
COS 217: Introduction to Programming Systems

Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec == 31 Oct

1

@bradleyhowington

https://unsplash.com/@bradleyhowington


The Decimal Number System
Name

• From Latin decem (“ten”)

Characteristics
• For us, these symbols (Not universal …)

• 0 1 2 3 4 5 6 7 8 9

• Positional
• 2945 ≠ 2495
• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system2

https://commons.wikimedia.org/wiki/File:Arabic_numerals-en.svg

Why?

Cowbirds in Love #43 – Sanjay Kulkacek

https://commons.wikimedia.org/wiki/File:Arabic_numerals-en.svg
https://web.archive.org/web/20160505151914/http:/cowbirdsinlove.com/43


The Binary Number System
binary
adjective: being in a state of one of two mutually exclusive conditions such as
on or off, true or false, molten or frozen, presence or absence of a signal.
From late Latin binarius (“consisting of two”), from classical Latin bis (“twice”)

Characteristics
• Two symbols:  0 1
• Positional: 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a single binary symbol (“binary digit”)
• Byte: (typically) 8 bits
• Nibble / Nybble: 4 bits – we'll see a more common name for 4 bits soon. 

3

Why?



Decimal-Binary Equivalence

4

Decimal Binary
0      0
1      1
2     10
3     11
4    100
5    101
6    110
7    111
8   1000
9   1001
10   1010
11   1011
12   1100
13   1101
14   1110
15   1111

Decimal Binary
16  10000
17  10001
18  10010
19  10011
20  10100
21  10101
22  10110
23  10111
24  11000
25  11001
26  11010
27  11011
28  11100
29  11101
30  11110
31  11111
...    ...



Decimal-Binary Conversion

Binary to decimal: expand using positional notation

5

100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
=    32  +  0   +  0   +  4  +  0   +  1
=    37

Least-significant 
bit (lsb)

Most-significant 
bit (msb)



Integer-Binary Conversion
(Decimal) Integer to binary: do the reverse

• Determine largest power of 2 that’s ≤ number; write template

• Fill in template

7

37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
-32
5
-4
1                   100101B
-1
0



Integer-Binary Conversion
Integer to binary division method

• Repeatedly divide by 2, consider remainder

8

37 / 2 = 18 R 1
18 / 2 =  9 R 0
9 / 2 =  4 R 1
4 / 2 =  2 R 0
2 / 2 =  1 R 0
1 / 2 =  0 R 1

Read from bottom
to top: 100101B



The Hexadecimal Number System
Name

• From ancient Greek ἕξ (hex, “six”) + Latin-derived decimal

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F
• Positional

• A13DH ≠ 3DA1H

Computer programmers often use hexadecimal or “hex”
• In C: 0x prefix (0xA13D, etc.)

9

Why?

That’s a 
zero, not 

an Oh



Binary-Hexadecimal Conversion
Observation:

• 161 = 24, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

Hexadecimal to binary

11

1010000100111101B
A 1   3 DH

Number of bits in binary number
not a multiple of 4?  ⇒
pad with zeros on left

A 1   3 DH
1010000100111101B

Discard leading zeros from binary 
number if appropriate



Integer-Hexadecimal Conversion
Hexadecimal to (decimal) integer: expand using positional notation

Integer to hexadecimal: use the division method

12

25H = (2*161) + (5*160)
=  32   +    5
=  37

37 / 16 = 2 R 5
2 / 16 = 0 R 2

Read from bottom
to top: 25H



13

Are you 539H?
Convert binary 101010 into decimal and hex

A. 21 decimal, A2 hex

B. 21 decimal, A8 hex

C. 18 decimal, 2A hex

D. 42 decimal, 2A hex

hint: convert to hex first

challenge: once you've locked in and discussed with a 
neighbor, figure out why this slide's title is what it is.



The Octal Number System
Name

• “octo” (Latin) ⇒ eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7
• Positional

• 1743O ≠ 7314O

Computer programmers sometimes use octal (so does Mickey!)
• In C: 0 prefix (01743, etc.)

