2.3 QUICKSORT

- quicksort
- selection
- duplicate keys
- system sorts

https://algs4.cs.princeton.edu
Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort. [last lecture]

Quicksort. [this lecture]
A brief history

Tony Hoare.

- Invented quicksort in 1960 to translate Russian into English.
- Later learned Algol 60 (and recursion) to implement it.

Bob Sedgewick.

- Refined and popularized quicksort in 1970s.
- Analyzed many versions of quicksort.
2.3 **QUICKSORT**

- quicksort
- selection
- duplicate keys
- system sorts
Quicksort overview

Step 1. Shuffle the array.

Step 2. Partition the array so that, for some index j:
- Entry $a[j]$ is in place. "pivot" or "partitioning item"
- No larger entry to the left of j.
- No smaller entry to the right of j.

Step 3. Sort each subarray recursively.
QuickSort partitioning demo

Repeat until pointers cross:

- Scan \(i\) from left to right so long as \(a[i] < a[lo]\).
- Scan \(j\) from right to left so long as \(a[j] > a[lo]\).
- Exchange \(a[i]\) with \(a[j]\).

\[\begin{array}{cccccccccccccc}
K & R & A & T & E & L & E & P & U & I & M & Q & C & X & O & S \\
\uparrow & \uparrow \\
lo & i & \text{stop i scan because } a[i] \geq a[lo] & j
\end{array}\]
Quicksort partitioning demo

Repeat until pointers cross:

• Scan i from left to right so long as $a[i] < a[lo]$.
• Scan j from right to left so long as $a[j] > a[lo]$.
• Exchange $a[i]$ with $a[j]$.

The music of quicksort partitioning (by Brad Lyon)

https://learnforeverlearn.com/pivot_music
private static int partition(Comparable[] a, int lo, int hi) {
 Comparable p = a[lo];
 int i = lo, j = hi+1;
 while (true) {
 while (less(a[++i], p))
 if (i == hi) break;
 while (less(p, a[--j]))
 if (j == lo) break;
 if (i >= j) break;
 exch(a, i, j);
 }
 exch(a, lo, j);
 return j;
}

https://algs4.cs.princeton.edu/23quick/Quick.java.html
QuickSort: quiz 2

In the worst case, how many compares and exchanges does partition() make to partition a subarray of length \(n \)?

A. \(\sim \frac{1}{2} n \) and \(\sim \frac{1}{2} n \)

B. \(\sim \frac{1}{2} n \) and \(\sim n \)

C. \(\sim n \) and \(\sim \frac{1}{2} n \)

D. \(\sim n \) and \(\sim n \)
Quicksort: Java implementation

```java
public class Quick {

    private static int partition(Comparable[] a, int lo, int hi) {
        /* see previous slide */
    }

    public static void sort(Comparable[] a) {
        StdRandom.shuffle(a);
        sort(a, 0, a.length - 1);
    }

    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) return;
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
        sort(a, j+1, hi);
    }
}

https://algs4.cs.princeton.edu/23quick/Quick.java.html
```
Quicksort trace

Quicksort trace (array contents after each partition)

<table>
<thead>
<tr>
<th>lo</th>
<th>j</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Initial values

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>U</td>
<td>I</td>
<td>C</td>
<td>K</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>K</td>
<td>R</td>
<td>A</td>
<td>T</td>
<td>E</td>
<td>L</td>
<td>E</td>
<td>P</td>
<td>U</td>
<td>I</td>
<td>M</td>
<td>Q</td>
<td>C</td>
<td>X</td>
<td>O</td>
<td>S</td>
</tr>
</tbody>
</table>

Random shuffle

<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>I</td>
<td>E</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>P</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>M</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No partition for subarrays of size 1

<table>
<thead>
<tr>
<th>6</th>
<th>6</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>P</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>M</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>9</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>T</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>U</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>T</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>U</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>T</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>U</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>S</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>12</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>R</td>
<td>Q</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>11</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>15</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result

A C E E I K L M O P Q R S T U X
Quicksort animation

50 random items

https://www.toptal.com/developers/sorting-algorithms/quick-sort
Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but it is not worth the cost.

Loop termination. Terminating the loop (when pointers cross) is more subtle than it appears.

Equal keys. Handling duplicate keys is trickier than it appears. [stay tuned]

Preserving randomness. Shuffling is needed for performance guarantee.
Equivalent alternative. Pick a random pivot in each subarray.
Quicksort: empirical analysis

Running time estimates:
- Home PC executes 10^8 compares/second.
- Supercomputer executes 10^{12} compares/second.

