
Lecture 10: File systems, databases, cloud storage

•  file: a sequence of bytes stored on a computer
–  content is arbitrary (just bytes); any structure is imposed by the creator of

the file, not by the operating system
•  file system: software that provides hierarchical storage and organization

of files, usually on a single computer (or nearby)
–  a significant part of the operating system

•  database: an integrated collection of logically related records
–  data is organized and structured for efficient systematic access
–  may be distributed across lots of machines & geographically dispersed

•  database system: software that provides efficient access to information
in a database
–  not usually part of the operating system

•  cloud storage: the same things, but on someone else's computer(s)
–  accessed via the Internet

Midterm rules and advice

•  open book: notes, textbook, old exams, etc., all ok
•  no Internet access; no collaboration (!)
•  90 minutes in a single sitting

•  return exam to CS 311 as soon as possible after you finish it
–  drop in the box outside the door if I am not there

•  by 5 PM Friday at the latest

•  I'm trying to see if you understand; it's not meant to be tricky
•  think straightforwardly; don't deconstruct; think about course topics
•  if you're writing or computing a lot, you're on the wrong track
•  know the powers of 2, powers of 10, hex digits, patterns thereof
•  understand the Toy machine
•  don't make careless arithmetic errors

File systems: managing stored information

•  logical structure: users and programs see a hierarchy of
 folders (== directories) and files

–  a file is just a sequence of bytes
contents determined and interpreted by programs, not the operating system

–  a folder is a special file that contains names of other folders and files
plus other information like size, time of change, permissions, etc.
contents are completely controlled by the operating system

–  "root" folder ultimately leads to all others

•  physical structure: many options with different properties

•  the file system is the part of the operating system that converts
between these two views
–  does whatever is necessary to maintain the file/folder illusion
–  hides physical details so that programs don't depend on them
–  presents a uniform interface to disparate physical media

How the file system converts logical to physical

•  disk is physically organized into blocks of bytes
–  each block is a fixed number of bytes, like 512 or 1024 or …)
–  reading and writing always happens in blocks

•  each file occupies an integral number of blocks
–  files never share a block
–  some space is wasted: a 1-byte file wastes all but 1 byte of the block

•  if a file is bigger than one block, it occupies several blocks
–  the blocks are not necessarily "adjacent"

•  need a way to keep track of the blocks that make up the file
•  usually done by a separate "file allocation table" that lists the blocks

that make up each file
–  this table is stored on disk too so it persists when computer is turned off

Converting logical to physical, continued

•  every block is part of some file, or reserved by the operating system,
or unused

•  "file allocation table" keeps track of blocks
–  by some kind of table or array that keeps track of related blocks

•  also keeps track of unused blocks
–  disk starts out with most blocks unused ("free")

some are reserved for file allocation table, etc.
–  as a file grows, blocks are removed from the unused list and attached to

the list for the file
to grow a file, remove a block from the list of unused blocks
and add it to the blocks for the file

Converting logical to physical: folders / directories

•  a folder / directory is a file
–  stored in the same file system
–  uses the same mechanisms

•  but it contains information about other files and directories

•  the directory entry for a file tells where to find the blocks
 IT DOES NOT CONTAIN THE DATA ITSELF

•  the directory entry also contains other info about the file
–  name (e.g., midterm.doc)
–  size in bytes, date/time of changes, access permissions
–  whether it's an ordinary file or a directory

•  the file system maintains the directory information
–  very important to keep directory info consistent
–  application programs can change it only indirectly / implicitly

File permissions

Network file systems

•  the file system doesn't have to be local
–  the data could be on some other computer

•  network file systems access remote files via network connections
–  user programs access files and folders as if they are on the local computer
–  network file system converts these into requests to ship information to or

from another computer across a network

•  there has to be a program on the other end to respond to requests
–  "mapping a network drive" or "mounting your H: drive" sets up the

connections

•  subsequent reads and writes go through the network instead of the
local disk

Cloud storage

•  the file system doesn't have to be local
–  the data could be on some other computer

•  cloud storage systems access remote files via network connections
–  user programs access files and folders as if they are on the local computer
–  file system converts these into requests to ship information to or from

another computer across a network

•  there has to be a program on the other end to respond to requests
–  connecting to Google Drive or Dropbox or iCloud or ... sets up the

connections

•  subsequent reads and writes go through the network instead of the
local disk

What happens when you say "Open"?

•  search for file in sequence of directories as given by the components
of its name
–  report and error if any component can't be found

•  read blocks of file as needed
–  using the location information in the file allocation table to find the blocks
–  store some of them in RAM

What happens when you say "Save"?

•  make sure there's enough space (enough unused blocks)
–  don't want to run out while copying from RAM to disk

•  create a temporary file with no bytes in it
•  copy the bytes from RAM and/or existing file to temporary file:

while (there are still bytes to be copied) {
 get a free block from the unused list
 copy bytes to it until it's full or there are no more bytes to copy
 link it in to the temporary file
}

•  update the directory entry to point to the new file
•  move the previous blocks (of old version) to the unused list

–  or to recycle bin / trash

What happens when you remove a file?

•  move the blocks of the file to the unused list
•  set the directory entry so it doesn't refer to any block

–  set it to zero, maybe

•  recycle bin / trash
–  recycle bin or trash is just another directory
–  removing a file just puts the name, location info, etc., in that directory instead

•  "emptying the trash" moves blocks into unused list
–  removes entry from Recycle / Trash directory

•  why "removing" a file isn't enough
–  usually only changes a directory entry
–  often recoverable by simple guesses about directory entry contents
–  file contents are often still there even if directory entry is cleared