14

Why?



INTEGERS

15

@photoshobby

https://unsplash.com/@photoshobby


Representing Unsigned (Non-Negative) Integers
Mathematics

• Non-negative integers’ range is 0 to ∞

Computers
• Range limited by computer’s word size
• Word size is n bits ⇒ range is 0 to 2n – 1 representing with an n bit binary number
• Exceed range ⇒ overflow

Typical computers today
• n = 32 or 64, so range is 0 to 232 – 1 (~4 billion) or 264 – 1 (huge … ~1.8e19)

Pretend computer
• n = 4, so range is 0 to 24 – 1  (15)

Hereafter on these slides, assume word size = 4
• All points generalize to word size = n (armlab: 64)

16



Representing Unsigned Integers
On 4-bit pretend computer

17

Unsigned
Integer Rep

0   0000
1   0001
2   0010
3   0011
4   0100
5   0101
6   0110
7   0111
8   1000
9   1001
10   1010
11   1011
12   1100
13   1101
14   1110
15   1111



Adding Unsigned Integers
Addition

Results are mod 24 

7 + 10 = 17 
17 mod 16 = 1

18

111
7      0111B

+ 10    + 1010B
-- ----
1     0001B

1
3      0011B

+ 10    + 1010B
-- ----
13   1101B

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

How would you
detect overflow

programmatically?



Subtracting Unsigned Integers
Subtraction

Results are mod 24 

3 - 10 = -7 
-7 mod 16 = 9

19

1
3  0011B

- 10    - 1010B
-- ----
9 1001B

111
10      1010B

- 7    - 0111B
-- ----
3      0011B

Start at right column
Proceed leftward
Borrow when necessary

Beware of overflow

How would you
detect overflow

programmatically?



Reminder: negative numbers exist

20



Obsolete Attempt #1: Sign-Magnitude

21

Integer Rep
-7   1111
-6   1110
-5   1101
-4   1100
-3   1011
-2   1010
-1   1001
-0   1000
0   0000
1   0001
2   0010
3   0011
4   0100
5   0101
6   0110
7   0111

Definition
High-order bit indicates sign
0 ⇒ positive
1 ⇒ negative

Remaining bits indicate magnitude
0101B =  101B =  5
1101B = -101B = -5

Pros and cons
+ easy to understand, easy to negate
+ symmetric
- two representations of zero
- need different algorithms to add

signed and unsigned numbers
Not used for integers today



Obsolete Attempt #2: Ones’ Complement

22

Integer Rep
-7   1000
-6   1001
-5   1010
-4   1011
-3   1100
-2   1101
-1   1110
-0   1111
0   0000
1   0001
2   0010
3   0011
4   0100
5   0101
6   0110
7   0111

Definition
High-order bit has weight –(2b-1-1)
1010B = (1*-7)+(0*4)+(1*2)+(0*1)

= -5
0010B = (0*-7)+(0*4)+(1*2)+(0*1)

= 2

Computing negative = flipping all bits

Similar pros and cons to sign-magnitude



Two’s Complement

23

Integer Rep
-8   1000
-7   1001
-6   1010
-5   1011
-4   1100
-3   1101
-2   1110
-1   1111
0   0000
1   0001
2   0010
3   0011
4   0100
5   0101
6   0110
7   0111

Definition
High-order bit has weight –(2b-1)
1010B = (1*-8)+(0*4)+(1*2)+(0*1)

= -6
0010B = (0*-8)+(0*4)+(1*2)+(0*1)

= 2



Two’s Complement (cont.)