<table>
<thead>
<tr>
<th></th>
<th>insertion sort (n^2)</th>
<th>mergesort ($n \log n$)</th>
<th>quicksort ($n \log n$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>thousand</td>
<td>million</td>
<td>billion</td>
</tr>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1 week</td>
</tr>
</tbody>
</table>

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.
Why is quicksort typically faster than mergesort in practice?

A. Fewer compares.
B. Fewer array accesses.
C. Both A and B.
D. Neither A nor B.
Worst case. Number of compares is $\sim \frac{1}{2} n^2$.

The table illustrates the partitioning process during a random shuffle of the quicksort algorithm.
Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} n^2$.

<table>
<thead>
<tr>
<th>lo</th>
<th>j</th>
<th>hi</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

after random shuffle

Good news. Worst case for randomized quicksort is mostly irrelevant in practice.

- Exponentially small chance of occurring.

 (unless bug in shuffling or no shuffling)

- More likely that computer is struck by lightning bolt during execution.
QuickSort: probabilistic analysis

Proposition. The expected number of compares C_n to quicksort an array of n distinct keys is $\sim 2n \ln n$ (and the number of exchanges is $\sim \frac{1}{3} n \ln n$).

Recall. Any algorithm with the following structure takes $\Theta(n \log n)$ time.

```java
public static void f(int n) {
    if (n == 0) return;
    f(n/2); // solve two problems
    f(n/2); // of half the size
    linear(n); // do $\Theta(n)$ work
}
```

Intuition. Each partitioning step divides the problem into two subproblems, each of approximately one-half the size.

\[\text{probabilistically “close enough”} \]
Proposition. The expected number of compares \(C_n \) to quicksort an array of \(n \) distinct keys is \(\sim 2n \ln n \) (and the number of exchanges is \(\sim \frac{1}{3} n \ln n \)).

Pf. \(C_n \) satisfies the recurrence \(C_0 = C_1 = 0 \) and for \(n \geq 2 \):

\[
C_n = (n+1) + \left(\frac{C_0 + C_{n-1}}{n} \right) + \left(\frac{C_1 + C_{n-2}}{n} \right) + \ldots + \left(\frac{C_{n-1} + C_0}{n} \right)
\]

- Multiply both sides by \(n \) and collect terms:

\[
nC_n = n(n+1) + 2(C_0 + C_1 + \ldots + C_{n-1})
\]

- Subtract from this equation the same equation for \(n - 1 \):

\[
nC_n - (n - 1)C_{n-1} = 2n + 2C_{n-1}
\]

- Rearrange terms and divide by \(n(n+1) \):

\[
\frac{C_n}{n+1} = \frac{C_{n-1}}{n} + \frac{2}{n+1}
\]
Quicksort: probabilistic analysis

- Repeatedly apply previous equation:

\[
\frac{C_n}{n + 1} = \frac{C_{n-1}}{n} + \frac{2}{n + 1}
\]

\[
= \frac{C_{n-2}}{n - 1} + \frac{2}{n} + \frac{2}{n + 1}
\]

\[
= \frac{C_{n-3}}{n - 2} + \frac{2}{n - 1} + \frac{2}{n} + \frac{2}{n + 1}
\]

\[
= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \ldots + \frac{2}{n + 1}
\]

- Approximate sum by an integral:

\[
C_n = 2(n + 1) \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{n + 1} \right)
\]

\[
\sim 2(n + 1) \int_3^{n+1} \frac{1}{x} \, dx
\]

- Finally, the desired result:

\[
C_n \sim 2(n + 1) \ln n \approx 1.39 n \lg n
\]
Quicksort properties

Quicksort analysis summary.

- Expected number of compares is $\sim 1.39 n \log_2 n$.
 [standard deviation is $\sim 0.65 n$]
- Expected number of exchanges is $\sim 0.23 n \log_2 n$.
 \(\textbf{much less than mergesort} \)
- Min number of compares is $\sim n \log_2 n$.
 \(\textbf{never less than mergesort} \)
- Max number of compares is $\sim \frac{1}{2} n^2$.
 \(\textbf{but never happens} \)

Context. Quicksort is a (Las Vegas) randomized algorithm.

- Guaranteed to be correct.
- Running time depends on outcomes of random coin flips (shuffle).
Quicksort properties

Proposition. Quicksort is an *in-place* sorting algorithm.

