
COS 217: Introduction to Programming Systems

Machine Language

Instruction Set Architecture (ISA)

There are many kinds of computer chips out there:

ARM (AARCH64)

Intel x86 series

IBM PowerPC

RISC-V

MIPS

(and, in the old days, dozens more)

Each of these different
“machine architectures”
understands a different
machine language – binary
encoding of instructions

2
@swimstaralex (previous slide)

https://unsplash.com/@swimstaralex

Machine Language

Today we’ll cover:
• A motivating example from Assignment 6: Buffer Overrun
• The AARCH64 machine language

Next time (our last lecture 😭) we’ll cover:
• The assembly and linking processes

3
@olajidetunde

https://unsplash.com/@olajidetunde

Flashback to last lecture …

4

Assignment 6: Attack the “Grader” Program

/* Read a string into name */
void readString() {
char buf[BUFSIZE];
int i = 0;
int c;

/* Read string into buf[] */
for (;;) {
c = fgetc(stdin);
if (c == EOF || c == '\n')
break;

buf[i] = c;
i++;

}
buf[i] = '\0';

/* Copy buf[] to name[] */
for (i = 0; i < BUFSIZE; i++)
name[i] = buf[i];

}

/* Prompt for name and read it */
void getName() {
printf("What is your name?\n");
readString();

}

Unchecked
write to
buffer!

5

Opportunity to inject
instructions into

persistent memory!

Memory Map of Stack and BSS Section

6

name[0]
name[1]
...

...
name[47]

‘\0’
‘\0’
...

...
‘\0’

SP
readString’s
stackframe

???
???
???
...

...
???
???

getName’s
stackframe old X30

somewhere
main’s

stackframe …

Initially, the name
array in BSS is
blank (all 0 bits).

???
buf[0]
buf[1]

...

...
buf[47]

???

Initially, the buf
array in readString
has garbage.

name[0]
name[1]
…

…
name[47]

‘\0’
‘\0’
...

...
‘\0’

Memory Map of Stack and BSS Section

7

SP
readString’s
stackframe

???
‘B’
‘o’
‘b’
‘\0’
???
...

...
???
???

getName’s
stackframe old X30

somewhere
main’s

stackframe …

(Nothing is copied
to BSS until the
loop filling buf
finishes.)

???
buf[0]
buf[1]

...

...
buf[47]

???

You will put your
name + ‘\0’ into
the buf array.

name[0]
name[1]
…

…
name[47]

‘\0’
‘\0’
...

...
‘\0’

Memory Map of Stack and BSS Section

8

SP
readString’s
stackframe

???
‘B’
‘o’
‘b’
‘\0’
adr x0, grade
other
instructions
go here

...
???
???

getName’s
stackframe old X30

somewhere
main’s

stackframe …

(Nothing is copied
to BSS until the
loop filling buf
finishes.)

???
buf[0]
buf[1]

...

...
buf[47]

???

You will put the
instructions for
your attack (to
change grade) here

name[0]
name[1]
…

…
name[47]

‘\0’
‘\0’
...

...
‘\0’

Memory Map of Stack and BSS Section

9

SP
readString’s
stackframe

???
‘B’
‘o’
‘b’
‘\0’
adr x0, grade
other
instructions
go here
then
enough
padding
to smash
the stack
to overwrite:

...
???
???

getName’s
stackframe old X30

somewhere
main’s

stackframe …

(Nothing is copied
to BSS until the
loop filling buf
finishes.)

???
buf[0]
buf[1]

...

...
buf[47]

???

Now smash the
stack like in
the ‘B’ attack! You will put the

instructions for
your attack (to
change grade) here

Replace with
BSS address
where adr
instruction
will be put

name[0]
name[1]
…

…
name[47]

‘\0’
‘\0’
...

...
‘\0’

Memory Map of Stack and BSS Section

10

SP
readString’s
stackframe

???
‘B’
‘o’
‘b’
‘\0’
adr x0, grade
other
instructions
go here
then
enough
padding
to smash
the stack
to overwrite:

...
???
???

getName’s
stackframe &name[k]

main’s
stackframe …

(Nothing is copied
to BSS until the
loop filling buf
finishes.)

???
buf[0]
buf[1]

...

...
buf[47]

???

‘B’
‘o’
‘b’
‘\0’
adr x0, grade
other
instructions
go here
then
as much
padding as
fills name

The address
of our adr
instruction
in BSS
(in this example k=4)

How are these
instructions
represented
in memory?
Machine language!

Now smash the
stack like in
the ‘B’ attack!