24

Integer Rep
-8   1000
-7   1001
-6   1010
-5   1011
-4   1100
-3   1101
-2   1110
-1   1111
0   0000
1   0001
2   0010
3   0011
4   0100
5   0101
6   0110
7   0111

Computing negative
neg(x) = ~x + 1
neg(x) = onescomp(x) + 1

neg(0101B) = 1010B + 1 = 1011B
neg(1011B) = 0100B + 1 = 0101B

Pros and cons
- not symmetric 

(“extra” negative number; -(-8) = -8)
+ one representation of zero
+ same algorithms add/subtract

signed and unsigned integers



Adding Signed Integers

25

11
3      0011B

+ 3    + 0011B
-- ----
6      0110B

111
7      0111B

+ 1    + 0001B
-- ----
-8 1000B

pos + pos pos + pos (overflow)

1111
3      0011B

+ -1    + 1111B
-- ----
2     0010B

pos + neg

11
-3      1101B

+ -2    + 1110B
-- ----
-5     1011B

neg + neg
1 1

-6      1010B
+ -5    + 1011B

-- ----
5     0101B

neg + neg (overflow)

How would you
detect overflow
programmatically?



Subtracting Signed Integers

26

3      0011B
- 4    - 0100B
-- ----
?      ????B

How would you compute 3 – 4?



Subtracting Signed Integers

27

11
3      0011B

- 4    - 0100B
-- ----
-1      1111B

3      0011B
+ -4    + 1100B

-- ----
-1      1111B

11
-5      1011B

--2    - 1110B
-- ----
-3      1101B

1 
-5      1011B

+  2    + 0010B
-- ----
-3     1101B

Perform subtraction
with borrows

Compute two’s comp
and addor



Negating Signed Ints: Math
Question: Why does two’s comp arithmetic work?

Answer:  [–b] mod 24 = [twoscomp(b)] mod 24

So: [a – b] mod 24 = [a + twoscomp(b)] mod 24

28

[–b] mod 24

= [24 – b] mod 24

= [24 – 1 - b + 1] mod 24

= [(24 – 1 - b) + 1] mod 24

= [onescomp(b) + 1] mod 24

= [twoscomp(b)] mod 24

[a – b] mod 24

= [a + 24 – b] mod 24

= [a + 24 – 1 – b + 1] mod 24

= [a + (24 - 1 – b) + 1] mod 24

= [a + onescomp(b) + 1] mod 24

= [a + twoscomp(b)] mod 24



(AT LONG°LAST)
INTEGERS IN C

29
° no pun intended, I swear! @hannahbusing

https://unsplash.com/@hannahbusing


Integer Data Types in C
Integer types of various sizes:  {signed, unsigned} {char, short, int, long}

• Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
• char is 1 byte

• Number of bits per byte is unspecified (but in the 21st century, safe to assume it’s 8)
• Signedness is system dependent, so for arithmetic use “signed char” or “unsigned char”

• Sizes of other integer types not fully specified but constrained:
• int was intended to be “natural word size” of hardware
• 2 ≤  sizeof(short) ≤  sizeof(int) ≤  sizeof(long) 

On armlab:
• Natural word size: 8 bytes (“64-bit machine”)
• char: 1 byte
• short: 2 bytes
• int: 4 bytes (compatibility with widespread 32-bit code)
• long: 8 bytes

31

What decisions did the 
designers of Java make?



Integer Types in Java vs. C

` Java C

Unsigned types char    // 16 bits

unsigned char 
unsigned short
unsigned (int)
unsigned long

Signed types

byte    // 8 bits
short   // 16 bits
int // 32 bits
long    // 64 bits

signed  char
(signed) short
(signed) int
(signed) long

32

1.Not guaranteed by C, but on armlab, short = 16 bits, int = 32 bits, long = 64 bits
2.Not guaranteed by C, but on armlab, char is unsigned



sizeof Operator
• Applied at compile-time

• Operand can be a data type

• Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217
• sizeof(int) evaluates to 4
• sizeof(i) evaluates to 4 if i is a variable of type int
• sizeof(1+2) evaluates to 4

33



Integer Literals in C
• Decimal int:  123
• Prefixes to indicate a different base