- Partitioning: $\Theta(1)$ extra space.
- Function–call stack: $\Theta(\log n)$ extra space (with high probability).

Proposition. Quicksort is *not* stable.

Pf. [by counterexample]

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>A_1</td>
<td>B_1</td>
<td>C_2</td>
<td>C_1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>B_1</td>
<td>C_1</td>
<td>C_2</td>
<td>A_1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>B_1</td>
<td>A_1</td>
<td>C_2</td>
<td>C_1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>B_1</td>
<td>C_1</td>
<td>C_2</td>
<td>C_1</td>
</tr>
</tbody>
</table>

can guarantee $\Theta(\log n)$ *depth by recurring on smaller subarray before larger subarray (but this involves using an explicit stack)*
Quicksort: practical improvements

Insertion sort small subarrays.
 - Even quicksort has too much overhead for tiny subarrays.
 - Cutoff to insertion sort for ≈ 10 items.

```java
private static void sort(Comparable[] a, int lo, int hi) {
    if (hi <= lo + CUTOFF - 1) {
        Insertion.sort(a, lo, hi);
        return;
    }

    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}
```
Quicksort: practical improvements

Median of sample.

- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median–of–3 (random) items.

\[\sim \frac{12}{7} n \ln n \text{ compares} \quad (14\% \text{ fewer}) \]
\[\sim \frac{12}{35} n \ln n \text{ exchanges} \quad (3\% \text{ more}) \]

```java
private static void sort(Comparable[] a, int lo, int hi) {
    if (hi <= lo) return;

    int median = medianOf3(a, lo, mid + (hi - lo) / 2, hi);
    swap(a, lo, median);

    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}
```
2.3 QUICKSORT

- quicksort
- selection
- duplicate keys
- system sorts
Selection

Goal. Given an array of n items, find item of rank k.

Ex. Min ($k=0$), max ($k=n-1$), median ($k=n/2$).

Applications.
- Order statistics.
- Find the “top k.”

Use complexity theory as a guide.
- Easy $O(n \log n)$ algorithm. How?
- Easy $O(n)$ algorithm for $k=0$ or 1. How?
- Easy $\Omega(n)$ lower bound. Why?

Which is true?
- $O(n)$ algorithm? [is there a linear‐time algorithm?]
- $\Omega(n \log n)$ lower bound? [is selection as hard as sorting?]
Quickselect demo

Partition array so that for some j:
- Entry $a[j]$ is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; stop when j equals k.

select element of rank $k = 5$

```
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
50 21 28 65 39 59 56 22 95 12 90 53 32 77 33
```

$k = 5$
Quickselect

Partition array so that for some j:
• Entry $a[j]$ is in place.
• No larger entry to the left of j.
• No smaller entry to the right of j.

Repeat in one subarray, depending on j; stop when j equals k.

```java
public static Comparable select(Comparable[] a, int k) {
    StdRandom.shuffle(a);
    int lo = 0, hi = a.length - 1;
    while (hi > lo) {
        int j = partition(a, lo, hi);
        if (j < k) lo = j + 1;
        else if (j > k) hi = j - 1;
        else return a[k];
    }
    return a[k];
}
```
Quickselect: probabilistic analysis

Proposition. The expected number of compares C_n to quickselect the item of rank k in an array of length n is $\Theta(n)$.

Intuition. Each partitioning step approximately halves the length of the array.

Recall. Any algorithm with the following structure takes $\Theta(n)$ time.

```java
public static void f(int n) {
    if (n == 0) return;
    linear(n);
    f(n/2);  \[\text{solve one subproblem of half the size}\]
    do $\Theta(n)$ work
}
```

Careful analysis yields: $C_n \sim 2n + 2k \ln(n/k) + 2(n-k) \ln(n/(n-k))$

\[\leq (2 + 2 \ln 2) n \]

\[\approx 3.38 n \quad \text{max occurs for median (}k = n/2\text{)}\]
Theoretical context for selection

Q. Compare-based selection algorithm that makes $\Theta(n)$ compares in the worst case?

A. Yes! [ingenious divide-and-conquer]

\[T(n) = T(n/5) + T(7n/10) + \Theta(n) \]

Caveat. Constants are high \Rightarrow not used in practice.

Use theory as a guide.

- Open problem: practical algorithm that makes $\Theta(n)$ compares in the worst case.
- Until one is discovered, use quickselect (if you don’t need a full sort).
2.3 QUICKSORT

- quicksort
- selection
- duplicate keys
- system sorts
Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

```
Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54
```
When partitioning, how to handle keys equal to pivot?