Agenda
A6 “A” Attack

AARCH64 Machine Language

11

Assembly Language: add x1, x2, x3

Machine Language: 1000 1011 0000 0011 0000 0000 0100 0001

Machine Language: TOY → AARCH64

AARCH64 machine language
• All instructions are 32 bits long, 4-byte aligned
• Some bits allocated to opcode: what kind of instruction is this?
• Other bits specify register(s)
• Depending on instruction, other bits may be used for

an immediate value, a memory offset, an offset to jump to, etc.

Instruction formats
• Variety of ways different instructions are encoded
• We’ll go over quickly in class, to give you a flavor
• Refer to slides as reference for Assignment 6!

(Every instruction format you’ll need is in the following slides… we think…)

Remember TOY?
ARM is more complex, but the same ideas!

12

AARCH64 Instruction Format

Operation group
• Encoded in bits 25-28
• x101: Data processing – 3-register
• 100x: Data processing – immediate + register(s)
• 101x: Branch
• x1x0: Load/store

xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

msb: bit 31 lsb: bit 0

13

AARCH64 Instruction Format

Op. Group: Data processing – 3-register
• Instruction width in bit 31: 0 = 32-bit, 1 = 64-bit
• Whether to set condition flags (e.g. ADD vs ADDS) in bit 29
• Second source register in bits 16-20
• First source register in bits 5-9
• Destination register in bits 0-4
• Remaining bits encode additional information about instruction

wxsx 101x xxxr rrrr xxxx xxrr rrrr rrrr

msb: bit 31

14

lsb: bit 0

AARCH64 Instruction Format

Example: add x1, x2, x3
• opcode = add
• Instruction width in bit 31: 1 = 64-bit
• Whether to set condition flags in bit 29: no
• Second source register in bits 16-20: 3
• First source register in bits 5-9: 2
• Destination register in bits 0-4: 1
• Additional information about instruction: none

1000 1011 0000 0011 0000 0000 0100 0001

msb: bit 31

15

lsb: bit 0

AARCH64 Instruction Format

Op. Group: Data processing – immediate + register(s)
• Instruction width in bit 31: 0 = 32-bit, 1 = 64-bit
• Whether to set condition flags (e.g. ADD vs ADDS) in bit 29
• Immediate value in bits 10-21 for 2-register instructions,

bits 5-20 for 1-register instructions
• Source register in bits 5-9
• Destination register in bits 0-4
• Remaining bits encode additional information about instruction

wxs1 00xx xxii iiii iiii iirr rrrr rrrr

msb: bit 31

wxx1 0010 1xxi iiii iiii iiii iiir rrrr

16

lsb: bit 0

AARCH64 Instruction Format

Example: subs w1, w2, 42
• opcode: subtract immediate
• Instruction width in bit 31: 0 = 32-bit
• Whether to set condition flags in bit 29: yes
• Immediate value in bits 10-21: 101010b = 42
• First source register in bits 5-9: 2
• Destination register in bits 0-4: 1
• Additional information about instruction: none

0111 0001 0000 0000 1010 1000 0100 0001

msb: bit 31

17

lsb: bit 0

AARCH64 Instruction Format **You may find this slide useful for A6

Example: mov x1, 42
• opcode: move immediate
• Instruction width in bit 31: 1 = 64-bit
• Immediate value in bits 5-20: 101010b = 42
• Destination register in bits 0-4: 1

1101 0010 1000 0000 0000 0101 0100 0001

msb: bit 31

18

lsb: bit 0

AARCH64 Instruction Format

Op. Group: Branch
• Relative address of branch target in bits 0-25 for unconditional branch (b) and function call (bl)
• Relative address of branch target in bits 5-23 for conditional branch
• Because all instructions are 32 bits long and are 4-byte aligned, relative addresses end in 00.

Because this is invariable, we can omit those two bits from our representation.
Doing so provides more range with the same number of bits!

• Type of conditional branch encoded in bits 0-3

xxx1 01ii iiii iiii iiii iiii iiii iiii

msb: bit 31

xxx1 01xx iiii iiii iiii iiii iiix cccc

19

lsb: bit 0

20

Displacement Discombobulation

What is the range of the relative address?

A. 0 – 64MB

B. -32MB – +32MB

C. 0 – +256MB

D. -128MB – +128MB

D: 26 bits + 2 "chopped off" bits
= 28 bits: 256MB.

2's complement splits half
negative / half non-negative

msb: bit 31

xxx1 01ii iiii iiii iiii iiii iiii iiii

lsb: bit 0

AARCH64 Instruction Format **You may find this slide useful for A6

Example: b someLabel
• This depends on where someLabel is relative to this instruction!

