COS 217: Introduction to Programming Systems

Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christmas and Halloween?
A: Because 25 Dec $==31$ Oct

The Decimal Number System

Name

- From Latin decem ("ten")

Characteristics

- For us, these symbols (Not universal ...)
- 01223456789
https://commons.wikimedia.org/wiki/File:Arabic numerals-en.svg
- Positional
- $2945 \neq 2495$
- $2945=\left(2 * 10^{3}\right)+\left(9 * 10^{2}\right)+\left(4 * 10^{1}\right)+\left(5 * 10^{0}\right)$

2 (Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal.
From late Latin binarius ("consisting of two"), from classical Latin bis ("twice")

Characteristics

- Two symbols: 01
- Positional: $1010_{\mathrm{B}} \neq 1100_{\mathrm{B}}$

Most (digital) computers use the binary number system

Terminology

- Bit: a single binary symbol ("binary digit")
- Byte: (typically) 8 bits
- Nibble / Nybble: 4 bits - we'll see a more common name for 4 bits soon.

Decimal-Binary Equivalence

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

> | Decimal | Binary |
| ---: | :--- |
| 16 | 10000 |
| 17 | 10001 |
| 18 | 10010 |
| 19 | 10011 |
| 20 | 10100 |
| 21 | 10101 |
| 22 | 10110 |
| 23 | 10111 |
| 24 | 11000 |
| 25 | 11001 |
| 26 | 11010 |
| 27 | 11011 |
| 28 | 11100 |
| 29 | 11101 |
| 30 | 11110 |
| 31 | 11111 |

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

Integer-Binary Conversion

(Decimal) Integer to binary: do the reverse

- Determine largest power of 2 that's \leq number; write template

$$
37=\left(? * 2^{5}\right)+\left(? * 2^{4}\right)+\left(? * 2^{3}\right)+\left(? * 2^{2}\right)+\left(? * 2^{1}\right)+\left(? * 2^{0}\right)
$$

- Fill in template

```
37 = (1*25)+(0*24)+(0*\mp@subsup{2}{}{3})+(1*\mp@subsup{2}{}{2})+(0*\mp@subsup{2}{}{1})+(1*\mp@subsup{2}{}{0})
-32
    5
-4
    100101B
```


Integer-Binary Conversion

Integer to binary division method

- Repeatedly divide by 2 , consider remainder

$$
\begin{array}{r}
37 / 2=18 \mathrm{R} 1 \\
18 / 2=9 \mathrm{R} 0 \\
9 / 2=4 \mathrm{R} 1 \\
4 / 2=2 \mathrm{R} 0 \\
2 / 2=1 \mathrm{R} 0 \\
1 / 2=0 \mathrm{R} 1
\end{array}
$$

Read from bottom to top: 100101_{B}

The Hexadecimal Number System

Name

- From ancient Greek ε है (hex, "six") + Latin-derived decimal

Characteristics

- Sixteen symbols
- 0123456789 ABCDEF
- Positional
- A13D $_{H} \neq$ 3DA1 $_{H}$

Computer programmers often use hexadecimal or "hex"

- In C: 0x prefix (0xA13D, etc.)

Binary-Hexadecimal Conversion

Observation:

- $16^{1}=2^{4}$, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

```
1010000100111101 B
    A 1 1 3 D D H
```

Number of bits in binary number not a multiple of $4 ? \Rightarrow$ pad with zeros on left
Hexadecimal to binary

Discard leading zeros from binary number if appropriate

Integer-Hexadecimal Conversion

Hexadecimal to (decimal) integer: expand using positional notation

```
25
    = 32+5
    = 37
```

Integer to hexadecimal: use the division method

```
37/16=2 R 5 & Read from bottom
    2 / 16 = 0 R 2
    to top: 25H
```


Are you 539 ?

Convert binary 101010 into decimal and hex
A. 21 decimal, A2 hex
B. 21 decimal, A 8 hex
C. 18 decimal, 2 A hex
D. 42 decimal, 2 A hex
hint: convert to hex first
challenge: once you've locked in and discussed with a neighbor, figure out why this slide's title is what it is.

The Octal Number System

Name

- "octo" (Latin) \Rightarrow eight

Characteristics

- Eight symbols
- 01234567
- Positional
- $17430 \neq 73140$

Computer programmers_sometimes use octal (so does Mickey!)