• Octal int:  0173 = 123
• Hexadecimal int:  0x7B = 123
• No prefix to indicate binary int literal

char: '{' (ß really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B
int: 123, 0173, 0x7B
long: 123L, 0173L, 0x7BL
short: (short)123, (short)0173, (short)0x7B
unsigned int: 123U, 0173U, 0x7BU
unsigned long: 123UL, 0173UL, 0x7BUL
unsigned short: (unsigned short)123, (unsigned short)0173, (unsigned short)0x7B

• Suffixes to indicate a different type
• Use "L" suffix to indicate long literal
• Use "U" suffix to indicate unsigned literal
• No suffix to indicate char or short literals; 

instead, cast



35

sizeof synthesis
Q: What is the value of the following sizeof expression on the armlab machines?

A. 3

B. 4

C. 8

D. 12

E. error

int i = 1;

sizeof(i + 2L)



OPERATIONS 
ON NUMBERS

36

@photoshobby

Shawn Rossi

https://unsplash.com/@photoshobby
https://www.flickr.com/photos/shawnzlea/


Reading / Writing Numbers
Motivation

• Must convert between external form (sequence of character codes) and internal form
• Could provide getchar(), putshort(), getint(), putfloat(), etc.
• Alternative implemented in C: parameterized functions

scanf() and printf()
• Can read/write any primitive type of data
• First parameter is a format string containing conversion specs: size, base, field width
• Can read/write multiple variables with one call

See King book for details

37



Operators in C

• Typical arithmetic operators:  +  – *  /  %
• Typical relational operators:  ==  !=  <  <=  >  >=

• Each evaluates to FALSE Þ 0,  TRUE Þ 1
• Typical logical operators:  !  &&  ||

• Each interprets 0 Þ FALSE,  non-0 Þ TRUE
• Each evaluates to FALSE Þ 0,  TRUE Þ 1

• Cast operator:  (type)
• Bitwise operators:  ~  &  |  ^  >>  <<

38



Shifting Unsigned Integers
Bitwise right shift (>> in C): fill on left with zeros

Bitwise left shift (<< in C): fill on right with zeros

39

10 >> 1 ⇒ 5

10 >> 2 ⇒ 2

5 << 1 ⇒ 10

3 << 2 ⇒ 12

What is the effect
arithmetically? 

What is the effect
arithmetically? 

1010B 0101B

1010B 0010B

0101B 1010B

0011B 1100B

3 << 3 ⇒ 8
0011B 1000B ç Results are mod 24



Other Bitwise Operations on Unsigned Integers
Bitwise NOT (~ in C)

• Flip each bit (don't forget leading 0s!)

Bitwise AND (& in C)
• AND (1=True, 0=False) corresponding bits

40

~10 ⇒ 5

10      1010B
& 7    & 0111B
-- ----
2      0010B

Useful for “masking” bits to 0
x & 0 is 0, x & 1 is x

1010B 0101B

~5 ⇒ 10

0101B 1010B

10      1010B
& 2    & 0010B
-- ----
2      0010B



Other Bitwise Operations on Unsigned Ints
Bitwise OR: (| in C)

• Logical OR corresponding bits

Bitwise exclusive OR (^ in C)
• Logical exclusive OR corresponding bits

41

10      1010B
|  1    | 0001B

-- ----
11      1011B

Useful for “masking” bits to 1
x | 1 is 1, x | 0 is x

10      1010B
^ 10    ^ 1010B

-- ----
0      0000B

x ^ x sets
all bits to 0



Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

• 2 (TRUE)  & 1 (TRUE) => 0 (FALSE)

Implication:
• Use logical AND to control flow of logic
• Use bitwise AND only when doing bit-level manipulation
• Same for OR and NOT 42

Decimal  Binary
2  00000000 00000000 00000000 00000010

&& 1  00000000 00000000 00000000 00000001
---- -----------------------------------

1  00000000 00000000 00000000 00000001

Decimal  Binary
2  00000000 00000000 00000000 00000010

& 1  00000000 00000000 00000000 00000001
---- -----------------------------------

0  00000000 00000000 00000000 00000000



43

A Bit Complicated … challenge for the bored
How do you set bit k (where the least significant bit is bit 0) 

of unsigned variable u to zero (leaving everything else in u unchanged)?

