COS 217: Introduction to Programming Systems

Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec == 31 Oct

The Decimal Number System

Name

• From Latin decem ("ten")

Characteristics

- For us, these symbols (Not universal ...)
 - 0 1 2 3 4 5 6 7 8 9

	_									_
European (descended from the West Arabic)	0	1	2	3	4	5	6	7	8	9
Arabic-Indic	•	١	۲	٣	٤	٥	٦	٧	٨	٩
Eastern Arabic-Indic (Persian and Urdu)	•	١	۲	٣	۴	۵	Ŷ	٧	٨	٩
Devanagari (Hindi)	0	१	२	ą	8	५	ų,	૭	٢	९
Tamil		க	ഉ	1Б.	ச	Մ	Ŧn	எ	भ	Fn
https://commons.wikimedia.org/wiki/File:Arabic_numerals-en.svg										

Cowbirds in Love #43 - Sanjay Kulkacek There are 10 rocks. Oh, you must be using base 4. See, I use base 10. No. I use base 10. What is base 4?

Every base is base 10.

Positional

- 2945 ≠ 2495
- $\cdot 2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$

2 (Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From late Latin *binarius* ("consisting of two"), from classical Latin *bis* ("twice")

Characteristics

- Two symbols: 0 1
- Positional: $1010_{B} \neq 1100_{B}$

Most (digital) computers use the binary number system

Terminology

- **Bit:** a single binary symbol ("binary digit")
- Byte: (typically) 8 bits
- Nibble / Nybble: 4 bits we'll see a more common name for 4 bits soon.

Decimal-Binary Equivalence

Decimal	Binary		Decimal	Binary
0	0		16	10000
1	1		17	10001
2	10		18	10010
3	11		19	10011
4	100		20	10100
5	101		21	10101
6	110		22	10110
7	111		23	10111
8	1000		24	11000
9	1001		25	11001
10	1010		26	11010
11	1011		27	11011
12	1100		28	11100
13	1101		29	11101
14	1110		30	11110
15	1111		31	11111
		I		

Binary to decimal: expand using positional notation

Integer-Binary Conversion

(Decimal) Integer to binary: do the reverse

• Determine largest power of 2 that's \leq number; write template

 $37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$

• Fill in template

$37 = (1*2^5) + (0*2^4) + (0*2^3) + (1*2^2) + (0*2^1) + (1*2^2)$	2°)
<u>-32</u>	
5	
<u>-4</u>	
1 100101 _B	
<u>-1</u>	
0	

Integer-Binary Conversion

Integer to binary division method

• Repeatedly divide by 2, consider remainder

Read from bottom to top: 100101_{B}

The Hexadecimal Number System

Name

From ancient Greek ἕξ (hex, "six") + Latin-derived decimal

Characteristics

- Sixteen symbols
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Positional
 - $A13D_H \neq 3DA1_H$

Computer programmers often use hexadecimal or "hex"

• In C: Ox prefix (OxA13D, etc.)

Binary-Hexadecimal Conversion

Observation:

• $16^1 = 2^4$, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

101000100111101_B **A** 1 3 D_H Number of bits in binary number not a multiple of 4? \Rightarrow pad with zeros on left

Hexadecimal to binary

 A
 1
 3
 D_H

 10100001001111101_B

Discard leading zeros from binary number if appropriate

Integer-Hexadecimal Conversion

Hexadecimal to (decimal) integer: expand using positional notation

$$25_{\rm H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Integer to hexadecimal: use the division method

37 / 16 = 2 R 5 2 / 16 = 0 R 2 Read from bottom to top: $25_{\rm H}$

Convert binary 101010 into decimal and hex

- A. 21 decimal, A2 hex
- B. 21 decimal, A8 hex
- C. 18 decimal, 2A hex
- D. 42 decimal, 2A hex

hint: convert to hex first

challenge: once you've locked in and discussed with a neighbor, figure out why this slide's title is what it is.

The Octal Number System

Name

• "octo" (Latin) \Rightarrow eight

Characteristics

- Eight symbols
 - 01234567
- Positional
 - 17430 ≠ 73140

Computer programmers sometimes use octal (so does Mickey!)

Why?

