

1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- memory usage

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

1.4 ANALYsIS OF Algorithms

- introduction
\checkmark running time (experimental analysis)
- running time (mathemátical modets)
- memory usage

Robert Sedgewick I Kevin Wayne
https://algs 4.cs.princeton.edu

Different viewpoints

programmer needs to develop a working solution

client wants to solve problem efficiently

theoretician seeks to understand

student (you) plays all of these roles in this course
" As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise-By what course of calculation can these results be arrived at by the machine in the shortest time ?" - Charles Babbage (1864)

how many times do you have to turn the crank?

Running time

"As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise-By what course of calculation can these results be arrived at by the machine in the shortest time ? " - Charles Babbage (1864)

Ada Lovelace's algorithm to compute Bernoulli numbers on Analytic Engine (1843)

Rare book containing the world's first computer algorithm earns $\$ 125,000$ at auction

An algorithmic success story

N -body simulation.

- Simulate gravitational interactions among n bodies.
- Applications: cosmology, fluid dynamics, semiconductors, ...
- Brute force: $\Theta\left(n^{2}\right)$ steps.
- Barnes-Hut algorithm: $\Theta(n \log n)$ steps, enables new research.

Andrew Appel PU '81

The challenge

Q1. Will my program be able to solve a large practical input?
Q2. If not, how might I understand its performance characteristics so as to improve it?

Why is my program so slow?

> Why does it run out of memory?

Our approach. Combination of experiments and mathematical modeling.

Example: 3-SuM

3-Sum. Given n distinct integers, how many triples sum to exactly zero?

```
~/cos226/3sum> more 8ints.txt
8
30 -40 -20 -10 40 0 10 5
~/cos226/3sum> java ThreeSum 8ints.txt
4
```

	a[i]	a[j]	a[k]	sum	
1	30	-40	10	0	\checkmark
2	30	-20	-10	0	\checkmark
3	-40	40	0	0	\checkmark
4	-10	0	10	0	\checkmark

Context. Connected with problems in computational geometry.

3-SUM: brute-force algorithm

```
public class ThreeSum
    public static int count(int[] a)
        int n = a.length;
        int count = 0;
        for (int i = 0; i < n; i++)
            for (int j = i+1; j < n; j++)
            for (int k = j+1; k < n; k++)
                    if (a[i] + a[j] + a[k] == 0)
                count++;
        return count;
    }
    public static void main(String[] args) {
        In in = new In(args[0]);
        int[] a = in.readAl1Ints();
        StdOut.println(count(a));
    }
}
```


1.4 ANALYsIS OF Algorithms

- introduction
- running time (experimental analysis)
- running time (mathemátical models)
- memory usage

Robert Sedgewick | Kevin Wayne
https://algs 4.cs.princeton.edu

Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.

Observation. The running time $T(n)$ grows as a function of the input size n.

Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.

n	time (seconds) \dagger
1,000	0.21
1,500	0.71
2,000	1.63
2,500	3.11
3,000	5.43
4,000	12.8
5,000	25.0
7,500	84.4
10,000	199.3

Data analysis: standard plot

Standard plot. Plot running time $T(n)$ vs. input size n.

\mathbf{n}	time (seconds) \dagger
1,000	0.21
1,500	0.71
2,000	1.63
2,500	3.11
3,000	5.43
4,000	12.8
5,000	25.0
7,500	84.4
10,000	199.3

Hypothesis. The running time obeys a power law: $T(n)=a \times n^{b}$ seconds.
Questions. How to validate hypothesis? How to estimate constants a and b ?

Data analysis: log-log plot

Log-log plot. Plot running time $T(n)$ vs. input size n using log-log scale.

n	time (seconds) ${ }^{\dagger}$
1,000	0.21
1,500	0.71
2,000	1.63
2,500	3.11
3,000	5.43
4,000	12.8
5,000	25.0
7,500	84.4
10,000	199.3

Regression. Fit straight line through data points.
Hypothesis. The running time $T(n)$ is about $2.01 \times 10^{-10} \times n^{3}$ seconds.

Doubling test: estimating the exponent b

Doubling test. Run program, doubling the size of the input.

