Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christmas and Halloween?
A: Because 25 Dec == 31 Oct
The Decimal Number System

Name
• From Latin *decem* (“ten”)

Characteristics
• For us, these symbols (Not universal ...)
 • 0 1 2 3 4 5 6 7 8 9

<table>
<thead>
<tr>
<th>European (descended from the West Arabic)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic-Indic</td>
<td>٠</td>
<td>١</td>
<td>٢</td>
<td>٣</td>
<td>٤</td>
<td>٥</td>
<td>٦</td>
<td>٧</td>
<td>٨</td>
<td>٩</td>
</tr>
<tr>
<td>Eastern Arabic-Indic</td>
<td>٠</td>
<td>١</td>
<td>٢</td>
<td>٣</td>
<td>٤</td>
<td>٥</td>
<td>٦</td>
<td>٧</td>
<td>٨</td>
<td>٩</td>
</tr>
<tr>
<td>Devanagari (Hindi)</td>
<td>०</td>
<td>१</td>
<td>२</td>
<td>३</td>
<td>४</td>
<td>५</td>
<td>६</td>
<td>७</td>
<td>८</td>
<td>९</td>
</tr>
<tr>
<td>Tamil</td>
<td>ஊ</td>
<td>஋</td>
<td>஌</td>
<td>஍</td>
<td>எ</td>
<td>ஏ</td>
<td>ஐ</td>
<td>஑</td>
<td>ஒ</td>
<td>ஓ</td>
</tr>
</tbody>
</table>

• Positional
 • 2945 ≠ 2495
 • 2945 = (2*10³) + (9*10²) + (4*10¹) + (5*10⁰)

(Most) people use the decimal number system

Why?
The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal.

From late Latin *binarius* (“consisting of two”), from classical Latin *bis* (“twice”)

Characteristics

- Two symbols: 0 1
- Positional: \(1010_B \neq 1100_B\)

Most (digital) computers use the binary number system

Terminology

- **Bit**: a single binary symbol (“binary digit”)
- **Byte**: (typically) 8 bits
- **Nibble / Nybble**: 4 bits – we'll see a more common name for 4 bits soon.

Why?
Decimal-Binary Equivalence

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
</tr>
<tr>
<td>16</td>
<td>10000</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
</tr>
<tr>
<td>18</td>
<td>10010</td>
</tr>
<tr>
<td>19</td>
<td>10011</td>
</tr>
<tr>
<td>20</td>
<td>10100</td>
</tr>
<tr>
<td>21</td>
<td>10101</td>
</tr>
<tr>
<td>22</td>
<td>10110</td>
</tr>
<tr>
<td>23</td>
<td>10111</td>
</tr>
<tr>
<td>24</td>
<td>11000</td>
</tr>
<tr>
<td>25</td>
<td>11001</td>
</tr>
<tr>
<td>26</td>
<td>11010</td>
</tr>
<tr>
<td>27</td>
<td>11011</td>
</tr>
<tr>
<td>28</td>
<td>11100</td>
</tr>
<tr>
<td>29</td>
<td>11101</td>
</tr>
<tr>
<td>30</td>
<td>11110</td>
</tr>
<tr>
<td>31</td>
<td>11111</td>
</tr>
</tbody>
</table>

... ...
Binary to decimal: expand using positional notation

$$100101_B = (1\times2^5) + (0\times2^4) + (0\times2^3) + (1\times2^2) + (0\times2^1) + (1\times2^0)$$

$$= 32 + 0 + 0 + 4 + 0 + 1$$

$$= 37$$

Most-significant bit (msb)

Least-significant bit (lsb)
(Decimal) Integer to binary: do the reverse

- Determine largest power of 2 that’s ≤ number; write template

\[37 = (__2^5) + (__2^4) + (__2^3) + (__2^2) + (__2^1) + (__2^0) \]