• In C: 0 prefix (01743, etc.)

```
[cmoretti@tars:tmp$ls -l myFile
-rw-r--r-- 1 cmoretti wheel 0 Sep 7 10:58 myFile
[cmoretti@tars:tmp$chmod 755 myFile
[cmoretti@tars:tmp$ls -l myFile
-rwxr-xr-x 1 cmoretti wheel 0 Sep 7 10:58 myFile
```


INTEGERS

Representing Unsigned (Non-Negative) Integers

Mathematics

- Non-negative integers' range is 0 to ∞

Computers

- Range limited by computer's word size
- Word size is n bits \Rightarrow range is 0 to $2^n 1$ representing with an n bit binary number
- Exceed range \Rightarrow overflow

Typical computers today

• n = 32 or 64, so range is 0 to $2^{32} - 1$ (~4 billion) or $2^{64} - 1$ (huge ... ~1.8e19)

Pretend computer

• n = 4, so range is 0 to $2^4 - 1$ (15)

Hereafter on these slides, assume word size = 4

• All points generalize to word size = n (armlab: 64)

Representing Unsigned Integers

On 4-bit pretend computer

Unsigned					
Integer	<u>Rep</u>				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
8	1000				
9	1001				
10	1010				
11	1011				
12	1100				
13	1101				
14	1110				
15	1111				

Adding Unsigned Integers

+ 10

1

Addition

111

0111_B

0001_B

 $+ 1010_{\rm B}$

Start at right column Proceed leftward Carry 1 when necessary

Beware of overflow

Results are mod 2⁴ 7 + 10 = 17 17 mod 16 = 1

Subtracting Unsigned Integers

Subtraction

Start at right column Proceed leftward Borrow when necessary

1 3 0011_B - 10 - 1010_B --- ----9 1001_B

Beware of overflow

Results are mod 2⁴ 19 3 - 10 = -7 -7 mod 16 = 9

Reminder: negative numbers exist

Obsolete Attempt #1: Sign-Magnitude

Integer	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit indicates sign

 $0 \Rightarrow \text{positive}$

$1 \Rightarrow negative$

Remaining bits indicate magnitude

 $0101_{\rm B} = 101_{\rm B} = 5$ $1101_{\rm B} = -101_{\rm B} = -5$

Pros and cons

+ easy to understand, easy to negate

+ symmetric

- two representations of zero
- need different algorithms to add signed and unsigned numbers
 Not used for integers today

Obsolete Attempt #2: Ones' Complement

<u>Integer</u>	<u>Rep</u>
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition High-order bit has weight $-(2^{b-1}-1)$ $1010_B = (1*-7) + (0*4) + (1*2) + (0*1)$ = -5 $0010_B = (0*-7) + (0*4) + (1*2) + (0*1)$ = 2

Computing negative = flipping all bits

Similar pros and cons to sign-magnitude

Two's Complement

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition High-order bit has weight $-(2^{b-1})$ $1010_{B} = (1*-8) + (0*4) + (1*2) + (0*1)$ = -6 $0010_{B} = (0*-8) + (0*4) + (1*2) + (0*1)$ = 2

Two's Complement (cont.)

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative neg(x) = ~x + 1 neg(x) = onescomp(x) + 1 $neg(0101_B) = 1010_B + 1 = 1011_B$ $neg(1011_B) = 0100_B + 1 = 0101_B$

Pros and cons

- not symmetric

("extra" negative number; -(-8) = -8)

+ one representation of zero

+ same algorithms add/subtract signed and unsigned integers

Adding Signed Integers

Subtracting Signed Integers

How would you compute 3 – 4?

3	0011 _B
- 4	- 0100 _B
?	???? _B

Subtracting Signed Integers

Perform subtractionCompute twowith borrowsorand add

Compute	two	΄S	comp
and add			

3	0011 _B
+ -4	+ 1100 _B
-1	1111 _B

Negating Signed Ints: Math Question: Why does two's comp arithmetic work? Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$ [-b] mod 2⁴ $= [2^4 - b] \mod 2^4$ $= [2^4 - 1 - b + 1] \mod 2^4$ $= [(2^4 - 1 - b) + 1] \mod 2^4$ = $[onescomp(b) + 1] \mod 2^4$ = $[twoscomp(b)] \mod 2^4$ So: $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$ $[a - b] \mod 2^4$ $= [a + 2^4 - b] \mod 2^4$ $= [a + 2^4 - 1 - b + 1] \mod 2^4$ $= [a + (2^4 - 1 - b) + 1] \mod 2^4$ = $[a + onescomp(b) + 1] \mod 2^4$

= $[a + twoscomp(b)] \mod 2^4$

(AT LONG[°] LAST) INTEGERS IN C

° no pun intended, I swear!