- In C: 0 prefix (01743, etc.)
cmoretti@tars:tmp\$ls -l myFile
-rw-r--r-- 1 cmoretti wheel 0 Sep $710: 58$ myFile
cmoretti@tars:tmp\$chmod 755 myFile
cmoretti@tars:tmp\$ls -1 myFile
$-r w x r-x r-x \quad 1$ cmoretti wheel 0 Sep $710: 58$ myFile

INTEGERS

Representing Unsigned (Non-Negative) Integers

Mathematics

- Non-negative integers' range is 0 to ∞

Computers

- Range limited by computer's word size
- Word size is n bits \Rightarrow range is 0 to $2^{n}-1$ representing with an n bit binary number
- Exceed range \Rightarrow overflow

Typical computers today

- $\mathrm{n}=32$ or 64 , so range is 0 to $2^{32}-1\left(\sim 4\right.$ billion) or $2^{64}-1$ (huge $\left.\ldots \sim 1.8 e 19\right)$

Pretend computer

- $n=4$, so range is 0 to $2^{4}-1$ (15)

Hereafter on these slides, assume word size $=4$

- All points generalize to word size = n (armlab: 64)

Representing Unsigned Integers

On 4-bit pretend computer

```
Unsigned
Integer Rep
    0 0000
    1 0001
    2 0010
    3 0011
    4 0100
    5 0101
    6 0110
    7 0111
    8 1000
    9 1001
    10 1010
    11 1011
    12 1100
    13 1101
    14 1110
    15 1111
```


Adding Unsigned Integers

Addition

	1
3	0011_{B}
+10	$+1010_{\mathrm{B}}$
--	---
13	1101_{B}

Start at right column Proceed leftward Carry 1 when necessary

	111
7	0111_{B}
+10	$+1010_{B}$

1	0001_{B}

Beware of overflow

Results are mod 2^{4}
$7+10=17$
$17 \bmod 16=1$

Subtracting Unsigned Integers

Subtraction

	111
10	1010_{B}
$-\quad 7$	-0111_{B}
--	---
3	0011_{B}

Start at right column
Proceed leftward
Borrow when necessary

Beware of overflow

Results are mod 2^{4}
$3-10=-7$
$-7 \bmod 16=9$

Reminder: negative numbers exist

Obsolete Attempt \#1: Sign-Magnitude

Integer	$\frac{\text { Rep }}{}$
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit indicates sign

$$
\begin{aligned}
& 0 \Rightarrow \text { positive } \\
& 1 \Rightarrow \text { negative }
\end{aligned}
$$

Remaining bits indicate magnitude

$$
\begin{array}{rr}
0101_{B}= & 101_{B}=5 \\
1101_{B}=-101_{B}= & -5
\end{array}
$$

Pros and cons

+ easy to understand, easy to negate
+ symmetric
- two representations of zero
- need different algorithms to add signed and unsigned numbers Not used for integers today

Obsolete Attempt \#2: Ones’ Complement

Integer	Rep
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition
High-order bit has weight -(2 $\left.2^{\mathrm{b}-1}-1\right)$
$1010_{B}=(1 *-7)+(0 * 4)+(1 * 2)+(0 * 1)$

$$
=-5
$$

$$
0010_{B}=(0 *-7)+(0 * 4)+(1 * 2)+(0 * 1)
$$

$$
=2
$$

Computing negative $=$ flipping all bits

Similar pros and cons to sign-magnitude

Two's Complement

Two's Complement (cont.)

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

$$
\operatorname{neg}(x)=\sim x+1
$$

$$
\operatorname{neg}(x)=\operatorname{onescomp}(x)+1
$$

$$
\begin{aligned}
& \operatorname{neg}\left(0101_{B}\right)=1010_{B}+1=1011_{B} \\
& \operatorname{neg}\left(1011_{B}\right)=0100_{B}+1=0101_{B}
\end{aligned}
$$

Pros and cons

- not symmetric
("extra" negative number; -(-8) = -8)
+ one representation of zero
+ same algorithms add/subtract signed and unsigned integers

Adding Signed Integers

pos + pos

3	11
+3	$+0011_{\mathrm{B}}$
-0011_{B}	
---	0110_{B}

pos + pos (overflow)

	111
7	0111_{B}
+1	$+0001_{\mathrm{B}}$
--	---
-8	1000_{B}

neg + neg

	11
-3	1101_{B}
+-2	$+1110_{\mathrm{B}}$
----	1011_{B}
-5	

Subtracting Signed Integers

How would you compute 3-4?

