
Git and GitHub … then C

1 @afgprogrammer

@synkevych

@pawel_czerwinski

https://unsplash.com/@afgprogrammer
https://unsplash.com/@synkevych
https://unsplash.com/@pawel_czerwinski

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git and GitHub

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Example program: charcount

2

Revision Control Systems
Problems often faced by programmers:

•Help! I’ve deleted my code! How do I get it back?
•How can I try out one way of writing this function, and go back if it doesn’t work?
•Help! I’ve introduced a subtle bug that I can’t find. How can I see what I’ve

changed since the last working version?
•How do I work with source code on multiple computers?

•How do I work with others (e.g., a COS 217 partner) on the same program?
•What changes did my partner just make?
•If my partner and I make changes to different parts of a program,

how do we merge those changes?

All of these problems are solved by revision control tools, e.g.:
git3

Repository vs. Working Copy

4

WORKING COPY

• Represents single version
of the code

• Plain files (e.g, .c)
• Make a coherent set of

modifications, then
commit this version of code
to the repository

• Best practice: write a
meaningful commit message

REPOSITORY (or “repo”)

• Contains all checked-in
versions of the code

• Specialized format, located
in .git directory

• Can view commit history
• Can diff any versions
• Can check out any version,

by default the most recent
(known as HEAD)

git commit

git checkout‡

‡
We'll rarely use checkout except to
throw away local changes (see slide 6)

Relevant xkcd

5
https://xkcd.com/1296/

https://xkcd.com/1296/

Local vs. Remote Repositories

6

LOCAL REPOSITORY

• Located in .git directory
• Only accessible from the

current computer
• Commit early, commit often –

you can only go back to
versions you’ve committed

• Can push current state (i.e.,
complete checked-in history)
to a remote repository

REMOTE REPOSITORY

• Located in the cloud
E.g., github.com

• Can clone working copies
on multiple machines

• Any clone can pull the
current state

git push

git clone
git pull

COS 217 🧡 GitHub

We distribute assignment code through a github.com repo

• But you can’t push to our repo!

Need to create your own (private!) repo for each assignment

• Two methods in git primer handout

• One clone on armlab, to test and submit

• If developing on your own machine, another clone there:
be sure to commit and push "up" to github,
then pull "down" onto armlab

7

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Example program: charcount

8

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Build the Unix OS

Read more history:
https://www.bell-labs.com/usr/dmr/www/chist.html9

https:///
https://www.bell-labs.com/usr/dmr/www/chist.html

Java vs. C: History

BCPL B C K&R C ANSI C89
ISO C90

ISO/ANSI
C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk

C++ Java

ISO C11

2011

Algol

Simula

This is what
we’re using

10

ISO C18

2018

C vs. Java: Design Goals

C Design Goals (1972) Java Design Goals (1995)
Build the Unix OS Language of the Internet
Low-level; close to HW
and OS

High-level; insulated from
hardware and OS

Good for system-level
programming

Good for application-level
programming

Support structured
programming

Support object-oriented
programming

Unsafe: don’t get in the
programmer’s way

Safe: can’t step
“outside the sandbox”
Look like C!

11

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Example program: charcount

12

HW (ArmLab)

OS (Linux)

Building Java Programs

MyProg.java
(Java code) javac MyProg.class

(bytecode)

$ javac MyProg.java Java compiler
(machine lang code)

13

Running Java Programs

$ java MyProg

MyProg.class
(bytecode)

Java interpreter /
“virtual machine”

(machine lang code)

HW (ArmLab)

OS (Linux)

data java data

14

HW (ArmLab)

OS (Linux)

Building C Programs

myprog.c
(C code) gcc217 myprog

(machine lang code)

$ gcc217 myprog.c –o myprog C “Compiler driver”
(machine lang code)

15

Running C Programs

$./myprog myprog
(machine lang code)

HW (ArmLab)

OS (Linux)

data myprog data

16

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Example program: charcount

17

Java vs. C: Portability

Program Code Type Portable?
MyProg.java Java source code Yes
myprog.c C source code Mostly

MyProg.class Bytecode Yes
myprog Machine lang code No

Conclusion: Java programs are more portable

(For example, COS 217 has used many architectures over the years,
and every time we've switched, all our programs have had to be recompiled!)

18

Java vs. C: Safety & Efficiency
Java

•null reference checking
•Automatic array-bounds checking
•Automatic memory management (garbage collection)
•Other safety features

C
•NULL pointer checking,
•Manual bounds checking
•Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C19

iClicker
Occasional questions in class, graded on participation not correctness.

• Using an app on your phone or the web client

• Setup is "iClicker Cloud", integrated with our course's Canvas.

• Register, select Princeton University, and find course "COS 217 – Fall 2023"

20

iClicker Question
Q: Can you answer this iClicker question today?

•A. Yes

•B. No, but I’ve been practicing my mental electrotelekinesis and
the response is being registered anyway

•C. I’m not here, but someone is iClicking for me
(don’t do this – it’s a violation of our course policies!)

C is for … car?
Q: Which corresponds to the C programming language?

A.

B.

C.

Java vs. C: Details

Next 7 slides show C language details by way of Java comparisons.

For now, use as a comparative language overview reference to start the
simple "syntax mapping" stage of learning C, so that you're well
prepared to dive into the less rote aspects in the coming weeks.