- Fill in template

\[37 = (1*2^5) + (0*2^4) + (0*2^3) + (1*2^2) + (0*2^1) + (1*2^0) \]

\[100101_b \]
Integer-Binary Conversion

Integer to binary division method

- Repeatedly divide by 2, consider remainder

\[
\begin{align*}
37 \div 2 &= 18 \text{ R } 1 \\
18 \div 2 &= 9 \text{ R } 0 \\
9 \div 2 &= 4 \text{ R } 1 \\
4 \div 2 &= 2 \text{ R } 0 \\
2 \div 2 &= 1 \text{ R } 0 \\
1 \div 2 &= 0 \text{ R } 1
\end{align*}
\]

Read from bottom to top: \(100101_B\)
The Hexadecimal Number System

Name
• From ancient Greek ἕξ (hex, “six”) + Latin-derived decimal

Characteristics
• Sixteen symbols
 • 0 1 2 3 4 5 6 7 8 9 A B C D E F
• Positional
 • $A13D \neq 3DA1$

Computer programmers often use hexadecimal or “hex”
• In C: 0x prefix (0xA13D, etc.)
Binary-Hexadecimal Conversion

Observation:
- $16^1 = 2^4$, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010000100111101<sub>B</sub></td>
<td>A 1 3 D<sub>H</sub></td>
</tr>
</tbody>
</table>

Number of bits in binary number not a multiple of 4? ⇒ pad with zeros on left

Hexadecimal to binary

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1 3 D<sub>H</sub></td>
<td>1010000100111101<sub>B</sub></td>
</tr>
</tbody>
</table>

Discard leading zeros from binary number if appropriate
Integer-Hexadecimal Conversion

Hexadecimal to (decimal) integer: expand using positional notation

\[25_H = (2 \times 16^1) + (5 \times 16^0) \]
\[= 32 + 5 \]
\[= 37 \]

Integer to hexadecimal: use the division method

\[37 / 16 = 2 \text{ R } 5 \]
\[2 / 16 = 0 \text{ R } 2 \]

Read from bottom to top: \(25_H\)
Are you \(539_H \) ?

Convert binary \(101010 \) into decimal and hex

A. 21 decimal, A2 hex
B. 21 decimal, A8 hex
C. 18 decimal, 2A hex
D. 42 decimal, 2A hex

hint: convert to hex first

challenge: once you've locked in and discussed with a neighbor, figure out why this slide's title is what it is.
The Octal Number System

Name
• “octo” (Latin) ⇒ eight

Characteristics
• Eight symbols
 • 0 1 2 3 4 5 6 7
• Positional
 • 17430 ≠ 73140

Computer programmers sometimes use octal (so does Mickey!)
• In C: 0 prefix (01743, etc.)

```bash
$ ls -l myFile
-rw-r--r-- 1 cmoretti wheel 0 Sep 7 10:58 myFile
$ chmod 755 myFile
$ ls -l myFile
-rwxr-xr-x 1 cmoretti wheel 0 Sep 7 10:58 myFile
```
INTEGERS
Representing Unsigned (Non-Negative) Integers

Mathematics
- Non-negative integers’ range is 0 to ∞

Computers
- Range limited by computer’s word size
- Word size is n bits \Rightarrow range is 0 to $2^n - 1$ representing with an n bit binary number
- Exceed range \Rightarrow overflow

Typical computers today
- $n = 32$ or 64, so range is 0 to $2^{32} - 1$ (\sim4 billion) or $2^{64} - 1$ (huge ... \sim1.8e19)

Pretend computer
- $n = 4$, so range is 0 to $2^4 - 1$ (15)

Hereafter on these slides, assume word size = 4
- All points generalize to word size = n (armlab: 64)
Representing Unsigned Integers

On 4-bit pretend computer

<table>
<thead>
<tr>
<th>Unsigned Integer</th>
<th>Rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Adding Unsigned Integers

Addition

Results are mod 2^4

$7 + 10 = 17$

$17 \mod 16 = 1$

Start at right column
Proceed leftward
Carry 1 when necessary

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

How would you detect overflow programmatically?
Subtracting Unsigned Integers

Results are mod 2^4

19

$3 - 10 = -7$

$-7 \mod 16 = 9$

Subtraction

\[
\begin{array}{c}
10 \\
-7 \\
\hline
3
\end{array}
\begin{array}{c}
1010_B \\
0111_B \\
\hline
0011_B
\end{array}
\]

Start at right column
Proceed leftward
Borrow when necessary

\[
\begin{array}{c}
3 \\
-10 \\
\hline
9
\end{array}
\begin{array}{c}
0011_B \\
1010_B \\
\hline
1001_B
\end{array}
\]

How would you detect overflow programmatically?