A. \[\begin{array}{c}
\text{scan until } > P \\
P \ G \ E \ P \ A \ Q \ B \ P \ C \ O \ U \ P \ Z \ S
\end{array} \]

B. \[\begin{array}{c}
\text{scan until } \geq P \\
P \ G \ E \ P \ A \ Q \ B \ P \ C \ O \ U \ P \ Z \ S
\end{array} \]

C. Either A or B.
War story (system sort in C)

Bug. A qsort() call in C that should have taken seconds was taking minutes to sort a random array of 0s and 1s.

Why is qsort() so slow?

skip over equal keys

stop scan on equal keys
Duplicate keys: partitioning strategies

Bad. Don’t stop scans on equal keys.

\[\Theta(n^2) \text{ compares when all keys equal} \]

\[
\begin{array}{cccccccc}
\end{array}
\]

Good. Stop scans on equal keys.

\[\sim n \log_2 n \text{ compares when all keys equal} \]

\[
\begin{array}{cccccccc}
\end{array}
\]

Better. Put all equal keys in place. How?

\[\sim n \text{ compares when all keys equal} \]

\[
\begin{array}{cccccccc}
\end{array}
\]
Problem. [Edsger Dijkstra] Given an array of n buckets, each containing a red, white, or blue pebble, sort them by color.

Operations allowed.

- **swap**(i, j): swap the pebble in bucket i with the pebble in bucket j.
- **getColor**(i): determine the color of the pebble in bucket i.

Performance requirements.

- Exactly n calls to **getColor**.
- At most n calls to **swap**.
- $\Theta(1)$ extra space.
3-way partitioning

Goal. Use pivot $p = a[lo]$ to partition array into three parts so that:

- **Red:** smaller entries to the left of lt.
- **White:** equal entries between lt and gt.
- **Blue:** larger entries to the right of gt.

![Diagram of 3-way partitioning](image)
Dijkstra’s 3-way partitioning algorithm: demo

- Let $p = a[lo]$ be pivot.
- Scan i from left to right and compare $a[i]$ to p.
 - less: exchange $a[i]$ with $a[lt]$; increment both lt and i
 - greater: exchange $a[i]$ with $a[gt]$; decrement gt
 - equal: increment i

\[
\begin{array}{c|ccccccccc}
\text{lo} & \text{lt} & i & \text{gt} & \text{hi} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\begin{array}{cccccccccc}
P_1 & D & B & X & W & P_2 & P_3 & V & P_4 & A & P_5 & C & Y & Z
\end{array}
\end{array}
\]
Dijkstra’s 3-way partitioning algorithm: demo

- Let $p = a[lo]$ be pivot.
- Scan i from left to right and compare $a[i]$ to p.
 - less: exchange $a[i]$ with $a[lt]$; increment both lt and i
 - greater: exchange $a[i]$ with $a[gt]$; decrement gt
 - equal: increment i
private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 Comparable p = a[lo];

 int lt = lo, gt = hi;
 int i = lo + 1;
 while (i <= gt) {
 int cmp = a[i].compareTo(p);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }

 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}
What is the worst-case number of compares to 3-way quicksort an array of length n containing only 7 distinct values?

A. $\Theta(n)$

B. $\Theta(n \log n)$

C. $\Theta(n^2)$

D. $\Theta(n^7)$
Sorting summary

<table>
<thead>
<tr>
<th></th>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔️</td>
<td></td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔️</td>
<td>✔️</td>
<td>n</td>
<td>$\frac{1}{4} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>use for small n or partially sorted arrays</td>
</tr>
<tr>
<td>merge</td>
<td>✔️</td>
<td></td>
<td>$\frac{1}{2} \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>$\Theta(n \log n)$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔️</td>
<td></td>
<td>n</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>improves mergesort when pre-existing order</td>
</tr>
<tr>
<td>quick</td>
<td>✔️</td>
<td></td>
<td>$n \log_2 n$</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\Theta(n \log n)$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔️</td>
<td>✔️</td>
<td>n</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>?</td>
<td>✔️</td>
<td>✔️</td>
<td>n</td>
<td>$n \log_2 n$</td>
<td>$n \log_2 n$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>

number of compares to sort an array of n elements
2.3 Quicksort

- quicksort
- selection
- duplicate keys
- system sorts
Sorting algorithms are essential in a broad variety of applications:

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS feed in reverse chronological order.

