COS 226 Algorithms and Data Structures Fall 2019

Midterm Solutions

0. Imitialization. Don’t forget to do this.

1. Memory.

(a) 104 bytes
e 16 bytes of object overhead

8 bytes of inner class overhead

8 bytes for parent link

8 bytes for reference to array of children
e 56 =24 + 8d bytes for Node[] array of length d
4 bytes for integer instance variable key

4 bytes of padding
(b) ~104n bytes

2. Five sorting algorithms.

—
(-}

original array

selection sort after 12 iterations

quicksort after first partitioning step
mergesort just before the last call to merge ()
insertion sort after 16 iterations

heapsort after heap construction phase and putting 12 keys into place
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3. Quicksort and analysis.

This diagram shows the invariants maintained during the partitioning algorithm:
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(a) ~n

Calling partition() on any subarray of length n involves exactly n —1 compares.

(b) ~n

The i loop triggers one exchange for each element strictly less than the partitioning ele-
ment. There is also one extra exchange after the loop terminates (to put the partitioning
element in place). So, in the worst-case, there are exactly n exchanges (and this occurs
when the partitioning element is the strictly largest element).

(c) in-place, not stable

When all keys are equal, every partition is degenerate. In this case, partition() is
called on subarrays of length n,n—1,n—-2,...,1. So, the total number of compares is
1+2+3+...+(n-1).

This scheme—known as Lomuto partitioning— is simpler than Hoare partitioning. However,
it should not be used in practice because (1) it performs more exchanges on inputs with all
distinct keys and (2) it takes quadratic time on inputs with a large number of duplicate keys.

4. Red—black BSTs.
24 rotate right — 22 color flip - 20 color flip — 12 rotate left

5. Collections.
EFAHCGBD

6. Why did we do that?
BCBCDAAE

7. Data structures.
ACCERB
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8. Red, white, and blue.

The main idea is to use binary search to find the indices p and ¢ of the color boundaries.

The easiest way to accomplish this is to reuse the code from Assignment 3 (that finds either
the first or last occurrence of a given key in a sorted array). Specifically, we compute the index
p of the last occurrence of the color of pebble a[0] and the index ¢ of the first occurrence of
the color of pebble a[n-1]. From the indices p and ¢, it’s easy to compute the frequencies
n1, no, and ng of the three colors.

int p = BinarySearchDeluxe.lastIndex0f (a[0], comparator) ;
int q = BinarySearchDeluxe.firstIndexOf (a[n-1], comparator);
int nl = p + 1; // frequency of color of pebble al0]
int n3 = n - q; // frequency of color of pebble a[n-1]
int n2 =q - p - 1; // frequency or remaining color

Of course, BinarySearchDeluxe works only if the underlying array is sorted. This requires us
to define a comparator that specifies a total order for pebbles based on color. We implement
this comparator so that a[0] is treated as the “smallest” color in the total order; a[n-1] as
the “largest” color; and a pebble of the remaining color as the “middle” color.

You weren’t expected to write code for the comparator, but it would look something like this:

public class PebbleComparator implements Comparator<Pebble> {
private final Pebble min; // a pebble containing "smallest" color
private final Pebble max; // a pebble containing "largest" color

public PebbleComparator(Pebble min, Pebble max) {
this.min = min;
this.max = max;

}

public int compare(Pebble x, Pebble y) {
if (x.color() == y.color()) return O;
if (x.color() == min.color()) return -1;
if (y.color() == min.color()) return +1;
if (x.color() == max.color()) return +1;
if (y.color() == max.color()) return -1;

throw new IllegalStateException("more than 3 colors");
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9. Data-type design. (red-black BST solution)

We maintain the keys in a red—-black BST. Assuming no duplicate keys, we can implement
insert, delete-min, and delete-mazx in logarithmic time using standard red—black BST op-
erations. The main challenge with this approach is dealing with equal keys (because our
symbol-table implementations do not allow duplicate keys).

(a) We use our RedBlackBST (or ST) implementation of a symbol table. To keep track of
duplicate keys, we define the Value type so that it stores the the number of times the
corresponding key appears in the priority queue.

In addition, we cache the minimum and maximum keys. This enables us to implement
the min() and max() operations in constant time (instead of logn time).

public class MinMaxPQ<Key extends Comparable<Key>> {
private ST<Key, Integer> st; // keys and their frequencies
private Key min; // cache of minimum key
private Key max; // cache of maximum key

(b) root

cached min =20

cached max =50

value
(frequency)

(¢) Return the cached min or max instance variable.

(d) e If the key is not in the symbol table, add it to the symbol table with a frequency of
1 (and update the cached min/max).

e Otherwise, increment the frequency of the key.

(e) e If the min key in the symbol table has frequency > 1, decrement its frequency by 1
and return the cached min.
e If the min key in the symbol table has frequency = 1, delete the min key from the
symbol table and return it. Just before returning it, update the cached min/max.

An alternative BST-based approach is to modify our red-black BST to directly support dupli-
cate keys. Specifically, when inserting key x, if the key in the BST node equals x, simply go
right (or left) and continue inserting (instead of replacing the old value with the new value).
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9. Data-type design. (two priority queue solution)

We maintain each key both in a min-oriented heap and in a max-oriented heap. The main
challenge is keeping the elements in the two heaps in sync (e.g., if a key is deleted from one
heap via a delete-min, then we must be careful to delete it from the other heap).

(a) We make corresponding nodes (that hold the same key) point to each other. This enables
us to delete the corresponding key from one heap when a delete-min (or delete-max)
operation is performed in the other heap.

We also represent the binary tree using explicit nodes and links instead of a resizing
array. This is needed to achieve worst-case logn performance (instead of amortized).

public class MinMaxPQ<Key extends Comparable<Key>> {
private int nj; // number of keys
private Node rootMin; // root of min-oriented heap
private Node rootMax; // root of max-oriented heap

private class Node {

private final Key key; // the key

private Node parent; // parent link

private Node left, right; // children links

private Node twin; // corresponding node in the other heap

(b) For clarity, this diagram shows only four of the seven pairs of twin links.

rootMin rootMax

(c) Return the key in the root node of the min-oriented heap.

(d) Create two twin Node objects (containing given key) and insert one into min-heap (e.g.,
add to next available spot in the min-heap and perform a swim operation) and the twin
into the max-heap.

(e) e Perform a delete-min operation in the min-heap (i.e., exchange the root node with
the last node in the heap and perform a sink operation at the root).
e Use the twin link to find the twin of deleted node in the max-heap.
e Delete the twin node from the max-heap (i.e., exchange the twin node with the last
node in the heap and perform either a swim or sink operation to restore heap order).
e Return the key in (either) deleted node.