Beware of overflow
Reminder: negative numbers exist
Definition

High-order bit indicates sign
0 ⇒ positive
1 ⇒ negative

Remaining bits indicate magnitude

0101_B = 101_B = 5
1101_B = -101_B = -5

Pros and cons
+ easy to understand, easy to negate
+ symmetric
- two representations of zero
- need different algorithms to add signed and unsigned numbers

Not used for integers today
Obsolete Attempt #2: Ones’ Complement

<table>
<thead>
<tr>
<th>Integer</th>
<th>Rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>1000</td>
</tr>
<tr>
<td>-6</td>
<td>1001</td>
</tr>
<tr>
<td>-5</td>
<td>1010</td>
</tr>
<tr>
<td>-4</td>
<td>1011</td>
</tr>
<tr>
<td>-3</td>
<td>1100</td>
</tr>
<tr>
<td>-2</td>
<td>1101</td>
</tr>
<tr>
<td>-1</td>
<td>1110</td>
</tr>
<tr>
<td>-0</td>
<td>1111</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
</tbody>
</table>

Definition

High-order bit has weight \(-2^{b-1}-1\)

\[
1010_B = (1 \times -7) + (0 \times 4) + (1 \times 2) + (0 \times 1) \\
= -5
\]

\[
0010_B = (0 \times -7) + (0 \times 4) + (1 \times 2) + (0 \times 1) \\
= 2
\]

Computing negative = flipping all bits

Similar pros and cons to sign-magnitude
Two’s Complement

<table>
<thead>
<tr>
<th>Integer</th>
<th>Rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>1000</td>
</tr>
<tr>
<td>-7</td>
<td>1001</td>
</tr>
<tr>
<td>-6</td>
<td>1010</td>
</tr>
<tr>
<td>-5</td>
<td>1011</td>
</tr>
<tr>
<td>-4</td>
<td>1100</td>
</tr>
<tr>
<td>-3</td>
<td>1101</td>
</tr>
<tr>
<td>-2</td>
<td>1110</td>
</tr>
<tr>
<td>-1</td>
<td>1111</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
</tbody>
</table>

Definition
High-order bit has weight \(-2^{b-1}\)

\[1010_B = (1 \times -8) + (0 \times 4) + (1 \times 2) + (0 \times 1)\]
\[= -6\]

\[0010_B = (0 \times -8) + (0 \times 4) + (1 \times 2) + (0 \times 1)\]
\[= 2\]
Two’s Complement (cont.)

<table>
<thead>
<tr>
<th>Integer</th>
<th>Rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>1000</td>
</tr>
<tr>
<td>-7</td>
<td>1001</td>
</tr>
<tr>
<td>-6</td>
<td>1010</td>
</tr>
<tr>
<td>-5</td>
<td>1011</td>
</tr>
<tr>
<td>-4</td>
<td>1100</td>
</tr>
<tr>
<td>-3</td>
<td>1101</td>
</tr>
<tr>
<td>-2</td>
<td>1110</td>
</tr>
<tr>
<td>-1</td>
<td>1111</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
</tbody>
</table>

Computing negative
\[
\text{neg}(x) = \sim x + 1
\]
\[
\text{neg}(x) = \text{onescomp}(x) + 1
\]
\[
\text{neg}(\text{0101}_B) = 1010_B + 1 = 1011_B
\]
\[
\text{neg}(\text{1011}_B) = 0100_B + 1 = 0101_B
\]

