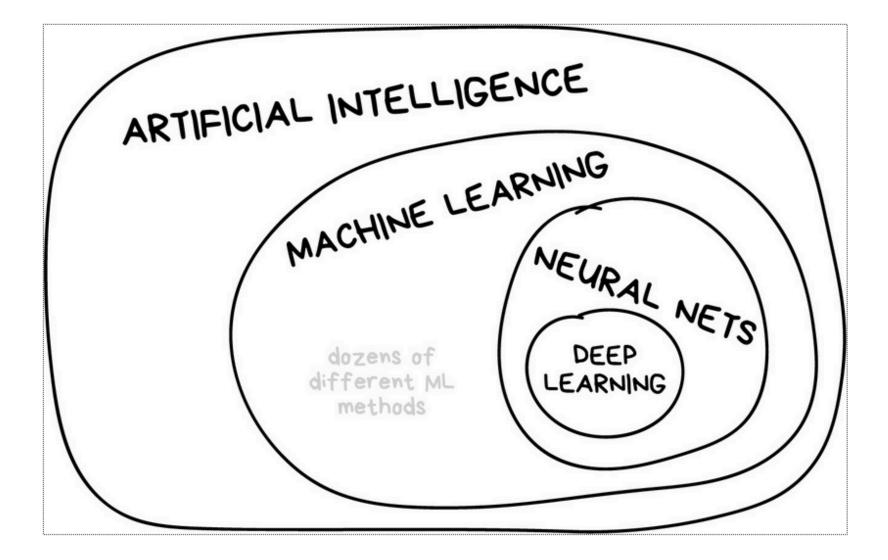
Lecture 23: Artificial intelligence, machine learning, natural language processing, ...

- buzzwords, hype, real accomplishments, wishful thinking
 - big data, deep learning, neural networks, ...
- brief history
- examples
 - games (chess, Go)
 - classification (spam detection)
 - prediction (future prices)
 - recommendation systems (Netflix, Amazon, Goodreads, ...)
 - natural language processing (sentiment analysis, translation, generation)
 - large language models
- issues and concerns
 - accuracy
 - fairness, bias, accountability, explainability
 - appropriate uses
- Beware: on this topic, I am even less of an expert than normal.

Revisionist history of AI (non-expert perspective)

- 1950s, 1960s: naive optimism about artificial intelligence
 - checkers, chess, machine translation, theorem proving, speech recognition, image recognition, vision, ...
 - almost everything proved to be much harder than was thought
- 1980s, 1990s: expert or rule-based systems
 - domain experts createrules, computers apply them to make decisions
 - it's too hard to collect the rules, and there are too many exceptions
 - doesn't scale to large datasets or new problem domains
- 2010s: machine learning, big data, deep learning, ...
 - provide a "training set" with lots of examples correctly characterized
 - define "features" that might be relevant, or let the program find them itself
 - write a program that "learns" from its successes and failures on the training data (basically by figuring out how to combine feature values)
- 2020s: large language models
 - ChatGPT-3, GPT-4, DALL-E2, ...
 - near-human performance on many text understanding and generation tasks

The big picture (vas3k.com/blog/machine_learning)



Examples of ML applications (a small subset)

- games
 - checkers, chess, Go
- classification
 - spam detection, digit recognition, optical character recognition, authorship, ...
 - image recognition, face recognition, ...
- prediction
 - house prices, stock prices, credit scoring, resume screening, ...
 - tumor probabilities, intensive care outcomes, ...
- recommendation systems
 - e.g., Netflix, Amazon, Goodreads, ...
- natural language processing (NLP)
 - language translation
 - text to speech; speech to text
 - sentiment analysis
 - text generation (ChatGPT et al)
 - image generation (Dall-E2, Stable Diffusion, etc)

Types of learning algorithms

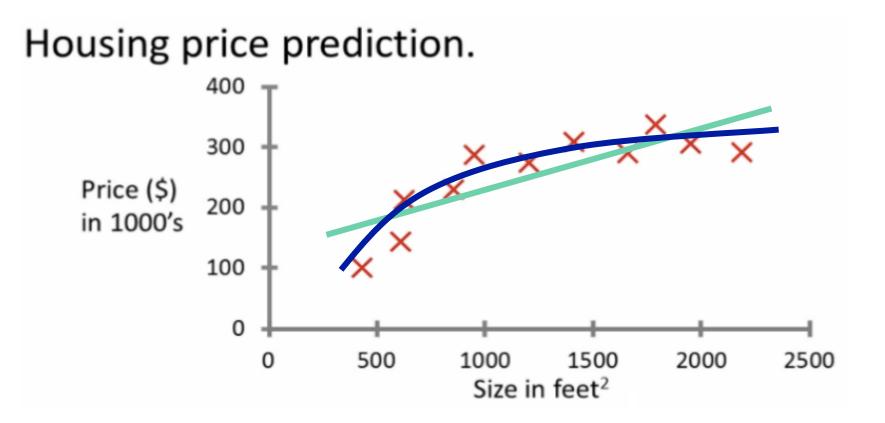
- supervised learning (labeled data)
 - teach the computer how to do something with training examples
 - then let it use its new-found knowledge to do it on new examples
- unsupervised learning (unlabeled data)
 - let the computer learn how to do something without training data
 - use this to find structure and patterns in data
- reinforcement learning
 - some kind of "real world" system to interact with
 - feedback on success or failure guides / teaches future behavior
- recommender systems
 - look for similarities in likes and dislikes / behaviors / ...
 - use that to predict future likes / behaviors