A. u &= (0 << k);

B. u |= (1 << k);

C. u |= ~(1 << k);

D. u &= ~(1 << k);

E. u = ~u ^ (1 << k);



Aside: Using Bitwise Ops for Arithmetic
Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y 
• 3*4 = 3*22 = 3<<2 ⇒ 12

x / 2y == x >> y
• 13/4 = 13/22 = 13>>2 ⇒ 3

x % 2y == x & (2y-1)
• 13%4 = 13%22 = 13&(22-1)

= 13&3 ⇒ 1

44

Fast way to multiply
by a power of 2

Fast way to divide
unsigned by power of 2

Fast way to mod
by a power of 2

13      1101B
& 3    & 0011B
-- ----
1      0001B

Many compilers will
do these transformations
automatically!



Shifting Signed Integers
Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

Bitwise right shift: fill on left with ???

45

3 << 1 ⇒ 6

-3 << 1 ⇒ -6

What is the effect
arithmetically?

0011B 0110B

1101B 1010B

-3 << 2 ⇒ 4
1101B 0100B



Shifting Signed Integers (cont.)
Bitwise arithmetic right shift: fill on left with sign bit

Bitwise logical right shift: fill on left with zeros

In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)
• Not specified by standard (happens to be arithmetic on armlab)
• Best to avoid shifting signed integers

46

6 >> 1 => 3

-6 >> 1 => 5

What is the effect
arithmetically???

0110B 0011B

1010B 0101B

6 >> 1 ⇒ 3

-6 >> 1 ⇒ -3

What is the effect
arithmetically?

0110B 0011B

1010B 1101B



Other Operations on Signed Ints
Bitwise NOT (~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)
• Same as with unsigned ints

Bitwise OR: (| in C)
• Same as with unsigned ints

Bitwise exclusive OR (^ in C)
• Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.

47



48

Assignment Operator

Many high-level languages provide an assignment statement

C provides an assignment operator
• Performs assignment, and then evaluates to the assigned value
• Allows assignment to appear within larger expressions
• But be careful about precedence!  Extra parentheses often needed!



49

Assignment Operator Examples
Examples

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0. */

j = i = 0; /* Assignment op has R to L associativity */
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) != EOF) …
/* Read a character or EOF value.

Side effect: assign that value to i.
Evaluate to that value.
Compare that value to EOF. 
Evaluate to 0 (FALSE) or 1 (TRUE). */



Special-Purpose Assignment in C
Motivation

• The construct a = b + c is flexible
• The construct d = d + e is somewhat common
• The construct d = d + 1 is very common

Assignment in C
• Introduce += operator to do things like d += e
• Extend to –=  *=  /=  ~=  &=  |=  ^=  <<=  >>=
• All evaluate to whatever was assigned
• Pre-increment and pre-decrement:  ++d  ––d
• Post-increment and post-decrement (evaluate to old value): d++  d––

50



51

Confusion Plusplus
Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

i = 5;
j = i++;
j += ++i;



52

Incremental Iffiness
Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

int i = 1;
switch (i++) {

case 1: printf("%d", ++i);
case 2: printf("%d", i++);

}



Sample Exam Question (Spring 2017, Exam 1)
1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following 

questions.

(i) (4 points) What is the largest unsigned number that can be represented in 7 bits?
In binary: In decimal:

(ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 
2’s complement in 7 bits?

In binary: In decimal:

(iii) (2 points) Is there a number n, other than 0, for which n is equal to –n, when 
represented in 2’s complement in 7 bits? If yes, show the number (in decimal). If no, 
briefly explain why not.