Integer Data Types in C

Integer types of various sizes: {signed, unsigned} {char, short, int, long}

- Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
- char is 1 byte
 - Number of bits per byte is unspecified (but in the 21st century, safe to assume it's 8)
 - Signedness is system dependent, so for arithmetic use "signed char" or "unsigned char"
- Sizes of other integer types not fully specified but constrained:
 - int was intended to be "natural word size" of hardware
 - 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

On armlab:

- Natural word size: 8 bytes ("64-bit machine")
- char: 1 byte
- short: 2 bytes
- int: 4 bytes (compatibility with widespread 32-bit code)
- long: 8 bytes

Integer Types in Java vs. C

×	Java	С
Unsigned types	char // 16 bits	unsigned char unsigned short unsigned (int) unsigned long
Signed types	byte // 8 bits short // 16 bits int // 32 bits long // 64 bits	<pre>signed char (signed) short (signed) int (signed) long</pre>

1.Not guaranteed by C, but on **armlab**, **short** = 16 bits, **int** = 32 bits, **long** = 64 bits 2.Not guaranteed by C, but on **armlab**, **char** is unsigned

sizeof Operator

- Applied at compile-time
- Operand can be a data type
- Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217

- sizeof(int) evaluates to 4
- sizeof(i) evaluates to 4 if i is a variable of type int
- sizeof(1+2) evaluates to 4

Integer Literals in C

- Decimal int: 123
- Prefixes to indicate a different base
 - Octal int: 0173 = 123
 - Hexadecimal int: 0x7B = 123
 - No prefix to indicate binary int literal

- Suffixes to indicate a different type
 - Use "L" suffix to indicate long literal
 - Use "U" suffix to indicate unsigned literal
 - No suffix to indicate char or short literals; instead, cast

char:	'{' (← really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B
int:	123, 0173, 0x7B
long:	123L, 0173L, 0x7BL
short:	(short)123, (short)0173, (short)0x7B
unsigned int:	123U, 0173U, 0x7BU
unsigned long:	123UL, 0173UL, 0x7BUL
unsigned short:	(unsigned short)123, (unsigned short)0173, (unsigned short)0x7B

Shawn Rossi 💬

OPERATIONS ON NUMBERS

Reading / Writing Numbers

Motivation

- Must convert between external form (sequence of character codes) and internal form
- Could provide getchar(), putshort(), getint(), putfloat(), etc.
- Alternative implemented in C: parameterized functions

scanf() and printf()

- Can read/write any primitive type of data
- First parameter is a format string containing conversion specs: size, base, field width
- Can read/write multiple variables with one call

See King book for details

Operators in C

- Typical arithmetic operators: + * / %
- Typical relational operators: == != < <= > >=
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Typical logical operators: ! && ||
 - Each interprets $0 \Rightarrow FALSE$, non- $0 \Rightarrow TRUE$
 - Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Cast operator: (type)
- Bitwise operators: ~ & | ^ >> <<

Other Bitwise Operations on Unsigned Integers

Bitwise NOT (~ in C)

• Flip each bit (don't forget leading 0s!)

Bitwise AND (& in C)

40

• AND (1=True, 0=False) corresponding bits

10 & 7	1010 _B & 0111 _B	10 & 2	1010 _B & 0010 _B
2	0010 _B	2	0010 _B

Useful for "masking" bits to 0 x & 0 is 0, x & 1 is x

Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)

41

• Logical OR corresponding bits

10 1	1010 _B 0001 _B
11	1011 _B

Useful for "masking" bits to 1 x | 1 is 1, x | 0 is x

Bitwise exclusive OR (^ in C)

• Logical exclusive OR corresponding bits

10 ^ 10	1010 _B ^ 1010 _B
0	0000 _B

x ^ x sets all bits to 0

Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

Decimal	Binary			
2	00000000	00000000	00000000	0000010
&& 1	00000000	00000000	0000000	0000001
1	00000000	00000000	00000000	00000001

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Decimal	Binary
2	0000000 0000000 0000000 0000010
& 1	0000000 0000000 0000000 0000001
0	0000000 0000000 0000000 0000000

Implication:

- Use logical AND to control flow of logic
- Use **bitwise** AND only when doing bit-level manipulation
- Same for OR and NOT

How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)?

