a[]</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
<td>44</td>
<td>55</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ordered array implementation of a MaxPQ
What are the worst-case running times for \texttt{INSERT} and \texttt{DELETE-MAX}, respectively, in a \texttt{MaxPQ} implemented with an \texttt{ordered array}?

\begin{itemize}
 \item \textbf{A.} $\Theta(1)$ and $\Theta(n)$
 \item \textbf{B.} $\Theta(1)$ and $\Theta(\log n)$
 \item \textbf{C.} $\Theta(\log n)$ and $\Theta(1)$
 \item \textbf{D.} $\Theta(n)$ and $\Theta(1)$
\end{itemize}
Priority queue: implementations cost summary

Elementary implementations. Either **INSERT** or **DELETE-MAX** takes $\Theta(n)$ time.

<table>
<thead>
<tr>
<th>implementation</th>
<th>INSERT</th>
<th>DELETE-MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with n items

Challenge. Implement both **INSERT** and **DELETE-MAX** efficiently.

Solution. “Somewhat-ordered” array.
2.4 PRIORITY QUEUES

- API
- elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees (left and right subtrees).

Complete tree. Every level (except possibly the last) is completely filled; the last level is filled from left to right.

Property. Height of complete binary tree with \(n \) nodes is \(\lfloor \log_2 n \rfloor \).

Pf. As you successively add nodes, height increases (by 1) only when \(n \) is a power of 2.
A complete binary tree in nature (of height 4)
Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered tree.
- Keys in nodes.
- Child’s key no larger than parent’s key.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- No explicit links!

```
a[]  0  1  2  3  4  5  6  7  8  9  10  11
   - T S R P N O A E I H G
```
Consider the node at index \(k \) in a binary heap. Which Java expression produces the index of its parent?

A. \((k - 1) / 2\)
B. \(k / 2\)
C. \((k + 1) / 2\)
D. \(2 * k\)
Proposition. Largest key is at index 1, which is root of binary tree.

Proposition. Can use array indices to move up or down tree.
- Parent of key at index \(k \) is at index \(k/2 \).
- Children of key at index \(k \) are at indices \(2k \) and \(2k + 1 \).

```
 0 1 2 3 4 5 6 7 8 9 10 11
```

```
T S R P N O A E I H G
```
Binary heap demo

Insert. Add node at end, then *swim* it up.

Remove the maximum. Exchange root with node at end, then *sink* it down.

heap ordered

```
T  P  R  N  H  O  A  E  I  G
```

```
T
 |
 ---
P
 |   
 N   H
 |
 ---
E   I
 |   
 G
```

```
T
 |
 ---
R
 |   
 O
 |
 ---
A
```
Binary heap: promotion

Scenario. Key in node becomes *larger* than key in parent’s node.

To eliminate the violation:
- Exchange key in child node with key in parent node.
- Repeat until heap order restored.

```
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

Peter principle. Node promoted to level of incompetence.
Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.

Cost. At most $1 + \log_2 n$ compares.

```java
public void insert(Key x) {
    pq[++n] = x;
    swim(n);
}
```
Binary heap: demotion

Scenario. Key in node becomes *smaller* than one (or both) of keys in childrens' nodes.

To eliminate the violation:

- Exchange key in parent node with key in larger child’s node.
- Repeat until heap order restored.

```java
private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down.

Cost. At most $2 \log_2 n$ compares.

```java
public Key delMax() {
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = null;
    return max;
}
```

prevent loitering
public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] a;
 private int n;

 public MaxPQ(int capacity)
 {
 a = (Key[]) new Comparable[capacity+1];
 }

 public void insert(Key key) // see previous code
 public Key delMax() // see previous code

 private void swim(int k) // see previous code
 private void sink(int k) // see previous code

 private boolean less(int i, int j)
 {
 return a[i].compareTo(a[j]) < 0;
 }

 private void exch(int i, int j)
 {
 Key temp = a[i]; a[i] = a[j]; a[j] = temp;
 }
}

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html
Goal. Implement both \texttt{INSERT} and \texttt{DELETE-MAX} in $\Theta(\log n)$ time.

<table>
<thead>
<tr>
<th>implementation</th>
<th>\texttt{INSERT}</th>
<th>\texttt{DELETE-MAX}</th>
<th>\texttt{MAX}</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
</tbody>
</table>

Order of growth of running time for priority queue with n items
Binary heap: considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace `less()` with `greater()`.
- Implement `greater()`.

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.
 can implement efficiently with `sink()` and `swim()`
 [stay tuned for Prim/Dijkstra]

Immutability of keys.
- Assumption: client does not change keys while they’re on the PQ.
- Best practice: use immutable keys.
 immutable in Java: String, Integer, Double, ...
Goal. Design an efficient data structure to support the following API:

- **INSERT:** insert a key.
- **DELETE-MAX:** return and remove a largest key.
- **SAMPLE:** return a random key.
- **DELETE-RANDOM:** return and remove a random key.
Goal. Delete a random key from a binary heap in $O(\log n)$ time.
Multiway heaps

Multiway heaps.

• Complete d–way tree.
• Child’s key no larger than parent’s key.

Property. Height of complete d–way tree on n nodes is $\sim \log_d n$.

Property. Children of key at index k at indices $3k - 1$, $3k$, and $3k + 1$; parent at $\left\lceil (k + 1) / 3 \right\rceil$.