Classification example: spam detection

- rule-based machine learning: choose a set of features like
 - odd spelling, weird characters, language and grammar, origin, length, ...
- provide a training set of messages marked as "spam" or "not spam"
- ML algorithm figures out parameter settings that let it do the best job of separating spam from not spam in the training set
- then apply that to real data
- potential problems:
 - training set isn't good enough or big enough
 - creating it is probably done manually
 - "over-fitting": does a great job on training set but little else
 - spammers keep adapting so we always need new training material

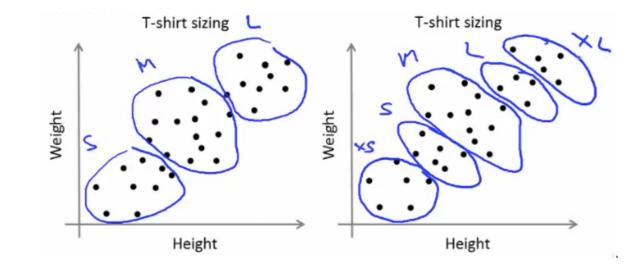
Prediction example: house prices

- only one feature here: square footage
- straight line? ("linear regression")
- some kind of curve?



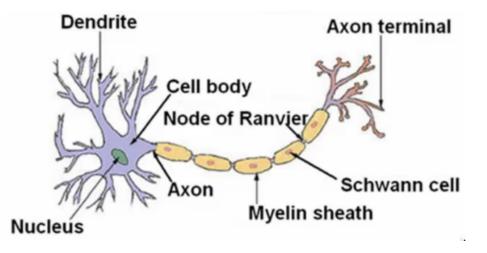
Clustering: learning from unlabeled data

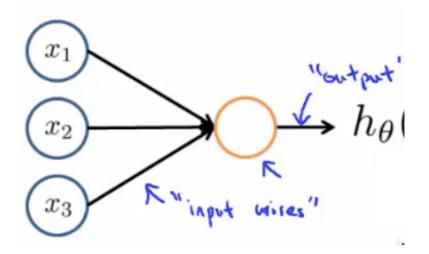
- contrast with supervised learning
 - supervised learning:
 - given a set of labels, fit a hypothesis to it
 - unsupervised learning:
 - try and determine structure in the data
 - clustering algorithm groups data together based on data features
- clustering is good for
 - market segmentation group customers into different market segments
 - social network analysis identify friend groups
 - topic analysis
 - authorship

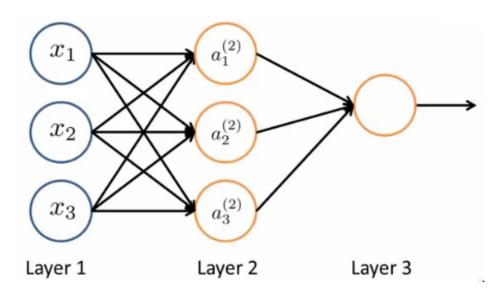


Neural networks, deep learning

 simulate human brain structure with artificial neurons in simple connection patterns



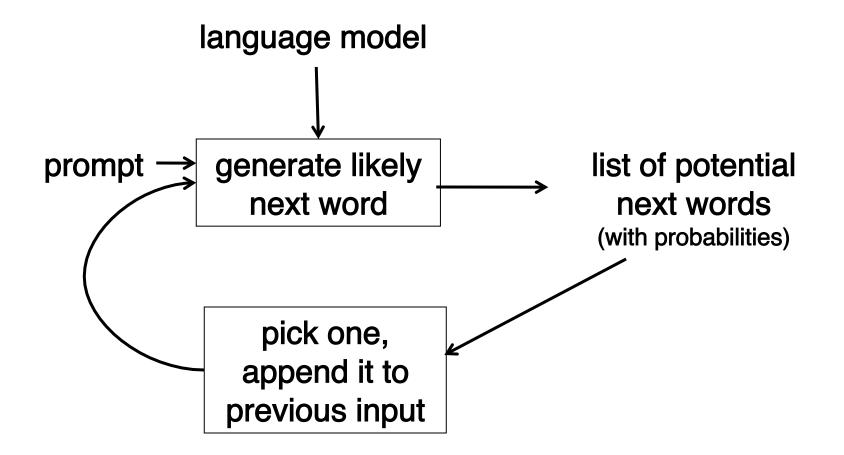




Large Language Models (LLM)

- language models based on very large text corpus
 - use deep learning to learn how language is used
 - use that to generate text that seems human-written
 - and give the (strong) impression of understanding
- models are proprietary (mostly)
 - e.g., GPT-3, -4 licensed by Microsoft from OpenAI
 - in part because they cost a *lot* to create, plus competitive value
- GPT = generative pre-trained transformer
 - transformer is a particular architecture for training
- ChatGPT is based on GPT-3 (chat.openai.com)
 - tuned for conversational style
 - can remember previous parts of a conversation
 - very new: became available Nov 30, 2022
 - has already revolutionized the field and public perception of AI

How LLMs work (layman's view)



ML / AI issues (very incomplete list)

- algorithmic fairness
 - results can't be better than training data
 - if that has implicit or explicit biases, results are biased
 - can we detect and eliminate bias?
- accountability and explainability
 - what is the algorithm really doing?
 - can its results be explained
- appropriate uses? (lots of inappropriate uses!)
 - prison sentencing
 - drone strikes
 - weapon systems
 - resume evaluation
 - medical decisions
 - ...
- to learn more:
 - https://fairmlbook.org