Lecture 22: Wireless systems

• how radio works
• radio spectrum allocation

• examples of wireless systems
 – cell phones
 – Wi-Fi
 – Bluetooth
 – RFID
 – GPS

• tradeoffs
 – spectrum, power, range, size, weight, mobility, ...

• non-technical issues
 – privacy, security, regulation, competition, ...
Radio

- electromagnetic radiation to carry information
 - without wires => "wireless"
- radiation is a wave of a particular frequency (in Hz)

- transmitter "modulates" the wave to impose information on it
 - amplitude (AM): change the power level
 - frequency (FM): change the frequency around a central value
 - digital: on/off
 - ...

- receiver demodulates to recover the information
 - received signal strength varies directly with power level, and decreases with square of distance ("inverse square law")
 - higher frequencies (shorter wavelengths) go shorter distances, penetrate obstacles less well
Cell phones 101

- all phones are part of the public switched telephone network
- a cell phone is connected by radio instead of wires
- moves long distances, at high speed, appears out of nowhere
- shares a very limited radio frequency spectrum with others
- operates with low power because it uses batteries

this makes life complicated
Cells (a very idealized and over-simplified picture)

- divide geographical area into cells (notionally hexagonal)
- each cell has an antenna, handles all cell phones in its area
- available radio spectrum is divided into channels
 - two channels for one conversation, one for each direction (usually)
 - competing carriers operate on different frequency bands
- each cell gets 1/7 of the channels
 - adjacent cells can't use the same channels because of interference
 - non-adjacent cells can re-use channels

from www.howstuffworks.com
How it works

• when a phone is turned on, it broadcasts its ID (“registration”)
 – nearest base station notices, validates with home system registration uses encryption for fraud prevention
 – phone keeps broadcasting enough to keep in touch

• when the phone is called, the home system knows where it is
 – home system contacts base(s) where phone is
 – bases broadcast to where phone was last seen (“paging”)

• phones talk to base with strongest signal
 – base and phone communicate over 2 agreed-upon channels (up, down)
 – phones continuously adjust power level to signal strength at base uses less battery, creates less interference for other phones

• phones move from base to base and from system to system
 – base initiates handoff when signal gets weak
 – phone picked up by base with strongest signal
 – elaborate protocols at all levels
How it works, continued

• **multiple frequency bands** (different in different parts of the world)
 – divided into channels (frequency multiplexing)
 most phones use IP packets (4G LTE)
 – phones support multiple bands
 may use multiple frequency bands concurrently (5G)

• **channels carry both voice and control information** (including data)
 – digital speech is highly compressed (~1 bit/speech sample)
 – elaborate coding & error correction for speech & control information
 – power turned off when nothing is being sent

• **phone stores user info on SIM card**
 – SIM == Subscriber Information Module (flash memory)
 – may be able to replace card to use in a different environment

• **IMEI (intl mobile eqpt id) is specific to phone:**
 – dial *#06#
Mobile phone generations

- technology "generations" are roughly 10 years long
 - lots of overlap in deployed systems
 - going, going, gone...
- **4G (~2010)**
 - typical frequency bands 800-900 MHz, 1700-1900 MHz, 2.5 GHz, 5 GHz
 - supports 100 Mbps moving, 1 Gbps stationary (in theory)
 - 4G LTE ("Long-term evolution")
 - a roadmap for evolution from 3G to 4G; a plan, not a strict definition
- **5G (~2020)**
 - up to three bands, one of which is very high frequency (25-40 GHz)
 - similar to 4G for normal use
 - higher bandwidth (at short distances), up to 10 Gbps, mainly for data
 - higher density of devices supported (IoT) but at short ranges
Wi-fi

- **Wi-Fi**: a trademark of the Wi-Fi Alliance
 - 800+ companies

- **uses IEEE 802.11 family of standards / protocols**
 - standards for speeds, modulation techniques, ...

- **usually uses 2.4 GHz or 5 GHz frequency bands**
 - subdivided into 20 MHz sub-channels

- **bandwidth varies widely**
 - 0.5 Gbps to 10 Gbps for 802.11ax

- **unique 48-bit MAC address for each wi-fi device**
 - just like Ethernet
Bluetooth

- short-range (10-100 m) low power (1 mw) wireless
- 2.402 GHz to 2.480 GHz
- used for earbuds, speakers, keyboards, mice, watches, game consoles, in-car systems...

Harald Bluetooth
King of Denmark
958-986
GPS (Global Positioning System)

• 31 satellites, each broadcasting time & its location
 – altitude ~ 20 km, frequency ~ 1575 MHz
 – at least 6 are visible at any time

• receiver calculates its position using distances to 3 or more satellites
 – distances computed by careful measurement of time
 – accuracy typically within 15 m for civilian systems
 – additional inputs or use of encrypted info reduces this to < 1 m

• GPS is 1-way, passive
Location services for phones

- cell phones know approximate location by triangulation on base station signals, within about 125 meter radius

- cell phones have GPS receivers so position is known within about 5 to 10 meters
 - this can be augmented with ground-based signals, including wi-fi
 - the result is a very accurate computation of phone's location

- the phone knows the accurate location and reports it back to the carrier
 - and potentially lots of others

- if "location services" is turned on, location is available to apps as well
Technology meets politics

- should texting while driving be illegal (and enforced)?
 - how about just talking on a phone while driving? (Walking? Self-driving car?)
- who determines where cell phone towers are permitted?
 - property rights versus eminent domain
- should cell phone jammers in be legal in theaters, trains, etc.?
- should StingRay devices be legal?
- location tracking and surveillance
 - who can have access to what phone records under what circumstances?
 - FCC mandates that cell phones can be located within 125 meter radius
 - should real-time location info be available to law enforcement, etc.?
- should you be forced by law enforcement to unlock your phone?
 - under what circumstances?
 - e.g., is entering the country different from a traffic stop?
 - what information can they access?
- should end-to-end encrypted systems like Signal be regulated?
- how about end-to-end encrypted mail?