3–way heap
In the worst case, how many compares to **INSERT** and **DELETE-MAX** in a d-way heap as function of both n and d?

A. $\sim \log_d n$ and $\sim \log_d n$

B. $\sim \log_d n$ and $\sim d \log_d n$

C. $\sim d \log_d n$ and $\sim \log_d n$

D. $\sim d \log_d n$ and $\sim d \log_d n$
Priority queue: implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>INSERT</th>
<th>DELETE-MAX</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>log (n)</td>
<td>log (n)</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>log(_d) (n)</td>
<td>d log(_d) (n)</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>log (n)</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

sweet spot: \(d = 4\)
see COS 423
why impossible?

order–of–growth of running time for priority queue with \(n\) items
2.4 PRIORITY QUEUES

- APIs
- elementary implementations
- binary heaps
- heapsort
- event-driven simulation

https://algs4.cs.princeton.edu
What are the properties of this sorting algorithm?

```java
public void sort(String[] a)
{
    int n = a.length;
    MinPQ<String> pq = new MinPQ<String>();

    for (int i = 0; i < n; i++)
        pq.insert(a[i]);

    for (int i = 0; i < n; i++)
        a[i] = pq.delMin();
}
```

A. \(\Theta(n \log n) \) compares in the worst case.

B. In-place.

C. Stable.

D. *All of the above.*
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
 we'll assume 1-indexed for now
- Phase 1 (heap construction): build a max-oriented heap.
- Phase 2 (sortdown): repeatedly remove the maximum key.
 a version of selection sort
Heapsort: top-down heap construction

Phase 1 (top-down heap construction).

- View input array as complete binary tree.
- Insert keys into a max heap, one at a time.

before inserting X

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>S</td>
<td>R</td>
<td>O</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
</tbody>
</table>

after inserting X

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>S</td>
<td>T</td>
<td>O</td>
<td>E</td>
<td>R</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
</tbody>
</table>

max heap

untouched

swim(6)
Heapsort: sortdown

Phase 2 (sortdown).

- Remove the maximum, one at a time.
- Leave in array (instead of nulling out).

before deleting P

```
    O
   /|
  P  L
 /|
M E A
```

after deleting P

```
    O
   /|
  M  L
 /|
A E P
```

max heap final sorted order

max heap final sorted order

exch(1, 7)
sink(1)
public class HeapTopDown
{
 public static void sort(Comparable[] a)
 {
 // top-down heap construction
 int n = a.length;
 for (int k = 1; k <= n; k++)
 swim(a, k);

 // sortdown
 int k = n;
 while (k > 1)
 {
 exch(a, 1, k--);
 sink(a, 1, k);
 }
 }
}

private static void sink(Comparable[] a, int k, int n)
{ /* as before */ }

private static void swim(Comparable[] a, int k)
{ /* as before */ }

private static boolean less(Comparable[] a, int i, int j)
{ /* as before */ }

private static void exch(Object[] a, int i, int j)
{ /* as before */ }

...
Heapsort: mathematical analysis

Proposition. Heapsort uses only $\Theta(1)$ extra space.

Proposition. Heapsort makes $\leq 3n \log_2 n$ compares (and $\leq 2n \log_2 n$ exchanges).
- Top–down heap construction: $\leq n \log_2 n$ compares (and exchanges).
- Sortdown: $\leq 2n \log_2 n$ compares (and $\leq n \log_2 n$ exchanges).

Bottom–up heap construction. [see book] Successively building larger heap from smaller ones.

Proposition. Makes $\leq 2n$ compares (and $\leq n$ exchanges).

Diagram:

- Goal: 7-node heap
- 3-node heap
- Successively building larger heap from smaller ones

Heapsort: context

Significance. In-place sorting algorithm with $\Theta(n \log n)$ worst-case.

- Mergesort: no, $\Theta(n)$ extra space. \(\leftarrow\) in-place merge possible; not practical
- Quicksort: no, $\Theta(n^2)$ time in worst case. \(\leftarrow\) $\Theta(n \log n)$ worst-case quicksort possible; not practical
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, **but:**

- Inner loop longer than quicksort’s.
- Not stable.
Introsort

Goal. As fast as quicksort in practice; in place; $\Theta(n \log n)$ worst case.

Introsort.

- Run quicksort.
- Cutoff to heapsort if function-call stack depth exceeds $2 \log_2 n$.
- Cutoff to insertion sort for $n \leq 16$.

In the wild. C++ STL, Microsoft .NET Framework, Go.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔️</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔️✔️</td>
<td>n</td>
<td>$\frac{1}{4} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>use for small n or partially ordered</td>
</tr>
<tr>
<td>merge</td>
<td>✔️</td>
<td>$\frac{1}{2} n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>$\Theta(n \log n)$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔️</td>
<td>n</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>improves mergesort when pre-existing order</td>
</tr>
<tr>
<td>quick</td>
<td>✔️</td>
<td>$n \log_2 n$</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\Theta(n \log n)$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔️</td>
<td>n</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔️</td>
<td>$3 n$</td>
<td>$2 n \log_2 n$</td>
<td>$2 n \log_2 n$</td>
<td>$\Theta(n \log n)$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔️✔️</td>
<td>n</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>

Number of compares to sort an array of n elements.