2.2 Mergesort

- mergesort
- bottom-up mergesort
- sorting complexity
https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in our computational infrastructure.

Mergesort. [this lecture]

Quicksort. [next lecture]

2.2 Mergesort

- mergesort
\rightarrow bottom-up mergesort
- sorting complexity

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Mergesort overview

Basic plan.

- Divide array into two halves.
- Recursively sort left half.
- Recursively sort right half.
- Merge two sorted halves.

input	M	E	R	G	E	S	O	R	T	E	X	A	M	P	L	E
sort left half	E	E	G	M	O	R	R	S	T	E	X	A	M	P	L	E
sort right half	E	E	G	M	O	R	R	S	A	E	E	L	M	P	T	X
merge results	A	E	E	E	E	G	L	M	M	O	P	R	R	S	T	X

Abstract in-place merge demo

Goal. Given two sorted subarrays $\mathrm{a}[1 \mathrm{o}]$ to $\mathrm{a}[\mathrm{mid}]$ and $\mathrm{a}[\mathrm{mid}+1]$ to a[hi], replace with sorted subarray a[1o] to a[hi].

Merging: Java implementation

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
for (int k = lo; k <= hi; k++)
    copy
    aux[k] = a[k];
int i = lo, j = mid+1;
merge
for (int k = lo; k <= hi; k++) {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
}
```

\}

	10		i	mid		j		hi		
aux[]	A	G	L	O	R	H	I	M	S	T

a[]
A G H I L M

Mergesort quiz 1

How many calls does merge() make to less() when merging two sorted subarrays, each of length $n / 2$, into a sorted array of length n ?
A. $\sim 1 / 4 n$ to $\sim 1 / 2 n$
B. $\quad \sim 1 / 2 n$
C. $\quad \sim 1 / 2 n$ to $\sim n$
D. $\sim n$
merging two sorted arrays, each of length n/2
$\begin{array}{llllllll}a_{0} & a_{1} & a_{2} & a_{3} & b_{0} & b_{1} & b_{2} & b_{3}\end{array}$

Mergesort: Java implementation

```
public class Merge {
    private static void merge(...) {
        /* as before */
    }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
        if (hi <= 1o) return;
        int mid = 1o + (hi - 1o) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparab7e[] a) {
        Comparable[] aux = new Comparable[a.length]; « avoid allocating arrays
        sort(a, aux, 0, a.length - 1);
    }
}
```


Mergesort quiz 2

Which subarray lengths will arise when mergesorting an array of length 12 ?
A. $\quad\{1,2,3,4,6,8,12\}$
B. $\{1,2,3,6,12\}$
C. $\quad\{1,2,4,8,12\}$
D. $\{1,3,6,9,12\}$

Mergesort: animation

50 random items

A algorithm position
in order
current subarray
not in order
https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: animation

50 reverse-sorted items

A algorithm position
in order
current subarray
not in order
https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: empirical analysis

Running time estimates:

- Laptop executes 10^{8} compares/second
- Supercomputer executes 10^{12} compares/second.

	insertion sort (n^{2})			mergesort (n log n)		
computer	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

Bottom line. Good algorithms are better than supercomputers.

Mergesort analysis: number of compares

Proposition. Mergesort uses $\leq n \log _{2} n$ compares to sort any array of length n.

Pf sketch. The number of compares $C(n)$ to mergesort any array of length n satisfies the recurrence:

proposition holds even when n is not a power of 2 (but analysis cleaner in this case)

For simplicity. Assume n is a power of 2 and solve this recurrence:
$D(n)=2 D(n / 2)+n$, for $n>1$, with $D(1)=0$.

Divide-and-conquer recurrence

Proposition. If $D(n)$ satisfies $D(n)=2 D(n / 2)+n$ for $n>1$, with $D(1)=0$, then $D(n)=n \log _{2} n$.

Pf by picture. [assuming n is a power of 2]

Mergesort analysis: number of array accesses

Proposition. Mergesort makes $\Theta(n \log n)$ array accesses.

Pf sketch. The number of array accesses $A(n)$ satisfies the recurrence:

$$
A(n)=A([n / 2\rceil)+A(\lfloor n / 2\rfloor)+\Theta(n) \text { for } n>1 \text {, with } A(1)=0 \text {. }
$$

Key point. Any algorithm with the following structure takes $\Theta(n \log n)$ time:

```
public static void f(int n) {
    if (n == 0) return;
    f(n/2);
    f(n/2); 
    linear(n); \longleftarrow do \Theta(n) work
}
```

Famous examples. FFT, closest pair, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: memory

Proposition. Mergesort uses $\Theta(n)$ extra space.
Pf. The length of the aux[] array is n, to handle the last merge.
two sorted subarrays

$$
\begin{array}{llllllllllllllllllll}
A & C & D & G & H & I & M & N & U & V & B & E & F & J & O & P & Q & R & S & T
\end{array}
$$

merged result

$$
\begin{array}{llllllllllllllllllll}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \mathrm{I} & \mathrm{~J} & \mathrm{M} & \mathrm{~N} & \mathrm{O} & \mathrm{P} & \mathrm{Q} & \mathrm{R} & \mathrm{~S} & \mathrm{~T} & \mathrm{U} & \mathrm{~V}
\end{array}
$$

essentially negligible

Def. A sorting algorithm is in-place if it uses $\Theta(\log n)$ extra space (or less).
Ex. Insertion sort and selection sort.

Challenge 1 (not hard). Get by with an aux[] array of length $\sim 1 / 2 n$ (instead of n).
Challenge 2 (very hard). In-place merge. [Kronrod 1969]

Consider the following modified version of mergesort.
How much total memory is allocated over all recursive calls?
A. $\Theta(n)$
B. $\Theta(n \log n)$
C. $\Theta\left(n^{2}\right)$
D. $\Theta\left(2^{n}\right)$

```
private static void sort(Comparable[] a, int lo, int hi) {
    if (hi <= 1o) return;
    int mid = 1o + (hi - 1o) / 2;
    int n = hi - lo + 1;
    Comparable[] aux = new Comparable[n];
    sort(a, lo, mid);
    sort(a, mid+1, hi);
    merge(a, aux, 1o, mid, hi);
}
```


Mergesort: practical improvement

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.

```
private static void sort(...) {
    if (hi <= 1o + CUTOFF - 1) {
        Insertion.sort(a, lo, hi);
        return;
    }
    int mid = 10 + (hi - 1o) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
```


2.2 Mergesort

- mergesort
- bottom-up mergesort

Algorithms

Robert Sedgewick | Kevin Wayne

- sorting complexity
https://algs4.cs.princeton.edu

Bottom-up mergesort

Basic plan.

- Pass through array, merging subarrays of length 1.
- Repeat for subarrays of length $2,4,8, \ldots$

$$
\left.\begin{array}{l}
\operatorname{sz=1} \\
\operatorname{merge}(a, ~ a u x, \\
\operatorname{merge}(a, ~ a u x, \\
\operatorname{merge}(a, ~ a u x, ~ \\
\operatorname{merge}(a, ~ a u x, \\
\operatorname{merge}(a, ~ \\
\operatorname{merge}, ~ \\
\operatorname{mer}, \\
\operatorname{merge}(a, ~ a u x, ~ \\
\operatorname{merge}, \\
\hline
\end{array}\right)
$$

$$
s z=2
$$

$$
\text { merge (a, aux, } 0,1,3 \text {) }
$$

merge(a, aux, 4, 5, 7)

$$
\operatorname{merge}(a, \text { aux, } 8,9,11)
$$

merge(a, aux, 12, 13, 15)

$$
s z=4
$$

$$
\operatorname{merge}(a, \text { aux, } 0,3,7)
$$

$$
\text { merge(a, aux, } 8,11,15)
$$

$\mathrm{sz}=8$
merge(a, aux, 0, 7, 15)

Bottom-up mergesort: Java implementation