Pros and cons
- not symmetric
 (“extra” negative number; \((-8) = -8\))
+ one representation of zero
+ same algorithms add/subtract signed and unsigned integers
Adding Signed Integers

pos + pos

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0011(_B)</td>
<td>3 (_\text{pos})</td>
</tr>
<tr>
<td>+ 3</td>
<td>+ 0011(_B)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0110(_B)</td>
<td></td>
</tr>
</tbody>
</table>

pos + pos (overflow)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>0111(_B)</td>
<td>7 (_\text{pos})</td>
</tr>
<tr>
<td>+ 1</td>
<td>+ 0001(_B)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>1000(_B)</td>
<td></td>
</tr>
</tbody>
</table>

pos + neg

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>0011(_B)</td>
<td>3 (_\text{pos})</td>
</tr>
<tr>
<td>+ -1</td>
<td>+ 1111(_B)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0010(_B)</td>
<td></td>
</tr>
</tbody>
</table>

neg + neg

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1101(_B)</td>
<td>-3 (_\text{neg})</td>
</tr>
<tr>
<td>+ -2</td>
<td>+ 1110(_B)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>1011(_B)</td>
<td></td>
</tr>
</tbody>
</table>

neg + neg (overflow)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1010(_B)</td>
<td>-6 (_\text{neg})</td>
</tr>
<tr>
<td>+ -5</td>
<td>+ 1011(_B)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0101(_B)</td>
<td></td>
</tr>
</tbody>
</table>

How would you detect overflow programatically?
How would you compute $3 - 4$?

\[
\begin{array}{c c c}
3 & 0011_B \\
- 4 & - 0100_B \\
\hline
? & ???_B \\
\end{array}
\]
Subtracting Signed Integers

Perform subtraction with borrows

\[
\begin{array}{c}
3 \\
- 4 \\
-- \\
-1 \\
\end{array}
\quad
\begin{array}{c}
0011_{B} \\
0100_{B} \\
\quad \\
1111_{B} \\
\end{array}
\]

or

Compute two’s comp and add

\[
\begin{array}{c}
3 \\
+ -4 \\
-- \\
-1 \\
\end{array}
\quad
\begin{array}{c}
0011_{B} \\
1100_{B} \\
\quad \\
1111_{B} \\
\end{array}
\]

\[
\begin{array}{c}
-5 \\
--2 \\
-- \\
-3 \\
\end{array}
\quad
\begin{array}{c}
1011_{B} \\
1110_{B} \\
\quad \\
1101_{B} \\
\end{array}
\]

\[
\begin{array}{c}
-5 \\
+ 2 \\
-- \\
-3 \\
\end{array}
\quad
\begin{array}{c}
1011_{B} \\
0010_{B} \\
\quad \\
1101_{B} \\
\end{array}
\]
Negating Signed Ints: Math

Question: Why does two’s comp arithmetic work?

Answer: \([-b] \mod 2^4 = [\text{twoscomp}(b)] \mod 2^4\)

\[
\begin{align*}
[-b] \mod 2^4 \\
= [2^4 - b] \mod 2^4 \\
= [2^4 - 1 - b + 1] \mod 2^4 \\
= [(2^4 - 1 - b) + 1] \mod 2^4 \\
= [\text{onescomp}(b) + 1] \mod 2^4 \\
= [\text{twoscomp}(b)] \mod 2^4
\end{align*}
\]

So: \([a - b] \mod 2^4 = [a + \text{twoscomp}(b)] \mod 2^4\)

\[
\begin{align*}
[a - b] \mod 2^4 \\
= [a + 2^4 - b] \mod 2^4 \\
= [a + 2^4 - 1 - b + 1] \mod 2^4 \\
= [a + (2^4 - 1 - b) + 1] \mod 2^4 \\
= [a + \text{onescomp}(b) + 1] \mod 2^4 \\
= [a + \text{twoscomp}(b)] \mod 2^4
\end{align*}
\]
(AT LONG° LAST)
INTEGERS IN C