- Assume running time satisfies $T(n)=a \times n^{b}$.
- Estimate $b=\log _{2}$ ratio.

n	time (seconds)	ratio	$\log _{2}$ ratio	
500	0.05	-	-	$\frac{T(n)}{T(n / 2)}=\frac{a n^{b}}{a(n / 2)^{b}}=2^{b}$
1,000	0.21	4.20	2.07	$T(n)$
2,000	1.63	7.76	2.96	$\Longrightarrow \quad b=\log _{2} \overline{T(n / 2)}$
4,000	12.8	7.85	$\log _{2}(103.1 / 12.8)=3.01$	why the $\log _{2}$ ratio works
8,000	103.1	8.05		
16,000	819.0	7.94	2.99	
seems to converge to a constant $b \approx 3.0$				

Doubling test: estimating the leading coefficient a

Doubling test. Run program, doubling the size of the input.

- Assume running time satisfies $T(n)=a \times n^{b}$.
- Estimate $b=\log _{2}$ ratio.
- Estimate a by solving $T(n)=a \times n^{b}$ for a sufficiently large value of n.

\mathbf{n}	time (seconds)	ratio	$\log _{2}$ ratio
500	0.05	-	-
1,000	0.21	4.20	2.07
2,000	1.63	7.76	2.96
4,000	12.8	7.85	2.97
8,000	103.1	8.05	3.01
16,000	819.0	7.94	$2.99 \quad 819.0=a \times 16,000^{3} \Rightarrow a=2.00 \times 10^{-10}$

Hypothesis. Running time is about $2.00 \times 10^{-10} \times n^{3}$ seconds.

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size $n=96,000$.

A. 39 seconds
n time (seconds)
B. 52 seconds
C. 117 seconds

2,000
0.02

4,000
0.20
D. 350 seconds
$8,000 \quad 0.81$
$16,000 \quad 3.25$
$32,000 \quad 13.01$

Order of growth

Hypothesis. Running times on different computers differ by a constant factor.

Note. That factor can be several orders of magnitude.

Experimental algorithmics

System independent effects.

- Algorithm.
determines exponent b
- Input data.
\qquad
in power law $T(n)=a \times n^{b}$

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

Bad news. Sometimes difficult to get accurate measurements.

Experimental algorithmics is an example of the scientific method.

Good news. Experiments are easier and cheaper than other sciences.

1.4 Analysis of Algorithms

- introduction
\rightarrow running time (experimental analysis)
- running time (mathematical models)
- memory usage

Robert Sedgewick । Kevin Wayne
https://algs4.cs.princeton.edu

Mathematical models for running time

Total running time: sum of frequency \times cost for all operations.

- Frequency depends on algorithm and input data.
- Cost depends on CPU, compiler, operating system, ...

profiles in science
The Yoda of Silicon
Valley
Donald Knuth, master of algorithms, reflects on 50 years of his opus-in-progress, "The Art of Computer Programming."

Warning. No general-purpose method (e.g., halting problem).

Example: 1-SUM

Q. How many operations as a function of input size n ?

```
int count = 0;
for (int i = 0; i < n; i++)
    if (a[i] == 0)
        count++;
```

operation	cost (ns) \dagger	frequency	
variable declaration	2/5		in practice, depends on caching, bounds checking,
assignment statement	1/5	2	- (see COS 217)
less than compare	1/5	$n+1$	
equal to compare	1/10		
array access	1/10	n	
increment	1/10	n to $2 n$	

Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time.

```
int count = 0;
for (int i = 0; i < n; i++)
    if (a[i] == 0)
        count++;
```

operation	cost $(\mathbf{n s}) \dagger$	frequency
variable declaration	$2 / 5$	2
assignment statement	$1 / 5$	2
less than compare	$1 / 5$	$n+1$
equal to compare	$1 / 10$	n
array access	$1 / 10$	n
increment	$1 / 10$	n to $2 n$

Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.
Big Theta notation. Discard lower-order terms and leading coefficient.

function	tilde notation	big Theta
$4 n^{5}+20 n+16$	$\sim 4 n^{5}$	$\Theta\left(n^{5}\right)$
$7 n^{2}+100 n^{4 / 3}+56$	$\sim 7 n^{5}$	$\Theta\left(n^{2}\right)$
$1 / 6 n^{3} \underbrace{1 / 2 n^{2}+1 / 3 n}$	$\sim 1 / 6 n^{3}$	$\Theta\left(n^{3}\right)$
discard lower-order terms	\uparrow	

Rationale.