```
public class MergeBU
    private static void merge(...) {
        /* as before */
    }
    public static void sort(Comparable[] a) {
        int n = a.length;
        Comparable[] aux = new Comparable[n];
        for (int sz = 1; sz < n; sz = sz+sz)
            for (int 1o = 0; 10 < n-sz; 1o += sz+sz)
            merge(a, aux, 1o, 10+sz-1, Math.min(10+sz+sz-1, n-1));
    }
}
mid
hi
```

Proposition. At most $n \log _{2} n$ compares; $\Theta(n)$ extra space.
Bottom line. Simple and non-recursive version of mergesort.

Mergesort quiz 4

Which is faster in practice for $\boldsymbol{n}=\mathbf{2}^{\mathbf{2 0}}$, top-down mergesort or bottom-up mergesort?
A. Top-down (recursive) mergesort.
B. Bottom-up (non-recursive) mergesort.
C. No difference.
D. I don't know.

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally occurring runs.

second run

merge two runs

```
1 
```

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

- Natural mergesort.
- Use binary insertion sort to make initial runs (if needed).
- A few more clever optimizations.

```
This describes an adaptive, stable, natural mergesort, modestly called timsort (hey, I earned it <wink>). It has supernatural performance on many kinds of partially ordered arrays (less than \(1 \mathrm{~g}(\mathrm{n}!)\) comparisons needed, and as few as \(n-1\) ), yet as fast as Python's previous highly tuned samplesort hybrid on random arrays.
In a nutshell, the main routine marches over the array once, left to right alternately identifying the next run, then merging it into the previous runs "intelligently". Everything else is complication for speed, and some
```


Tim Peters

Consequence. Only $\Theta(n)$ compares on many arrays with pre-existing order.
Widely used. Python, Java, GNU Octave, Android, ...

Proving that Android's, Java's and Python's sorting algorithm is broken (and showing how to fix it)

© February 24,2015 EEnvisage Written by Stijn de Gouw. \$

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combination of ideas from merge sort and insertion sort, and designed to perform well on real world data. TimSort was first developed for Python, but later ported to Java (where it appears as java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer of Java Collections who also pointed out that most binary search algorithms were broken). TimSort is today used as the default sorting algorithm for Android SDK, Sun's JDK and OpenJDK. Given the popularity of these platforms this means that the number of computers, cloud services and mobile phones that use TimSort for sorting is well into the billions.

[^0]
JDK / JDK-8203864

Execution error in Java's Timsort

Details		
Type:	- Bug	Description
		Carine Pivoteau wrote:
Status:	RESOLVED	While working on a proper complexity analysis of
Priority:	3 P3	the algorithm, we realised that there was an error in the last paper reporting such a bug (http://envisage-
Resolution:	Fixed	project.eu/wp-content/uploads/2015/02/sorting.pdf).
Affects Version/s:	None	This implies that the correction implemented in the Java source code (changing Timsort stack size) is
Fix Version/s:	11	wrong and that it is still possible to make it break. This is explained in full details in our analysis:
Component/s:	core-libs	https://arxiv.org/pdf/1805.08612.pdf.
Labels:	None	We understand that coming upon data that actually causes this error is very unlikely, but we thought
Subcomponent:	java.util:collections	you'd still like to know and do something about it. As the authors of the previous article advocated for,
Introduced In Version:	6	we strongly believe that you should consider
Resolved In Build:	b20	modifying the algorithm as explained in their article (and as was done in Python) rather than trying to fix the stack size.

[^1]
Sorting summary

	in-place?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 n^{2}$	$1 / 2 n^{2}$	$1 / 2 n^{2}$	n exchanges
insertion	\checkmark	\checkmark	n	$1 / 4 n^{2}$	$1 / 2 n^{2}$	use for small n or partially sorted
merge		\checkmark	$1 / 2 n \log _{2} n$	$n \log _{2} n$	$n \log _{2} n$	$\Theta(n \log n)$ guarantee; stable
timsort		\checkmark	n	$n \log _{2} n$	$n \log _{2} n$	improves mergesort when pre-existing order