3	0011_{B}
-4	-0100_{B}
--	----
$?$	$?^{2} ? ?_{B}$

Subtracting Signed Integers

Perform subtraction with borrows

	11
-5	1011_{B}
--2	-1110_{B}
--	----
-3	1101_{B}

Compute two's comp and add

Negating Signed Ints: Math

Question: Why does two's comp arithmetic work?
Answer: [-b] mod $2^{4}=\left[\right.$ twoscomp(b)] mod 2^{4}

$$
\begin{aligned}
& {[-\mathrm{b}] \bmod 2^{4}} \\
& =\left[2^{4}-\mathrm{b}\right] \bmod 2^{4} \\
& =\left[2^{4}-1-b+1\right] \bmod 2^{4} \\
& =\left[\left(2^{4}-1-b\right)+1\right] \bmod 2^{4} \\
& =[\text { onescomp }(b)+1] \bmod 2^{4} \\
& =[\text { twoscomp }(b)] \bmod 2^{4}
\end{aligned}
$$

So: $[\mathrm{a}-\mathrm{b}] \bmod 2^{4}=[\mathrm{a}+\mathrm{twoscomp}(\mathrm{b})] \bmod 2^{4}$

```
[a - b] mod 24
= [a + 24-b] mod 24
=[a+24-1-b + 1] mod 24
=[a+(24-1-b) + 1] mod 24
= [a + onescomp (b) + 1] mod 24
=[a + twoscomp (b)] mod 24
```


Integer Data Types in C

Integer types of various sizes: $\{$ signed, unsigned\} \{char, short, int, long\}

- Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
- char is 1 byte
- Number of bits per byte is unspecified (but in the $21^{\text {st }}$ century, safe to assume it's 8)
- Signedness is system dependent, so for arithmetic use "signed char" or "unsigned char"
- Sizes of other integer types not fully specified but constrained:
- int was intended to be "natural word size" of hardware
- $2 \leq$ sizeof(short) \leq sizeof(int) $\leq \operatorname{sizeof(long)~}$

On armlab:

- Natural word size: 8 bytes ("64-bit machine")
- char:

1 byte

- short:

2 bytes

- int:

4 bytes (compatibility with widespread 32-bit code)

- long:

$$
8 \text { bytes }
$$

Integer Types in Java vs. C

		Java		C
Unsigned types	char	// 16 bits	unsigned char unsigned short unsigned (int) unsigned long	
Signed types	byte short int long	// 8 bits // 16 bits // 32 bits // 64 bits	signed char (signed) short (signed) int (signed) long	

1. Not guaranteed by C, but on armlab, short $=16$ bits, int $=32$ bits, long $=64$ bits 2. Not guaranteed by C , but on armlab, char is unsigned

sizeof Operator

- Applied at compile-time
- Operand can be a data type
- Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217

- sizeof (int) evaluates to 4
- sizeof(i) evaluates to 4 if i is a variable of type int
- sizeof ($1+2$) evaluates to 4

Integer Literals in C

- Decimal int: 123
- Prefixes to indicate a different base
- Octal int: 0173 = 123
- Hexadecimal int: 0x7B = 123
- No prefix to indicate binary int literal
- Suffixes to indicate a different type
- Use "L" suffix to indicate long literal
- Use "U" suffix to indicate unsigned literal
- No suffix to indicate char or short literals; instead, cast
char:
int:
long:
short:
unsigned int:
unsigned long:
unsigned short:
'\{' (< really int, as seen last time), (char) 123, (char) 0173, (char) 0x7B
123, 0173, 0x7B
123L, 0173L, 0x7BL
(short)123, (short)0173, (short)0x7B
123U, 0173U, 0x7BU
123UL, 0173UL, 0x7BUL
(unsigned short)123, (unsigned short)0173, (unsigned short)0x7B

sizeof synthesis

Q: What is the value of the following sizeof expression on the armlab machines?

```
int i = 1;
sizeof(i + 2L)
```