° no pun intended, I swear!
Integer Data Types in C

Integer types of various sizes: \{\texttt{signed}, \texttt{unsigned}\}\{\texttt{char}, \texttt{short}, \texttt{int}, \texttt{long}\}

- Shortcuts: signed assumed for \texttt{short/int/long}; unsigned means unsigned \texttt{int}
- char is 1 byte
 - Number of bits per byte is unspecified (but in the 21st century, safe to assume it’s 8)
 - Signedness is system dependent, so for arithmetic use “signed char” or “unsigned char”
- Sizes of other integer types not fully specified but constrained:
 - int was intended to be “natural word size” of hardware
 - \(2 \leq \text{sizeof(short)} \leq \text{sizeof(int)} \leq \text{sizeof(long)}\)

On armlab:
- Natural word size: 8 bytes (“64-bit machine”)
- char: 1 byte
- short: 2 bytes
- int: 4 bytes (compatibility with widespread 32-bit code)
- long: 8 bytes

What decisions did the designers of Java make?
Integer Types in Java vs. C

<table>
<thead>
<tr>
<th></th>
<th>Java</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned types</td>
<td>char // 16 bits</td>
<td>unsigned char</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unsigned short</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unsigned (int)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unsigned long</td>
</tr>
<tr>
<td>Signed types</td>
<td>byte // 8 bits</td>
<td>signed char</td>
</tr>
<tr>
<td></td>
<td>short // 16 bits</td>
<td>(signed) short</td>
</tr>
<tr>
<td></td>
<td>int // 32 bits</td>
<td>(signed) int</td>
</tr>
<tr>
<td></td>
<td>long // 64 bits</td>
<td>(signed) long</td>
</tr>
</tbody>
</table>

1. Not guaranteed by C, but on armlab, `short` = 16 bits, `int` = 32 bits, `long` = 64 bits
2. Not guaranteed by C, but on armlab, `char` is unsigned
sizeof Operator

- Applied at compile-time
- Operand can be a data type
- Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217
- `sizeof(int)` evaluates to 4
- `sizeof(i)` evaluates to 4 if `i` is a variable of type `int`
- `sizeof(1+2)` evaluates to 4
Integer Literals in C

- Decimal int: 123
- Prefixes to indicate a different base
 - Octal int: 0173 = 123
 - Hexadecimal int: 0x7B = 123
 - No prefix to indicate binary int literal
- Suffixes to indicate a different type
 - Use "L" suffix to indicate long literal
 - Use "U" suffix to indicate unsigned literal
 - No suffix to indicate char or short literals; instead, cast

char: '}' (really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B
int: 123, 0173, 0x7B
long: 123L, 0173L, 0x7BL
short: (short)123, (short)0173, (short)0x7B
unsigned int: 123U, 0173U, 0x7BU
unsigned long: 123UL, 0173UL, 0x7BUL
unsigned short: (unsigned short)123, (unsigned short)0173, (unsigned short)0x7B
What is the value of the following sizeof expression on the armlab machines?

```c
int i = 1;
sizeof(i + 2L)
```

A. 3
B. 4
C. 8
D. 12
E. error
OPERATIONS ON NUMBERS
Reading / Writing Numbers

Motivation

• Must convert between external form (sequence of character codes) and internal form
• Could provide getchar(), putshort(), getint(), putfloat(), etc.
• Alternative implemented in C: parameterized functions

scanf() and printf()

• Can read/write any primitive type of data
• First parameter is a format string containing conversion specs: size, base, field width
• Can read/write multiple variables with one call

See King book for details
Operators in C

• Typical arithmetic operators: + − * / %
• Typical relational operators: == != < <= > >=
 • Each evaluates to FALSE ⇒ 0, TRUE ⇒ 1
• Typical logical operators: ! && ||
 • Each interprets 0 ⇒ FALSE, non-0 ⇒ TRUE
 • Each evaluates to FALSE ⇒ 0, TRUE ⇒ 1
• Cast operator: (type)
• Bitwise operators: ~ & | ^ >> <<
Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

- $10 >> 1 \Rightarrow 5$
 - $1010_B \rightarrow 0101_B$
- $10 >> 2 \Rightarrow 2$
 - $1010_B \rightarrow 0010_B$

Bitwise left shift (<< in C): fill on right with zeros

- $5 << 1 \Rightarrow 10$
 - $0101_B \rightarrow 1010_B$
- $3 << 2 \Rightarrow 12$
 - $0011_B \rightarrow 1100_B$
- $3 << 3 \Rightarrow 8$
 - $0011_B \rightarrow 1000_B$

What is the effect arithmetically?

