
Lecture 23:  Artificial intelligence, machine learning,  
      natural language processing, ...

•  buzzwords, hype, real accomplishments, wishful thinking
–  big data, deep learning, neural networks, ...

•  brief history
•  examples

–  games (chess, Go)
–  classification (spam detection)
–  prediction (future prices)
–  recommendation systems (Netflix, Amazon, Goodreads, ...)
–  natural language processing (sentiment analysis, translation, generation)
–  large language models

•  issues and concerns
–  accuracy
–  fairness, bias, accountability, explainability
–  appropriate uses

•  Beware:  on this topic, I am even less of an expert than normal.



Revisionist history of AI  (non-expert perspective)

•  1950s, 1960s:  naive optimism about artificial intelligence
–  checkers, chess, machine translation, theorem proving, speech recognition, 

image recognition, vision, ...
–  almost everything proved to be much harder than was thought

•  1980s, 1990s:  expert or rule-based systems
–  domain experts createrules, computers apply them to make decisions
–  it's too hard to collect the rules, and there are too many exceptions
–  doesn't scale to large datasets or new problem domains

•  2010s:  machine learning, big data, deep learning, ...
–  provide a "training set" with lots of examples correctly characterized
–  define "features" that might be relevant, or let the program find them itself
–  write a program that "learns" from its successes and failures on the training 

data (basically by figuring out how to combine feature values)
•  2020s:  large language models

–  ChatGPT-3, GPT-4, DALL-E2, ...
–  near-human performance on many text understanding and generation tasks



The big picture  (vas3k.com/blog/machine_learning)



Examples of ML applications  (a small subset)

•  games
–  checkers, chess, Go

•  classification
–  spam detection, digit recognition, optical character recognition, authorship, ...
–  image recognition, face recognition, ...

•  prediction
–  house prices, stock prices, credit scoring, resume screening, ...
–  tumor probabilities, intensive care outcomes, ...

•  recommendation systems
–  e.g., Netflix, Amazon, Goodreads, ...

•  natural language processing (NLP)
–  language translation
–  text to speech; speech to text
–  sentiment analysis
–  text generation  (ChatGPT et al)
–  image generation  (Dall-E2, Stable Diffusion, etc)



Types of learning algorithms

•  supervised learning  (labeled data)
–  teach the computer how to do something with training examples 
–  then let it use its new-found knowledge to do it on new examples

•  unsupervised learning  (unlabeled data)
–  let the computer learn how to do something without training data
–  use this to find structure and patterns in data

•  reinforcement learning
–  some kind of "real world" system to interact with
–  feedback on success or failure guides / teaches future behavior

•  recommender systems
–  look for similarities in likes and dislikes / behaviors / ...
–  use that to predict future likes / behaviors



Classification example: spam detection

•  rule-based machine learning:  choose a set of features like 
–  odd spelling, weird characters, language and grammar, origin, length, ...

•  provide a training set of messages marked as "spam" or "not spam"

•  ML algorithm figures out parameter settings that let it do the best job 
of separating spam from not spam in the training set

•  then apply that to real data

•  potential problems:
–  training set isn't good enough or big enough
–  creating it is probably done manually
–  "over-fitting": does a great job on training set but little else
–  spammers keep adapting so we always need new training material



Prediction example: house prices

•  only one feature here: square footage
•  straight line?  ("linear regression")
•  some kind of curve?



Clustering:  learning from unlabeled data

•  contrast with supervised learning
–  supervised learning:

given a set of labels, fit a hypothesis to it
–  unsupervised learning:

try and determine structure in the data
clustering algorithm groups data together based on data features

•  clustering is good for
–  market segmentation – group customers into different market segments
–  social network analysis – identify friend groups
–  topic analysis
–  authorship



Neural networks, deep learning

•  simulate human brain structure
     with artificial neurons
     in simple connection patterns



Large Language Models  (LLM)
•  language models based on very large text corpus

–  use deep learning to learn how language is used
–  use that to generate text that seems human-written
–  and give the (strong) impression of understanding

•  models are proprietary (mostly)
–  e.g., GPT-3, -4 licensed by Microsoft from OpenAI
–  in part because they cost a *lot* to create, plus competitive value

•  GPT = generative pre-trained transformer
–  transformer is a particular architecture for training

•  ChatGPT is based on GPT-3   (chat.openai.com)
–  tuned for conversational style
–  can remember previous parts of a conversation
–  very new:  became available Nov 30, 2022
–  has already revolutionized the field and public perception of AI



How LLMs work (layman's view)
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ML / AI issues   (very incomplete list)

•  algorithmic fairness
–  results can't be better than training data
–  if that has implicit or explicit biases, results are biased
–  can we detect and eliminate bias?

•  accountability and explainability
–  what is the algorithm really doing?
–  can its results be explained

•  appropriate uses?  (lots of inappropriate uses!)
–  prison sentencing
–  drone strikes
–  weapon systems
–  resume evaluation
–  medical decisions
–  ...

•  to learn more:
            https://fairmlbook.org 