A. 3
B. 4
C. 8
D. 12
E. error

OPERATIONS
ON NUMBERS

Reading / Writing Numbers

Motivation

- Must convert between external form (sequence of character codes) and internal form
- Could provide getchar(), putshort(), getint(), putfloat(), etc.
- Alternative implemented in C: parameterized functions
scanf() and printf()
- Can read/write any primitive type of data
- First parameter is a format string containing conversion specs: size, base, field width
- Can read/write multiple variables with one call

See King book for details

Operators in C

- Typical arithmetic operators: + - * / \%
- Typical relational operators: == != \ll= \gg=
- Each evaluates to FALSE $\Rightarrow 0$, TRUE $\Rightarrow 1$
- Typical logical operators: ! \&\& ||
- Each interprets $0 \Rightarrow$ FALSE, non-0 \Rightarrow TRUE
- Each evaluates to FALSE $\Rightarrow 0$, TRUE $\Rightarrow 1$
- Cast operator: (type)
- Bitwise operators: ~ \& | ^ >> <<

Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

$10 \gg$	$2 \Rightarrow 2$
1010_{B}	0010_{B}

What is the effect arithmetically?

Bitwise left shift (<< in C): fill on right with zeros

$$
\begin{array}{|l|l|}
\hline 3 \ll 3 \Rightarrow 8 \\
\hline 0011_{\mathrm{B}} \quad 1000_{\mathrm{B}} \\
\hline
\end{array}
$$

Results are mod 2^{4}

Other Bitwise Operations on Unsigned Integers

Bitwise NOT (~ in C)

- Flip each bit (don't forget leading Os!)

$\sim 10 \Rightarrow 5$
$1010_{\mathrm{B}} \quad 0101_{\mathrm{B}}$

```
~5 = 10
0101B 1010B
```

Bitwise AND (\& in C)

- AND (1=True, 0=False) corresponding bits

10	1010_{B}			
$\& 7$	$\& 0111_{\mathrm{B}}$			
--	----			
2	0010_{B}	\quad	10	1010_{B}
:---:	:---:			
$\& 2$	$\& 0010_{\mathrm{B}}$			
--	----			
2	0010_{B}			

Useful for "masking" bits to 0
$x \& 0$ is $0, x \& 1$ is x

Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)

- Logical OR corresponding bits

10	$1010{ }_{\text {B }}$
1	$10^{0001}{ }_{\text {B }}$
--	--
11	$1011{ }_{B}$

> Useful for "masking" bits to 1 $x \mid 1$ is $1, x \mid 0$ is x

Bitwise exclusive OR (^ in C)

- Logical exclusive OR corresponding bits

10	1010_{B}
\wedge	$\wedge 1010_{\mathrm{B}}$
--	----
0	0000_{B}

$x^{\wedge} \mathrm{x}$ sets
all bits to 0

Logical vs. Bitwise Ops

Logical AND (\&\&) vs. bitwise AND (\&)

- 2 (TRUE) \&\& 1 (TRUE) => 1 (TRUE)

```
Decimal Binary
    2 00000000 00000000 00000000 00000010
    && 1 000000000000000000000000000000001
    1000000000000000000000000000000001
```

- 2 (TRUE) \& 1 (TRUE) => 0 (FALSE)

```
Decimal Binary
00000000 00000000 00000000 00000010
    & 1 00000000 00000000 00000000 00000001
    0 00000000 00000000 00000000 00000000
```

Implication:

- Use logical AND to control flow of logic
- Use bitwise AND only when doing bit-level manipulation
- Same for OR and NOT

A Bit Complicated ... challenge for the bored

How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)?
A. $u \&=(0 \ll k)$;
B. $u \mid=(1 \ll k)$;
C. $u \mid=\sim(1 \ll k)$;
D. $u \&=\sim(1 \ll k)$;
E. $u=\sim u^{\wedge}(1 \ll k)$;

Aside: Using Bitwise Ops for Arithmetic

Can use <<, >>, and \& to do some arithmetic efficiently
x * $2^{y}==x \ll y$

- $3 * 4=3 * 2^{2}=3 \ll 2 \Rightarrow 12$
$x / 2^{y}==x \gg y$
- $13 / 4=13 / 2^{2}=13 \gg 2 \Rightarrow 3$
$x \% 2^{y}==x \&\left(2^{y}-1\right)$
- $13 \% 4=13 \% 2^{2}=13 \&\left(2^{2}-1\right)$ $=13 \& 3 \Rightarrow 1$

13	1101_{B}
$\& 3$	$\& 0011_{\mathrm{B}}$
--	----
1	0001_{B}

Fast way to multiply
by a power of 2
Fast way to divide
unsigned by power of 2
Fast way to mod
by a power of 2

Many compilers will do these transformations automatically!