Results are mod 2^4
Other Bitwise Operations on Unsigned Integers

Bitwise NOT (~ in C)

- Flip each bit (don't forget leading 0s!)

\[
\begin{align*}
\sim10 & \Rightarrow 5 \\
1010_B & \quad 0101_B \\
\sim5 & \Rightarrow 10 \\
0101_B & \quad 1010_B
\end{align*}
\]

Bitwise AND (& in C)

- AND (1=True, 0=False) corresponding bits

\[
\begin{align*}
10 & \quad 1010_B \\
& \quad \& \quad 0111_B \\
\Rightarrow & \quad \quad -- \quad ---- \\
2 & \quad 0010_B \\
10 & \quad 1010_B \\
& \quad \& \quad 0010_B \\
\Rightarrow & \quad \quad ---- \quad ---- \\
2 & \quad 0010_B
\end{align*}
\]

Useful for “masking” bits to 0

\[x \& 0 \text{ is } 0, \quad x \& 1 \text{ is } x\]
Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)
- Logical OR corresponding bits

<table>
<thead>
<tr>
<th></th>
<th>1010_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001_B</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>1011_B</td>
</tr>
</tbody>
</table>

Useful for “masking” bits to 1

x | 1 is 1, x | 0 is x

Bitwise exclusive OR (^ in C)
- Logical exclusive OR corresponding bits

<table>
<thead>
<tr>
<th></th>
<th>1010_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>^1010_B</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0</td>
<td>0000_B</td>
</tr>
</tbody>
</table>

x ^ x sets
all bits to 0
Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)

- \(2 \text{ (TRUE)} \, \&\& \, 1 \text{ (TRUE)} \Rightarrow 1 \text{ (TRUE)}\)

\[
\begin{array}{c|cccccccc}
\text{Decimal} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{Binary} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 \\
\&\& & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\
\hline
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\
\end{array}
\]

- \(2 \text{ (TRUE)} \, \& \, 1 \text{ (TRUE)} \Rightarrow 0 \text{ (FALSE)}\)

\[
\begin{array}{c|cccccccc}
\text{Decimal} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{Binary} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 \\
\& & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 01 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 00 \\
\end{array}
\]

Implication:

- Use **logical** AND to control flow of logic
- Use **bitwise** AND only when doing bit-level manipulation
- Same for OR and NOT
A Bit Complicated ... challenge for the bored

How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)?

A. \(u &= (0 << k); \)
B. \(u |= (1 << k); \)
C. \(u |= ~(1 << k); \)
D. \(u &= ~(1 << k); \)
E. \(u = \sim u ^ (1 << k); \)
Aside: Using Bitwise Ops for Arithmetic

Can use <<, >>, and & to do some arithmetic efficiently

\[x \times 2^y = x << y \]
- \[3 \times 4 = 3 \times 2^2 = 3 << 2 \Rightarrow 12 \]

\[x / 2^y = x >> y \]
- \[13 / 4 = 13 / 2^2 = 13 >> 2 \Rightarrow 3 \]

\[x \mod 2^y = x \& (2^y - 1) \]
- \[13 \mod 4 = 13 \mod 2^2 = 13 \& (2^2 - 1) = 13 \& 3 \Rightarrow 1 \]

Fast way to multiply by a power of 2

Fast way to divide unsigned by power of 2

Fast way to mod by a power of 2

Many compilers will do these transformations automatically!
Shifting Signed Integers

Bitwise left shift (\(\ll\) in C): fill on right with zeros

- \(3 \ll 1 \Rightarrow 6\)
 - 0011\(_B\) 0110\(_B\)
- \(-3 \ll 1 \Rightarrow -6\)
 - 1101\(_B\) 1010\(_B\)
- \(-3 \ll 2 \Rightarrow 4\)
 - 1101\(_B\) 0100\(_B\)

What is the effect arithmetically?