- Find the median.
- Identify statistical outliers.
- Binary search in a database.
- Find duplicates in a mailing list.

- Data compression.
- Computer graphics.
- Computational biology.
- Load balancing on a parallel computer.

. . .
Bentley–McIlroy quicksort.

- Cutoff to insertion sort for small subarrays.
- Pivot selection: median of 3 or Tukey’s ninther.
- Partitioning scheme: Bentley–McIlroy 3-way partitioning.

In the wild. C, C++, Java 6, …
Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Hello All,

I'd like to share with you new Dual-Pivot Quicksort which is faster than the known implementations (theoretically and experimental). I'd like to propose to replace the JDK's Quicksort implementation by new one.

...

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner:

1. Pick an elements P1, P2, called pivots from the array.
2. Assume that P1 <= P2, otherwise swap it.
3. Reorder the array into three parts: those less than the smaller pivot, those larger than the larger pivot, and in between are those elements between (or equal to) the two pivots.
4. Recursively sort the sub-arrays.

The invariant of the Dual-Pivot Quicksort is:

```
[ < P1 | P1 <= & <= P2 } > P2 ]
```

...
Replace quicksort in java.util.Arrays with new dual-pivot quicksort

Date: Thu, 29 Oct 2009 11:19:39 +0000
Subject: Replace quicksort in java.util.Arrays with dual-pivot implementation

Changeset: b05abb410c52
Author: alamb
Date: 2009-10-29 11:18 +0000
URL: http://hg.openjdk.java.net/jdk7/tl/jdk/rev/b05abb410c52

6880672: Replace quicksort in java.util.Arrays with dual-pivot implementation
Reviewed-by: jjb
Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com, jbtentley at avaya.com

! src/share/classes/java/util.Arrays.java
+ src/share/classes/java/util/DualPivotQuicksort.java
Dual-pivot quicksort

Use two pivots p_1 and p_2 and partition into three subarrays:

- Keys less than p_1.
- Keys between p_1 and p_2.
- Keys greater than p_2.

<table>
<thead>
<tr>
<th>$< p_1$</th>
<th>p_1</th>
<th>$\geq p_1$ and $\leq p_2$</th>
<th>p_2</th>
<th>$> p_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>lo</td>
<td>lt</td>
<td>gt</td>
<td>hi</td>
<td></td>
</tr>
</tbody>
</table>

Recursively sort three subarrays (skip middle subarray if $p_1 = p_2$).

* degenerates to Dijkstra's 3-way partitioning

In the wild. Java 8, Java 11, Python unstable sort, Android, …
Premise. Suppose you are the lead architect of a new programming language.

Q. Which sorting algorithm(s) would you use for the system sort? Defend your answer.
Arrays.sort() and Arrays.parallelSort().
- Has one method for Comparable objects.
- Has an overloaded method for each primitive type.
- Has an overloaded method for use with a Comparator.
- Has overloaded methods for sorting subarrays.

Algorithms.
- Timsort for reference types.
- Dual-pivot quicksort for primitive types.
 - Parallel mergesort for Arrays.parallelSort().

Q. Why use different algorithms for primitive and reference types?

Bottom line. Use the system sort!
<table>
<thead>
<tr>
<th>image</th>
<th>source</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.A.R. Hoare</td>
<td>Wikimedia</td>
<td>CC BY-SA 2.0 FR</td>
</tr>
<tr>
<td>Bob Sedgewick</td>
<td>sedgewick.io</td>
<td>by author</td>
</tr>
<tr>
<td>Music of Quicksort</td>
<td>Brad F. Lyon</td>
<td></td>
</tr>
<tr>
<td>Coin Toss</td>
<td>clipground.com</td>
<td>CC BY 4.0</td>
</tr>
<tr>
<td>Apocalypse Network Skin</td>
<td>istyles.com</td>
<td></td>
</tr>
<tr>
<td>Harmonic Integral</td>
<td>Wikimedia</td>
<td>public domain</td>
</tr>
<tr>
<td>Programmer Icon</td>
<td>Jaime Botero</td>
<td>public domain</td>
</tr>
<tr>
<td>Dutch National Flag</td>
<td>Adobe Stock</td>
<td>Education License</td>
</tr>
<tr>
<td>CS@Princeton T-Shirt</td>
<td>Ruth Dannenfelser*20</td>
<td></td>
</tr>
</tbody>
</table>
A final thought