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

Results are mod 2^{4}

Bitwise right shift: fill on left with ???

Shifting Signed Integers (cont.)

Bitwise arithmetic right shift: fill on left with sign bit

| $6 \gg 1 \Rightarrow 3$ |
| :---: | :---: |
| $0110_{\mathrm{B}} \quad 0011_{\mathrm{B}}$ |

-6	\gg	1	\Rightarrow
1010_{B}		-3	
101_{B}			

What is the effect arithmetically?

Bitwise logical right shift: fill on left with zeros

$6 \gg$	1
0110_{B}	0011_{B}

$-6 ~ \gg ~$	1
1010_{B}	0101_{B}

What is the effect arithmetically???

In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)

- Not specified by standard (happens to be arithmetic on armlab)
- Best to avoid shifting signed integers

Other Operations on Signed Ints

Bitwise NOT (~ in C)

- Same as with unsigned ints

Bitwise AND (\& in C)

- Same as with unsigned ints

Bitwise OR: (| in C)

- Same as with unsigned ints

Bitwise exclusive OR (^ in C)

- Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.

Assignment Operator

Many high-level languages provide an assignment statement
C provides an assignment operator

- Performs assignment, and then evaluates to the assigned value
- Allows assignment to appear within larger expressions
- But be careful about precedence! Extra parentheses often needed!

Assignment Operator Examples

Examples

```
i = 0;
    /* Side effect: assign 0 to i.
        Evaluate to 0. */
j = i = 0; /* Assignment op has R to L associativity */
    /* Side effect: assign 0 to i.
        Evaluate to 0.
        Side effect: assign 0 to j.
        Evaluate to 0. */
while ((i = getchar()) != EOF)
    /* Read a character or EOF value.
        Side effect: assign that value to i.
        Evaluate to that value.
        Compare that value to EOF.
        Evaluate to 0 (FALSE) or 1 (TRUE). */
```


Special-Purpose Assignment in C

Motivation

- The construct $\mathrm{a}=\mathrm{b}+\mathrm{c}$ is flexible
- The construct $d=d+e$ is somewhat common
- The construct $d=d+1$ is very common

Assignment in C

- Introduce += operator to do things like d +=e
- Extend to -= *= /= ~= \&= |= ^= <<= >>=
- All evaluate to whatever was assigned
- Pre-increment and pre-decrement: ++d --d
- Post-increment and post-decrement (evaluate to old value): d++ d--

Confusion Plusplus

Q: What are i and j set to in the following code?

$$
\begin{aligned}
& i=5 ; \\
& j=i++; \\
& j+=++i ;
\end{aligned}
$$

A. 5,7
B. 7,5
C. 7,11
D. 7,12

51 E. 7, 13

Incremental Iffiness

Q: What does the following code print?

```
int i = 1;
switch (i++) {
    case 1: printf("%d", ++i);
    case 2: printf("%d", i++);
}
```

A. 1
B. 2
C. 3
D. 22

52 E. 33

Sample Exam Question (Spring 2017, Exam 1)

1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions.
(i) (4 points) What is the largest unsigned number that can be represented in 7 bits? In binary: In decimal:
(ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2's complement in 7 bits?

In binary: In decimal:
(iii) (2 points) Is there a number n , other than 0 , for which n is equal to -n , when represented in 2 's complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not.
(iv) (2 points) When doing arithmetic addition using 2's complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.)