Results are mod \(2^4\)

Bitwise right shift: fill on left with ???
Shifting Signed Integers (cont.)

Bitwise *arithmetic* right shift: fill on left with sign bit

- \(6 \gg 1 \Rightarrow 3 \)
 - \(\text{0110}_B \rightarrow \text{0011}_B \)
- \(-6 \gg 1 \Rightarrow -3 \)
 - \(\text{1010}_B \rightarrow \text{1101}_B \)

What is the effect arithmetically?

Bitwise *logical* right shift: fill on left with zeros

- \(6 \gg 1 \Rightarrow 3 \)
 - \(\text{0110}_B \rightarrow \text{0011}_B \)
- \(-6 \gg 1 \Rightarrow 5 \)
 - \(\text{1010}_B \rightarrow \text{0101}_B \)

What is the effect arithmetically???

In C, right shift (\(\gg\)) could be logical (\(\gg\gg\) in Java) or arithmetic (\(\gg\) in Java)

- Not specified by standard (happens to be arithmetic on armlab)
- Best to avoid shifting signed integers
Other Operations on Signed Ints

Bitwise NOT (~ in C)
 - Same as with unsigned ints

Bitwise AND (& in C)
 - Same as with unsigned ints

Bitwise OR: (| in C)
 - Same as with unsigned ints

Bitwise exclusive OR (^ in C)
 - Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.
Assignment Operator

Many high-level languages provide an assignment statement

C provides an assignment operator

- Performs assignment, and then evaluates to the assigned value
- Allows assignment to appear within larger expressions
- But be careful about precedence! Extra parentheses often needed!
Assignment Operator Examples

Examples

```c
i = 0;
   /* Side effect: assign 0 to i.
    Evaluate to 0. */

j = i = 0; /* Assignment op has R to L associativity */
   /* Side effect: assign 0 to i.
    Evaluate to 0.
    Side effect: assign 0 to j.
    Evaluate to 0. */

while ((i = getchar()) != EOF) ... /* Read a character or EOF value.
   Side effect: assign that value to i.
   Evaluate to that value.
   Compare that value to EOF.
   Evaluate to 0 (FALSE) or 1 (TRUE). */
```
Motivation
• The construct $a = b + c$ is flexible
• The construct $d = d + e$ is somewhat common
• The construct $d = d + 1$ is very common

Assignment in C
• Introduce $+= \text{ operator to do things like } d += e$
• Extend to $-= *= /= ~= &= |= ^= <<= >>=$
• All evaluate to whatever was assigned
• Pre-increment and pre-decrement: $++d \ --d$
• Post-increment and post-decrement (evaluate to old value): $d++ \ d--$
Q: What are i and j set to in the following code?

```
i = 5;
j = i++;  
j += ++i;
```

A. 5, 7
B. 7, 5
C. 7, 11
D. 7, 12
E. 7, 13
Q: What does the following code print?

```c
int i = 1;
switch (i++) {
    case 1: printf("%d", ++i);
    case 2: printf("%d", i++);
}
```

A. 1
B. 2
C. 3
D. 22
E. 33
1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions.

(i) (4 points) What is the largest unsigned number that can be represented in 7 bits?
 In binary:
 In decimal:

(ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2’s complement in 7 bits?
 In binary:
 In decimal:

(iii) (2 points) Is there a number n, other than 0, for which n is equal to –n, when represented in 2’s complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not.

