Lecture 21: Compression; Error detection and correction

- compression: squeeze out redundancy
— to use less memory and/or use less network bandwidth,

— encode the same information in fewer bits
« some bits carry no information
« some bits can be computed or inferred from others
« some bits don't matter to the recipient and can be dropped entirely

- error detection & correction: add redundancy
— to detect and fix up loss or damage
— add carefully defined, systematic redundancy

— with enough of the right redundancy,
can detect damaged bits
can correct errors

Compressing English text

- letters do not occur equally often
- encode frequent letters with fewer bits,
- encode less frequent letters with more bits

- trades complexity against space
— e.g., Morse code, Huffman code, ...

* run-length encoding
— encode runs of identical things with a count
— e.g., World Wide Web Consortium => WWWC => W3C

- words do not occur equally often

- encode whole words or phrases, not just letters
— e.g., abbreviations for frequent words or sequences
— acronyms, shorthands, ...

Letter frequencies in King James bible (4.1M chars)

800000

700000 -

600000 -

500000 -

400000 -

300000 -

200000 -

100000 -

Lempel-Ziv coding; adaptive compression algorithms

- build a dictionary of recently occurring data
- replace subsequent occurrences by (shorter) reference to the
dictionary entry
- dictionary adapts as more input is seen
— compression adapts to properties of particular input
— algorithm is independent of nature of input

- dictionary is included in the compressed data

- Lempel-Ziv is the basis of PKZip, Winzip, gzip, GIF
— compresses Bible from 4.1 MB to 1.2 MB (typical for English text)

- Lempel-Ziv is a lossless compression scheme
— compression followed by decompression reproduces the input exactly

- lossy compression: may do better if can discard some information
— commonly used for pictures, sounds, movies

JPEG (Joint Photographic Experts Group) picture compression

- alossy compression scheme, based on how our eyes work
- digitize picture into pixels
- discard some color information (use fewer distinct colors)

— eye is less sensitive to color variation than to brightness

- discard some fine detail
— decompressed image is not quite as sharp as original

- use Huffman code, run-length encoding, etc., to compress resulting
stream of numeric values

- compression is usually 10:1 to 20:1 for pictures
- used in web pages, digital cameras, ...

PNG (Portable Network Graphics) COMpression

PNG is lossless
PNG was always an open algorithm — no patent issues

PNG versus JPG?

— JPG is "designed for photographic image data, which is typically
dominated by soft, low-contrast transitions, and an amount of noise or
similar irregular structures."

— "Using PNG instead of a high-quality JPEG for such images would result
in a large increase in filesize with negligible gain in quality."

— "In comparison, when storing images that contain text, line art, or
graphics — images with sharp transitions and large areas of solid color —
the PNG format can compress image data more than JPEG can.
Additionally, PNG is lossless, while JPEG produces visual artifacts
around high-contrast areas."

"Where an image contains both sharp transitions and photographic
parts, a choice must be made between the two effects."

MPEG (Moving Picture Experts Group) MoOVie compression

- MPEG-4: lossy compression scheme, based on human perceptions

- uses JPEG for individual frames (spatial redundancy)

-+ adds compression of temporal redundancy

look at image in blocks

if a block hasn't changed, just transmit that fact, not the content
if a block has moved, transmit amount of motion

motion prediction (encode expected differences plus correction)
separate moving parts from static background

- used in phones, DVD, TV, Internet video, video games, ...
- rate depends on resolution, frame rate, ...

MP3 (MPEG Audio Layer-3) Sound compression

- movies have sound as well as motion; this is the audio part
- 3 levels, with increasing compression, increasing complexity
- based on "perceptual noise shaping":
use characteristics of the human ear to compress better:
— human ear can't hear some sounds (e.g., very high frequencies)
— human ear hears some sounds better than others
— louder sounds mask softer sounds
- break sound into different frequency bands
- encode each band separately
- encode 2 stereo channels as 1 plus difference

- gives about 10:1 compression over CD-quality audio
— 1 MB/minute instead of 10 MB/minute
— can trade quality against compression

Summary of compression

eliminate / reduce redundancy
— more frequent things encoded with fewer bits
— use a dictionary of encoded things, and refer to it (Lempel-Ziv)
— encode repetitions with a count

not everything can be compressed
— something will be bigger

lossless vs lossy compression
— lossy discards something that is not needed by recipient

tradeoffs
— encoding time and complexity vs decoding time and complexity
— encoding is usually slower and more complicated (done once)

— parameters in lossy compressions
size, speed, quality

Error detection and correction

systematic use of redundancy to defend against errors

+ some common numbers have no redundancy
— and thus can't detect when an error might have occurred
— e.g., SSN -- any 9-digit number is potentially valid

- if some extra data is added or if some possible values are excluded,
this can be used to detect and even correct errors

- common examples include
— ATM & credit card numbers
— ISBN for books
— bar codes for products, mail, ...

ATM card checksum

- credit card / ATM card checksum:
starting at rightmost digit: Visa Gold
multiply digit alternately by 1 or 2
if result is > 9 subtract 9
add the resulting digits $000 123% Sbh18 9010
sum should be divisible by 10 ~ = 12/20

G. RAYHOAND V’SA

Gold

£S)

e.g., 12345678 is invalid
8+(14-9)+6+(10-9)+4+6+2+2=34

but 42345678 is valid
8+(14-9)+6+(10-9)+4+6+2+8=40

- defends against transpositions and many single digit errors
— these are the most common errors

Parity & other binary codes

parity bit: use one extra bit so total number of 1-bits is even

0110100 => 01101001
0110101 => 01101010
— detects any single-bit error

more elaborate codes can detect and even correct errors

basic idea is to add extra bits systematically so that legal values are
uniformly spread out, so any small error converts a legal value into an
illegal one

— some schemes correct random isolated errors
— some schemes correct bursts of errors (used in CD-ROM and DVD)

no error correcting code can detect/correct all errors
— a big enough error can convert one legal pattern into another one