- A. u &= (0 << k);
- B. u |= (1 << k);
- C. u |= ~(1 << k);
- D. u &= ~(1 << k);
- E. u = ~u ^ (1 << k);

Aside: Using Bitwise Ops for Arithmetic

Can use <<, >>, and & to do some arithmetic efficiently

- $x * 2^{y} == x << y$ • $3*4 = 3*2^{2} = 3<<2 \Rightarrow 12$
- $x / 2^{y} == x >> y$ • $13/4 = 13/2^{2} = 13>>2 \Rightarrow 3$
- $x \% 2^{y} == x \& (2^{y}-1)$ • 13%4 = 13%2² = 13&(2²-1)

44

13%4 - 13%2 - 1= 13&3 \Rightarrow 1

13 & 3	1101 _B & 0011 _B
	 0001 _B
-	OOOLB

Fast way to multiply by a power of 2

Fast way to divide <u>unsigned</u> by power of 2

Fast way to mod by a power of 2

Many compilers will do these transformations automatically!

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

Results are mod 2⁴

Bitwise right shift: fill on left with ???

Shifting Signed Integers (cont.)

Bitwise arithmetic right shift: fill on left with sign bit

Bitwise logical right shift: fill on left with zeros

In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)

- Not specified by standard (happens to be arithmetic on armlab)
 - Best to avoid shifting signed integers

Other Operations on Signed Ints

Bitwise NOT (~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)

• Same as with unsigned ints

Bitwise OR: (| in C)

• Same as with unsigned ints

Bitwise exclusive OR (^ in C)

• Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.

Many high-level languages provide an assignment statement

C provides an assignment operator

- Performs assignment, and then evaluates to the assigned value
- Allows assignment to appear within larger expressions
- But be careful about precedence! Extra parentheses often needed!

Assignment Operator Examples

Examples

```
i = 0;
   /* Side effect: assign 0 to i.
      Evaluate to 0. */
j = i = 0; /* Assignment op has R to L associativity */
   /* Side effect: assign 0 to i.
      Evaluate to 0.
      Side effect: assign 0 to j.
      Evaluate to 0. */
while ((i = getchar()) != EOF) ...
   /* Read a character or EOF value.
      Side effect: assign that value to i.
      Evaluate to that value.
      Compare that value to EOF.
      Evaluate to 0 (FALSE) or 1 (TRUE). */
```

Special-Purpose Assignment in C

Motivation

- The construct a = b + c is flexible
- The construct d = d + e is somewhat common
- The construct d = d + 1 is very common

Assignment in C

- Introduce += operator to do things like d += e
- Extend to -= *= /= ~= &= |= ^= <<= >>=
- All evaluate to whatever was assigned
- Pre-increment and pre-decrement: ++d --d
- Post-increment and post-decrement (evaluate to old value): d++ d--

Confusion Plusplus

Q: What are i and j set to in the following code?

j	L =	5;
-	j =	i++;
-	j +=	= ++i;

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

51 E. 7, 13

Incremental Iffiness

Q: What does the following code print?

```
int i = 1;
switch (i++) {
    case 1: printf("%d", ++i);
    case 2: printf("%d", i++);
}
```


Sample Exam Question (Spring 2017, Exam 1)

1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions.

- (i) (4 points) What is the largest unsigned number that can be represented in 7 bits? In binary: In decimal:
- (ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2's complement in 7 bits?
 - In binary: In decimal:

- (iii) (2 points) Is there a number n, other than 0, for which n is equal to -n, when represented in 2's complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not.
- (iv) (2 points) When doing arithmetic addition using 2's complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.)