- When n is large, lower-order terms are negligible.
- When n is small, we don't care.

Analysis of algorithms: quiz 2

How many array accesses as a function of n ?

```
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        if (a[i] + a[j] == 0)
                count++;
```

 "inner loop"
 A. $1 / 2 n(n-1)$
B. $n(n-1)$
C. $2 n^{2}$
D. $2 n(n-1)$

Example: 2-SUM

Q. Approximately how many operations as a function of input size n ?
int count = 0;
int count = 0;
for (int $\mathbf{i}=0 ; \mathbf{i}<\mathbf{n} ; \mathbf{i}++$)
for (int $\mathbf{j}=\mathbf{i}+1 ; \mathbf{j}<\mathbf{n} ; \mathbf{j}++$)
if $(\mathbf{a}[\mathbf{i}]+\mathrm{a}[\mathbf{j}]==0) \longleftarrow \underbrace{(n-1)+(n-2)+\ldots+1+0}_{\substack{1 / 2 n(n-1)}}$
operation
variable declaration2/5$\Theta(n)$
assignment statement$1 / 5$
$\Theta(n)$
less than compare $1 / 5$
equal to compare
1/10
$\Theta\left(n^{2}\right)$
$\Theta\left(n^{2}\right)$ array access 1/10
$\Theta\left(n^{2}\right)$
increment
$\Theta\left(n^{2}\right)$

Example: 3-SuM

Q. Approximately how many array accesses as a function of input size n ?

```
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        for (int k = j+1; k < n; k++)
```


A1. $\sim \frac{1}{2} n^{3}$ array accesses.
A2. $\Theta\left(n^{3}\right)$ array accesses.

Bottom line. Use cost model and asymptotic notation to simplify analysis.

Common order-of-growth classifications

order of growth	emoji	name	typical code framework	description	example	$T(2 n) / T(n)$
$\Theta(1)$	(9)	constant	$\mathrm{a}=\mathrm{b}+\mathrm{c}$;	statement	add two numbers	1
$\Theta(\log n)$	θ	logarithmic	$\begin{gathered} \text { for (int } i=n ; i>0 ; i /=2) \\ \{\ldots,\} \end{gathered}$	divide in half	binary search	~ 1
$\Theta(n)$	(n)	linear	for (int $i=0 ; i<n ; i++$) \{ ... \}	single loop	find the maximum	2
$\Theta(n \log n)$	\bigcirc	linearithmic	mergesort	divide and conquer	mergesort	~ 2
$\Theta\left(n^{2}\right)$	\because	quadratic	```for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { ... }```	double loop	check all pairs	4
$\Theta\left(n^{3}\right)$	\because	cubic	```for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) { ... }```	triple loop	check all triples	8
$\Theta\left(2^{n}\right)$	שr	exponential	towers of Hanoi	exhaustive search	check all subsets	2^{n}

Some useful discrete sums and approximations

Triangular sum. $1+2+3+\ldots+n \sim \frac{1}{2} n^{2}$

Harmonic sum. $\quad 1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \sim \int_{x=1}^{n} \frac{1}{x} d x=\ln n$

Geometric sum. $1+2+4+8+\ldots+n=2 n-1$
 n a power of 2

Geometric sum ${ }^{\prime} . n+\frac{n}{2}+\frac{n}{4}+\ldots+1=2 n-1$

Geometric sum meme

https:/ / marekbennett.com/2014/03/06/recursive-load

Analysis of algorithms: quiz 3

Approximately how many array accesses as a function of \boldsymbol{n} ?

```
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        for (int k = 1; k <= n; k = k*2)
            if (a[i] + a[j] >= a[k])
                count++;
```

A. $\sim n^{2} \log _{2} n$
B. $\sim 3 / 2 n^{2} \log _{2} n$
C. $\sim 1 / 2 n^{3}$
D. $\sim 3 / 2 n^{3}$

Analysis of algorithms: quiz 4

What is the order of growth of the running time as a function of n ?

```
int count = 0;
for (int i = n; i >= 1; i = i/2)
    for (int j = 1; j <= i; j++)
        count++;
```