24

Java vs. C: Details

Java C

Overall
Program
Structure

Hello.java:

public class Hello
{ public static void main

(String[] args)
{ System.out.println(

"hello, world");
}

}

hello.c:

#include <stdio.h>

int main(void)
{ printf("hello, world\n");

return 0;
}

Building $ javac Hello.java $ gcc217 hello.c –o hello

Running
$ java Hello
hello, world
$

$./hello
hello, world
$

25

Java vs. C: Details

Java C
Character type char // 16-bit Unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned, signed) char
(unsigned, signed) short
(unsigned, signed) int
(unsigned, signed) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean
/* no equivalent */
/* use 0 and non-0 */

Generic pointer
type

Object void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

26

Java vs. C: Details

Java C

Arrays
int [] a = new int [10];
float [][] b =

new float [5][20];

int a[10];
float b[5][20];

Array bound
checking

// run-time check /* no run-time check */

Pointer type
// Object reference is an
// implicit pointer int *p;

Record type

class Mine
{ int x;

float y;
}

struct Mine
{ int x;

float y;
};

27

Java vs. C: Details

Java C

Strings
String s1 = "Hello";
String s2 = new

String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops * &&, ||, ! &&, ||, !

Relational ops * ==, !=, <, >, <=, >= ==, !=, <, >, <=, >=

Arithmetic ops * +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops <<, >>, >>>, &, ^, |, ~ <<, >>, &, ^, |, ~

Assignment ops
=, +=, -=, *=, /=, %=,
<<=, >>=, >>>=, &=, ^=, |=

=, +=, -=, *=, /=, %=,
<<=, >>=, &=, ^=, |=

* Essentially the same in the two languages
28

Java vs. C: Details

Java C

if stmt *

if (i < 0)
statement1;

else
statement2;

if (i < 0)
statement1;

else
statement2;

switch stmt *

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

switch (i)
{ case 1:

...
break;

case 2:
...
break;

default:
...

}

goto stmt // no equivalent goto someLabel;

* Essentially the same in the two languages
29

Java vs. C: Details

Java C

for stmt
for (int i=0; i<10; i++)

statement;

int i;
for (i=0; i<10; i++)

statement;

while stmt *
while (i < 0)

statement;
while (i < 0)

statement;

do-while stmt *
do

statement;
while (i < 0)

do
statement;

while (i < 0);

continue stmt * continue; continue;

labeled continue
stmt

continue someLabel; /* no equivalent */

break stmt * break; break;

labeled break
stmt

break someLabel; /* no equivalent */

* Essentially the same in the two languages
30

Java vs. C: Details

Java C

return stmt *
return 5;
return;

return 5;
return;

Compound stmt
(alias block) *

{
statement1;
statement2;

}

{
statement1;
statement2;

}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */
// another kind

/* comment */

Method / function
call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

* Essentially the same in the two languages
31

Agenda

Our computing environment
•Lecture 1 and Precepts 1 and 2:

Linux and Bash
•Lecture 2: git

A taste of C
•History of C
•Building and running C programs
•Characteristics of C
•Example program: charcount

33

The charcount Program

Functionality:
•Read all characters from standard input stream
•Write to standard output stream the number of characters read

stdin

charcountLine 1
Line 2 ??

stdout

34

The charcount Program
The program:

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void) {

int c;
int charCount = 0;
c = getchar();
while (c != EOF) {

charCount++;
c = getchar();

}
printf("%d\n", charCount);
return 0;

}

charcount.c

35

charcount Building and Running

$ gcc217 charcount.c
$ ls
. .. a.out
$ gcc217 charcount.c -o charcount
$ ls
. .. a.out

charcount
$

36

charcount Building and Running

$ gcc217 charcount.c –o charcount
$./charcount
Line 1
Line 2
^D

What is this?
What is the effect?
What is printed?

37

charcount Building and Running

$ gcc217 charcount.c –o charcount
$./charcount
Line 1
Line 2
^D
14
$

Includes visible
characters plus
two newlines

38

charcount Building and Running

$ cat somefile
Line 1
Line 2
$./charcount < somefile
14
$

What is this?
What is the effect?

39

charcount Building and Running

$./charcount > someotherfile
Line 1
Line 2
^D
$ cat someotherfile
14
$

What is this?
What is the effect?

40

Running charcount
Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void)
{ int c;

int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}
printf("%d\n", charCount);
return 0;

}

charcount.c

Execution begins at
main() function
• No classes in the C

language.

41

Running charcount
Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void)
{ int c;

int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}
printf("%d\n", charCount);
return 0;

}

charcount.c
We allocate space for
c and charCount
in the stack section of
memory

Why int
instead of char?

42

Running charcount
Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void)
{ int c;

int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}
printf("%d\n", charCount);
return 0;

}

charcount.c

getchar() tries to read char
from stdin
• Success ⇒ returns that

char value (within an int)
• Failure ⇒ returns EOF

EOF is a special value,
distinct from all possible chars

43

Running charcount
Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void)
{ int c;

int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}
printf("%d\n", charCount);
return 0;

}

charcount.c

Assuming c ≠ EOF,
we increment
charCount

44

Running charcount
Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void)
{ int c;

int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}
printf("%d\n", charCount);
return 0;

}

charcount.c

We call getchar()
again and recheck
loop condition

45

Running charcount
Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void)
{ int c;

int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}
printf("%d\n", charCount);
return 0;

}

charcount.c

• Eventually getchar()
returns EOF

• Loop condition fails
• We call printf()

to write final
charCount

46

Running charcount
Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void)
{ int c;

int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}
printf("%d\n", charCount);
return 0;

}

charcount.c

• return statement returns
to calling function

• return from main()
returns to _start,
terminates program

#include <stdlib.h>
ß to use these constantsNormal execution ⇒ 0 or EXIT_SUCCESS

Abnormal execution ⇒ EXIT_FAILURE
47

Coming up next …

More character processing,

structured exactly how we'll

want you to design your

Assignment 1 solution!

Read the A1 specs soon: you'll be ready to start after Lecture 3!
48

Frankie Fouganthin

@christianlue

https://commons.wikimedia.org/wiki/User:FrankieF
https://unsplash.com/@christianlue