For this example, someLabel is 3 instructions (12 bytes) earlier
• opcode: unconditional branch
• Relative address in bits 0-25: 26-bit two’s complement of 11b.

Shift left by 2: 1100b = 12. So, offset is -12.

0001 0111 1111 1111 1111 1111 1111 1101

msb: bit 31

21

lsb: bit 0

AARCH64 Instruction Format

Example: bl someLabel
• This depends on where someLabel is relative to this instruction!

For this example, someLabel is 3 instructions (12 bytes) earlier
• opcode: branch and link (function call)
• Relative address in bits 0-25: 26-bit two’s complement of 11b.

Shift left by 2: 1100b = 12. So, offset is -12.

1001 0111 1111 1111 1111 1111 1111 1101

msb: bit 31

22

lsb: bit 0

AARCH64 Instruction Format

Example: ble someLabel
• This depends on where someLabel is relative to this instruction!

For this example, someLabel is 3 instructions (12 bytes) later
• opcode: conditional branch
• Relative address in bits 5-23: 11b. Shift left by 2: 1100b = 12
• Conditional branch type in bits 0-3: LE

0101 0100 0000 0000 0000 0000 0110 1101

msb: bit 31

23

lsb: bit 0

AARCH64 Instruction Format

Op. Group: Load / store
• Instruction width in bits 30-31: 00 = 8-bit, 01 = 16-bit, 10 = 32-bit, 11 = 64-bit
• For [Xn,Xm] addressing mode: second source register in bits 16-20
• For [Xn,offset] addressing mode: offset in bits 10-21,

shifted left by 3 bits for 64-bit, 2 bits for 32-bit, 1 bit for 16-bit
• First source register in bits 5-9
• Destination register in bits 0-4
• Remaining bits encode additional information about instruction, e.g. scaled mode

wwxx 1x0x xxxr rrrr xxxx xxrr rrrr rrrr

msb: bit 31

wwxx 1x0x xxii iiii iiii iirr rrrr rrrr

24

lsb: bit 0

AARCH64 Instruction Format

Example: ldr x0, [x1, x2]
• opcode: load, register+register
• Instruction width in bits 30-31: 11 = 64-bit
• Second source register in bits 16-20: 2
• First source register in bits 5-9: 1
• Destination register in bits 0-4: 0
• Additional information about instruction: no LSL

1111 1000 0110 0010 0110 1000 0010 0000

msb: bit 31

25

lsb: bit 0

AARCH64 Instruction Format

Example: str x0, [sp,24]
• opcode: store, register+offset
• Instruction width in bits 30-31: 11 = 64-bit
• Offset value in bits 12-20: 11b, shifted left by 3 = 11000b = 24
• “Source” (really destination!) register in bits 5-9: 31 = sp
• “Destination” (really source!) register in bits 0-4: 0
• Remember that store instructions use the opposite convention from others:

“source” and “destination” are flipped!

1111 1001 0000 0000 0000 1111 1110 0000

msb: bit 31

26

lsb: bit 0

AARCH64 Instruction Format **You may find this slide useful for A6

Example: strb w0, [sp,24]
• opcode: store, register+offset
• Instruction width in bits 30-31: 00 = 8-bit
• Offset value in bits 12-20: 11000b (don’t shift left!) = 24
• “Source” (really destination!) register in bits 5-9: 31 = sp
• “Destination” (really source!) register in bits 0-4: 0
• Remember that store instructions use the opposite convention from others:

“source” and “destination” are flipped!

0011 1001 0000 0000 0110 0011 1110 0000

msb: bit 31

27

lsb: bit 0

AARCH64 Instruction Format

ADR instruction
(Distinct from others w/ Op Group bits 100x)
• Specifies relative position of label (data location)
• 19 High-order bits of offset in bits 5-23
• 2 Low-order bits of offset in bits 29-30
• Destination register in bits 0-4

0ii1 0000 iiii iiii iiii iiii iiir rrrr

msb: bit 31

28

lsb: bit 0

AARCH64 Instruction Format **You may find this slide useful for A6

Example: adr x19, someLabel
• This depends on where someLabel is relative to this instruction!

For this example, someLabel is 50 bytes later
• opcode: generate address
• 19 High-order bits of offset in bits 5-23: 1100
• 2 Low-order bits of offset in bits 29-30: 10
• Relative data location is 110010b = 50 bytes after this instruction
• Destination register in bits 0-4:19

0101 0000 0000 0000 0000 0001 1001 0011

msb: bit 31

29

lsb: bit 0