(iv) (2 points) When doing arithmetic addition using 2’s complement representation 
in 7 bits, is it possible to have an overflow when the first number is positive and the 
second is negative? (Yes/No answer is sufficient, no need to explain.)

53



APPENDIX:
FLOATING POINT

54

@tylerleeeaston

https://unsplash.com/@tylerleeeaston


Rational Numbers

Mathematics
• A rational number is one that can be expressed

as the ratio of two integers
• Unbounded range and precision

Computer science
• Finite range and precision
• Approximate using floating point number

55



Floating Point Numbers
Like scientific notation: e.g., c is

2.99792458 ´ 108 m/s

This has the form
(multiplier) ´ (base)(power)

In the computer,
• Multiplier is called mantissa
• Base is almost always 2
• Power is called exponent

56



Floating-Point Data Types
C specifies:

• Three floating-point data types:
float, double, and long double

• Sizes unspecified, but constrained:
• sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)
• float: 4 bytes
• double: 8 bytes

On ArmLab (but varying across architectures)
• long double: 16 bytes

57



Floating-Point Literals
How to write a floating-point number?

• Either fixed-point  or “scientific”  notation
• Any literal that contains decimal point or "E" is floating-point
• The default floating-point type is double
• Append "F" to indicate float
• Append "L" to indicate long double

Examples
• double: 123.456, 1E-2, -1.23456E4
• float: 123.456F, 1E-2F, -1.23456E4F
• long double: 123.456L, 1E-2L, -1.23456E4L

58



IEEE Floating Point Representation
Common finite representation: IEEE floating point

• More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):
• 1 bit: sign (0⇒positive, 1⇒negative)
• 8 bits: exponent + 127
• 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type double in C):
• 1 bit: sign (0⇒positive, 1⇒negative)
• 11 bits: exponent + 1023
• 52 bits: binary fraction of the form 

1.bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

59



When was floating-point invented?

60

çAnswer:  long before computers!mantissa (noun):  decimal part of a logarithm, 1865,
from Latin mantisa “a worthless addition, makeweight” 



Floating Point Example

Sign (1 bit):
• 1 ⇒ negative

Exponent (8 bits): 
• 10000011B = 131
• 131 – 127 = 4

Mantissa (23 bits):
• 1.10110110000000000000000B
• 1 + (1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+

(1*2-6)+(1*2-7) +(0*2-…)= 1.7109375

Number:
• -1.7109375 * 24 = -27.375

61

11000001110110110000000000000000

32-bit representation



Floating Point Consequences
“Machine epsilon”: smallest positive number you can

add to 1.0 and get something other than 1.0

For float: e » 10-7

• No such number as 1.000000001
• Rule of thumb: “almost 7 digits of precision”

For double: e » 2 ´ 10-16

• Rule of thumb: “not quite 16 digits of precision”

These are all relative numbers

62



Floating Point Consequences, cont
Just as decimal number system can 

represent only some rational
numbers with finite digit count…
• Example: 1/3 cannot be represented

Binary number system can
represent only some rational
numbers with finite digit count
• Example: 1/5 cannot be represented

Beware of round-off error
• Error resulting from inexact

representation
• Can accumulate
• Be careful when comparing two floating-point numbers for equality

63

Decimal Rational
Approx Value
.3       3/10
.33      33/100
.333     333/1000
...

Binary Rational
Approx Value
0.0        0/2
0.01       1/4
0.010      2/8
0.0011     3/16
0.00110    6/32
0.001101   13/64
0.0011010  26/128
0.00110011 51/256
...



64

Floating away …
What does the following code print?

A. All good!

B. Yikes!

C. (Infinite loop)

D. (Compilation error)

B: Yikes!

… loop terminates, because we 
can represent 10.0 exactly by 
adding 1.0 at a time.

… but sum isn’t 1.0 because we 
can’t represent 1.0 exactly by 
adding 0.1 at a time.

double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)

sum += 0.1;
if (sum == 1.0)

printf("All good!\n");
else

printf("Yikes!\n");