APPENDIX:

FLOATING POINT

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number

Floating Point Numbers

Like scientific notation: e.g., c is

$$
2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

This has the form

$$
(\text { multiplier }) \times(\text { base })^{(\text {power })}
$$

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent

Floating-Point Data Types

C specifies:

- Three floating-point data types: float, double, and long double
- Sizes unspecified, but constrained:
- $\operatorname{sizeof}($ float $) \leq \operatorname{sizeof}($ double) $\leq \operatorname{sizeof}$ (long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)

- float: 4 bytes
- double: 8 bytes

On ArmLab (but varying across architectures)

- long double:

16 bytes

Floating-Point Literals

How to write a floating-point number?

- Either fixed-point or "scientific" notation
- Any literal that contains decimal point or "E" is floating-point
- The default floating-point type is double
- Append "F" to indicate float
- Append "L" to indicate long double

Examples

- double:
123.456, 1E-2, -1.23456E4
- float:
- Iong double:
123.456F, 1E-2F, -1.23456E4F
123.456L, 1E-2L, -1.23456E4L

IEEE Floating Point Representation

Common finite representation: IEEE floating point

- More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):

- 1 bit: sign ($0 \Rightarrow$ positive, $1 \Rightarrow$ negative)
- 8 bits: exponent + 127
- 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type double in C):

- 1 bit: sign ($0 \Rightarrow$ positive, $1 \Rightarrow$ negative)
- 11 bits: exponent + 1023
- 52 bits: binary fraction of the form
1.bb

When was floating-point invented?

mantissa (noun): decimal part of a logarithm, 1865, 〔Answer: long before computers! from Latin mantisa
"a worthless addition, makeweight"

COMMON LOGARITHMS $\log _{10} x$

x	0	I	2	3	45		6	7	8	9.	$\frac{\Delta_{m}}{+}$	123		
50	. 6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9		2	3
5 I	. 7076	70	7093	7101	7110	7118	7126	7135	7143	7152	8		2	2
53	. 7160	716	7177	7185	7193	7202	7210	7218	7226	7235	8		2	2
53	-7243	72	7259	7267	7275	7284	7292	7300	7308	7316	8		2	2
54	-7324	733	7340	7348	7356	7364	7372	7380	7388	7396	8		2	2
55	-7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	8		2	2

Floating Point Example

Sign (1 bit):

1000001110110110000000000000000

- $1 \Rightarrow$ negative

32-bit representation
Exponent (8 bits):

- $10000011_{B}=131$
- $131-127=4$

Mantissa (23 bits):

- $1.10110110000000000000000_{\text {B }}$
- $1+\left(1 * 2^{-1}\right)+\left(0 * 2^{-2}\right)+\left(1 * 2^{-3}\right)+\left(1 * 2^{-4}\right)+\left(0^{*} 2^{-5}\right)+$ $\left(1 * 2^{-6}\right)+\left(1 * 2^{-7}\right)+\left(0 * 2^{-\cdots}\right)=1.7109375$

Number:

- $-1.7109375 * 2^{4}=-27.375$

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\varepsilon \approx 10^{-7}$

- No such number as 1.000000001
- Rule of thumb: "almost 7 digits of precision"

For double: $\varepsilon \approx 2 \times 10^{-16}$

- Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

Floating Point Consequences, cont

Just as decimal number system can represent only some rational numbers with finite digit count...

- Example: $1 / 3$ cannot be represented

Decimal	Rational
Approx	Value
. 3	3/10
. 33	33/100
. 333	$333 / 1000$

Binary number system can represent only some rational numbers with finite digit count

- Example: $1 / 5$ cannot be represented

Beware of round-off error

- Error resulting from inexact representation

| Binary
 Approx Rational
 0.0 $\frac{\text { Value }}{}$
 0.01 $1 / 4$
 0.010 $2 / 8$
 0.0011 $3 / 16$
 0.00110 $6 / 32$
 0.001101 $13 / 64$
 0.0011010 $26 / 128$
 0.00110011 $51 / 256$
 \cdots |
| :--- | :--- |

- Can accumulate
- Be careful when comparing two floating-point numbers for equality

Floating away ...

What does the following code print?

```
double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)
    sum += 0.1;
if (sum == 1.0)
    printf("All good!\n");
else
    printf("Yikes!\n");
```

A. All good!
B: Yikes!
B. Yikes!
C. (Infinite loop)
D. (Compilation error)
... loop terminates, because we can represent 10.0 exactly by adding 1.0 at a time.
... but sum isn't 1.0 because we can't represent 1.0 exactly by adding 0.1 at a time.