@tylerleeeaston180.98	-0.21 4.75 51
etyreneeeastor 740.21	-0.21 4.75 51 -6.87 8.87 21
1 8 824 +122.56	-9.45 1.54
$6^{9} 0^{62} . 140.04$	-3.36 7 02 18
4 ¹⁰ 1 ³⁰ 18().90	-0.21 475 0
$(1^{30}, 5^{50}, 740.2)$	-0.01 8.87 (
1.00 8.24 +122.50	-9.45 1.54 18
18.00 9.02 +140.04	-3.36 7.02 1
AP 130 100 98	-0.21 4.75
51.30 550 -1021	-0.8/ 8.87
21.00 8.24 +122.56	-9.45 1.54
	-3.36 7.02
10% 1.30 100 98	-0.21 4.75
	-6.87 8.87
1 8.49 102 56	-9.45 1.54
	-3.36 7.02
1.00 08	-0.21 4.75
1 8 2.00 710 21	
10 69 0.27 100 56	0.01
	1.04
18.70 9.00 +140.04	-3.36 7.02
1.00 08	-11 21 1 75

APPENDIX: FLOATING POINT

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number

Floating Point Numbers

Like scientific notation: e.g., c is $2.99792458 \times 10^8 \text{ m/s}$

This has the form

(multiplier) × (base)^(power)

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent

Floating-Point Data Types

C specifies:

- Three floating-point data types: float, double, and long double
- Sizes unspecified, but constrained:
- sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)

- float: 4 bytes
- double: 8 bytes

On ArmLab (but varying across architectures)

• long double: 16 bytes

Floating-Point Literals

How to write a floating-point number?

- Either fixed-point or "scientific" notation
- Any literal that contains decimal point or "E" is floating-point
- The default floating-point type is double
- Append "F" to indicate float
- Append "L" to indicate long double

Examples

- double: 123.456, 1E-2, -1.23456E4
- float: 123.456F, 1E-2F, -1.23456E4F
- long double: 123.456L, 1E-2L, -1.23456E4L

IEEE Floating Point Representation

Common finite representation: IEEE floating point

More precisely: ISO/IEEE 754 standard

Using 32 bits (type **float** in C):

- 1 bit: sign ($0 \Rightarrow$ positive, $1 \Rightarrow$ negative)
- 8 bits: exponent + 127

Using 64 bits (type **double** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023

When was floating-point invented?

mantissa (noun): decimal part of a logarithm, 1865, Answer: long before computers! from Latin mantisa "a worthless addition, makeweight"

* 0				3		- 1	6		8		$\Delta_{\rm SNL}$	I	2	444
					2		1 0		9.	+		-	-	
50	.6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	I	2	
51	.7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	-
52	.7160		7177		7193	7202	7210		7226		8	I	2	:
53	.7243	and a second second second	7259			7284			7308		8	I	2	

Floating Point Example

Sign (1 bit):

• $1 \Rightarrow$ negative

Exponent (8 bits):

- 10000011_B = 131
- 131 127 = 4

Mantissa (23 bits):

- $1 + (1^{+}2^{-1}) + (0^{+}2^{-2}) + (1^{+}2^{-3}) + (1^{+}2^{-4}) + (0^{+}2^{-5}) + (1^{+}2^{-6}) + (1^{+}2^{-7}) + (0^{+}2^{-...}) = 1.7109375$

Number:

• $-1.7109375 \times 2^4 = -27.375$

32-bit representation

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\epsilon \approx 10^{-7}$

- No such number as 1.00000001
- Rule of thumb: "almost 7 digits of precision"

For double: $\epsilon~\approx 2\times 10^{-16}$

• Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

Floating Point Consequences, cont

• Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5 cannot be represented

Beware of round-off error

- Error resulting from inexact representation
- Can accumulate

 Decimal
 Rational

 Approx
 Value

 .3
 3/10

 .33
 33/100

 .333
 333/1000

. . .

Binary 1	Rational
Approx	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256
•••	

• Be careful when comparing two floating-point numbers for equality

What does the following code print?

```
double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)
   sum += 0.1;
if (sum == 1.0)
   printf("All good!\n");
else
   printf("Yikes!\n");
```

A. All good!

B. Yikes!

64

C. (Infinite loop)

D. (Compilation error)

B: Yikes!

... loop terminates, because we can represent 10.0 exactly by adding 1.0 at a time.

... but sum isn't 1.0 because we can't represent 1.0 exactly by adding 0.1 at a time.