(iv) (2 points) When doing arithmetic addition using 2’s complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.)
APPENDIX:
FLOATING POINT
Rational Numbers

Mathematics
• A rational number is one that can be expressed as the ratio of two integers
• Unbounded range and precision

Computer science
• Finite range and precision
• Approximate using floating point number
Floating Point Numbers

Like scientific notation: e.g., c is

\[2.99792458 \times 10^8 \text{ m/s} \]

This has the form

\[(\text{multiplier}) \times (\text{base})^{(\text{power})} \]

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent
Floating-Point Data Types

C specifies:
- Three floating-point data types: float, double, and long double
- Sizes unspecified, but constrained:
 - sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)
- float: 4 bytes
- double: 8 bytes

On ArmLab (but varying across architectures)
- long double: 16 bytes
Floating-Point Literals

How to write a floating-point number?

- Either fixed-point or “scientific” notation
- Any literal that contains decimal point or "E" is floating-point
- The default floating-point type is double
- Append "F" to indicate float
- Append "L" to indicate long double

Examples

- double: 123.456, 1E-2, -1.23456E4
- float: 123.456F, 1E-2F, -1.23456E4F
- long double: 123.456L, 1E-2L, -1.23456E4L
Common finite representation: IEEE floating point

- More precisely: ISO/IEEE 754 standard

Using 32 bits (type `float` in C):
- 1 bit: sign (0⇒positive, 1⇒negative)
- 8 bits: exponent + 127
- 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type `double` in C):
- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023
- 52 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
When was floating-point invented?

mantissa (noun): decimal part of a logarithm, 1865, Answer: long before computers! from Latin mantisa “a worthless addition, makeweight”
Floating Point Example

Sign (1 bit):
- 1 ⇒ negative

Exponent (8 bits):
- \(10000011_2 = 131\)
- \(131 - 127 = 4\)

Mantissa (23 bits):
- \(1.10110110000000000000000_2\)
- \(1 + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3}) + (1 \times 2^{-4}) + (0 \times 2^{-5}) + (1 \times 2^{-6}) + (1 \times 2^{-7}) + (0 \times 2^{-8}) = 1.7109375\)

Number:
- \(-1.7109375 \times 2^4 = -27.375\)
“Machine epsilon”: smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\varepsilon \approx 10^{-7}$
- No such number as 1.000000001
- Rule of thumb: “almost 7 digits of precision”

For double: $\varepsilon \approx 2 \times 10^{-16}$
- Rule of thumb: “not quite 16 digits of precision”

These are all relative numbers
Floating Point Consequences, cont

Just as decimal number system can represent only some rational numbers with finite digit count...
- Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count
- Example: 1/5 cannot be represented

Beware of round-off error
- Error resulting from inexact representation
- Can accumulate
- Be careful when comparing two floating-point numbers for equality

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>.3</td>
<td>3/10</td>
</tr>
<tr>
<td>.33</td>
<td>33/100</td>
</tr>
<tr>
<td>.333</td>
<td>333/1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary</th>
<th>Rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0/2</td>
</tr>
<tr>
<td>0.01</td>
<td>1/4</td>
</tr>
<tr>
<td>0.010</td>
<td>2/8</td>
</tr>
<tr>
<td>0.0011</td>
<td>3/16</td>
</tr>
<tr>
<td>0.00110</td>
<td>6/32</td>
</tr>
<tr>
<td>0.001101</td>
<td>13/64</td>
</tr>
<tr>
<td>0.0011010</td>
<td>26/128</td>
</tr>
<tr>
<td>0.00110011</td>
<td>51/256</td>
</tr>
</tbody>
</table>
What does the following code print?

da double sum = 0.0;
da double i;
da for (i = 0.0; i != 10.0; i++)
da sum += 0.1;
da if (sum == 1.0)
da printf("All good!\n");
da else

da printf("Yikes!\n");

A. All good!
B. Yikes!
C. (Infinite loop)
D. (Compilation error)

B: Yikes!

... loop terminates, because we can represent 10.0 exactly by adding 1.0 at a time.

... but sum isn’t 1.0 because we can’t represent 1.0 exactly by adding 0.1 at a time.