A. $\quad \Theta(n)$
B. $\quad \Theta(n \log n)$
C. $\Theta\left(n^{2}\right)$
D. $\Theta\left(2^{n}\right)$

1.4 Analysis of Algorithms

- introduction
\rightarrow running time (experimental analysis)
- running time (mathemátical modets)
- memory usage

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Memory basics

Bit. 0 or 1.

term	symbol	quantity
byte	B	8 bits
kilobyte	KB	1000 bytes
megabyte	MB	1000^{2} bytes
gigabyte	GB	1000^{3} bytes
terabyte	TB	1000^{4} bytes

some define using powers of 2 ($\mathrm{MB}=2^{10}$ bytes)

64-bit machine. We assume a 64-bit machine with 8 -byte pointers.
some JVMs "compress" pointers
to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

type	bytes	type	bytes	wasteful (but $\sim 36 n$ bytes in Python 3)
boolean	1	boolean[]	$1 n+24$	
byte	1	int[]	$4 n+24$	
char	2	double[]	$8 n+24$	array overhead $=24$ bytes
int	4	one-dimensional arrays (length n)		
float	4			
1ong	8			
doub7e		type	bytes	
	8			
primitive types		boolean[][]	$\sim 1 n^{2}$	
		int[][]	$\sim 4 n^{2}$	
		double[][]	$\sim 8 n^{2}$	
		two-dimensional arrays (n -by-n)		

Typical memory usage for objects in Java

Object overhead. 16 bytes.
Reference. 8 bytes.
Padding. Round up memory of each object to be a multiple of 8 bytes.

Ex. Each Date object uses 32 bytes of memory.

```
public class Date {
    private int day;
    private int month;
    private int year;
}
```


16 bytes (object overhead)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)
32 bytes

Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF object use as a function of n ?
A. $\sim 4 n$ bytes
B. $\quad \sim 8 n$ bytes
C. $\sim 4 n^{2}$ bytes
D. $\sim 8 n^{2}$ bytes

```
public class WeightedQuickUnionUF {
    private int[] parent;
    private int[] size;
    private int count;
    public WeightedQuickUnionUF(int n) {
        parent = new int[n];
        size = new int[n];
        count = 0;
        for (int i = 0; i < n; i++)
        parent[i] = i
            for (int i = 0; i < n; i++)
        size[i] = 1;
    }
}
```


Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law.
- Formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use cost model and asymptotic notations to simplify analysis.

$$
\sum_{h=0}^{\lfloor\lg n\rfloor}\left\lceil n / 2^{h+1}\right\rceil h \sim n
$$

- Model enables us to explain behavior.

This course. Learn to use both.

Credits

image	source	license
Charles Babbage	The Illustrated London News	public domain
Babbage Enginine in Operation	xRez Studio	
Algorithm for the Analytic Engine	Ada Lovelace	public domain
Ada Lovelace and Book	Moore Allen \& Innocent	
Galaxies Colliding	SaltyMikan	
Andrew Appel	Andrew Appel	
Programmer Icon	Jaime Botero	public domain
Head in the Clouds	Ellis Nadler	education
Student Raising Hand	classroomclipart.com	educational use
Running Time	pano.si	
Analog Stopwatch	Adobe Stock	education license
Lecture Slides © Copyrig	2023 Robert Sedgewick	d Kevin Wayne

Credits

image	source	license
Apple M2 Chip	Apple	
Macbook Pro M2	Apple	
Scientific Method	$\underline{\text { Sue Cahalane }}$	by author
Laboratory Apparatus	$\underline{\text { pixabay.com }}$	public domain
Dissected Rat	$\underline{\text { Allen Lew }}$	$\underline{\text { CC BY 2.0 }}$
Harmonic Integral	$\underline{\text { Wikimedia }}$	public domain
Geometric Series	$\underline{\text { Marek Bennett }}$	$\underline{\text { CC BY-SA 3.0 }}$
Recursive Load	$\underline{\text { New York Times }}$	
The Yoda of Silicon Valley	$\underline{\text { Science Museum. London }}$	CC BY-SA 2.0
Babbage's Analytic Engine	$\underline{\text { Science Museum. London }}$	
Alan Turing		

A final thought

" It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then give them various weights." - Alan Turing (1947)