?	\checkmark	\checkmark	n	$n \log _{2} n$	$n \log _{2} n$	holy sorting grail

number of compares to sort an array of n elements

2.2 Mergesort

- mergesort
bottom-up mergesort
- sorting complexity

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

term	description	example ($\mathrm{X}=$ sorting)	
model of computation	specifies memory and primitive operations	comparison tree	can gain knowledge about input - only through pairwise compares (e.g., Java's Comparab1e framework)
cost model	primitive operation counts	\# compares	
upper bound	cost guarantee provided by some algorithm for a problem	$\sim n \log _{2} n$	from mergesort
lower bound	proven limit on cost guarantee for all algorithms for a problem	?	
optimal algorithm	algorithm with best possible cost guarantee for a problem	?	

Comparison tree (for 3 distinct keys a, b, and c)

one (and only one) reachable leaf corresponds to each each possible ordering

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make at least $\log _{2}(n!) \sim n \log _{2} n$ compares. Pf.

- Assume array consists of n distinct values a_{1} through a_{n}.
- n ! different orderings $\Rightarrow n$! reachable leaves.
- Worst-case number of compares $=$ height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^{h}$ leaves.

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make at least $\log _{2}(n!) \sim n \log _{2} n$ compares.

Pf.

- Assume array consists of n distinct values a_{1} through a_{n}.
- n ! different orderings $\Rightarrow n$! reachable leaves.
- Worst-case number of compares $=$ height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^{h}$ leaves.
$2^{h} \geq$ \# reachable leaves $=n!$
$\Rightarrow h \geq \log _{2}(n!)$
$\sim n \log _{2} n$

Stirling's formula

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

term	description
model of computation	specifies memory and primitive operations
cost model sorting)	
upper bound	primitive operation counts cost guarantee provided by some algorithm for a problem
lower bound	proven limit on cost guarantee for all algorithms for a problem
optimal algorithm	$\sim n \log _{2} n$
	algorithm with best possible cost guarantee for a problem

First goal of algorithm design: optimal algorithms.

Computational complexity results in context

Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.

Lesson. Use theory as a guide.
Ex. Design sorting algorithm that makes $\sim 1 / 2 n \log _{2} n$ compares in worst case?
Ex. Design sorting algorithm that makes $\Theta(n \log n)$ compares and uses $\Theta(1)$ extra space.

Q. Why doesn't this Skittles sorter violate the sorting lower bound?

Complexity results in context (continued)

Lower bound may not hold if the algorithm can exploit:

- The initial order of the input array.

Ex: insertion sort makes only $\Theta(n)$ compares on partially sorted arrays.

- The distribution of key values.

Ex: 3-way quicksort makes only $\Theta(n)$ compares on arrays with a small number of distinct keys. [next lecture]

- The representation of the keys.

Ex: radix sorts do not make any key compares;
they access the data via individual characters/digits.

Asymptotic notations

Mergesort quiz 5

Which of the following correctly describes the function $f(n)=3 n^{2}+30 n$?
A. $\sim n^{2}$
B. $\quad \Theta(n)$
C. $O\left(n^{3}\right)$
D. All of the above.
E. None of the above.

Interviewer. Give a formal description of the sorting lower bound for sorting arrays of n elements.

Summary

Mergesort. Makes $\Theta(n \log n)$ compares (and array accesses) in the worst case.

Sorting lower bound. No compare-based sorting algorithm makes fewer than $\Theta(n \log n)$ compares in the worst case.

Divide-and-conquer. Divide a problem into two (or more) subproblems; solve each subproblem independently; combine results.

Credits

image/video	source	license
Jon von Neumann	IAS / Alan Richards	
Tim Peters	unknown	
Theory vs. Practice	Ela Sjolie	
Skittles Sorting Machine	Rolf R. Bakke	
Fast Skittles Sorting Machine	Kazumichi Moriyama	
Impossible Stamp	Adobe Stock	education license
Divide-and-Conquer	wallpapercrafter.com	
Mergesort Instructions	IDEA	CC BY-NC-SA 4.0

[^0]: http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it

[^1]: https://bugs.openjdk.java.net/browse/JDK-8203864

