
Lecture 6: Inside the processor, continued

•  how does the CPU work?
–  what operations can it perform?
–  how does it perform them? on what kind of data?
–  where are instructions and data stored?

•  some short, boring programs to illustrate the basics
•  a toy machine to try the programs

–  a program that simulates the toy machine
–  so we can run programs written for the toy machine

•  computer architecture: real machines
•  caching: making things seem faster than they are
•  how chips are made
•  Moore's Law
•  von Neumann architecture
•  Turing machines

Technology evolution (dates approximate)

•  1920-1960: vacuum tubes
–  expensive, poor reliability, fragile, bulky, power hungry

•  1947 first transistor (Bell Labs)
–  low power, mechanically robust, tiny

•  1960 discrete transistors
–  basically switches: voltage on one lead controls current through others

•  1960 ... integrated circuits
–  grow an entire circuit on a silicon surface
–  continuously increasing density of individual components

Fabrication: making chips

•  grow layers of conducting and insulating materials on a thin
 wafer of very pure silicon
•  each layer has intricate pattern of connections

–  created by complex sequence of chemical and photographic processes
•  dice wafer into individual chips, put into packages

–  yield is less than 100%, especially in early stages
•  how does this make a computer?

–  when conductor on one layer crosses one on lower layer,
 voltage on upper layer controls current on lower layer
–  this creates a transistor that acts as off-on switch
 that can control what happens at another transistor

•  wire widths keep getting smaller: more components in given area
–  today << 0.01 micron = 10 nanometers

 1 micron == 1/1000 of a millimeter (human hair is about 100 microns)

–  eventually this will stop

Moore's Law (1965, Gordon Moore, founder & former CEO of Intel)

•  number of transistors on a chip
 doubles about every 18 months

–  and has done so since ~1961

•  consequences
–  cheaper, faster, smaller, less power use per unit
–  ubiquitous computers and computing

•  limits to growth
–  fabrication plants now cost $2-4B; most are outside US
–  line widths are nearing fundamental limits
–  complexity is increasing
–  processors don't run faster
–  speed of light limitations across chip area

•  maybe some other technology will come along
–  atomic level; quantum computing
–  optical
–  biological: DNA computing

1929-2023

Transistor counts and Moore's Law

Computer architecture
•  what instructions does the CPU provide?

–  CPU design involves complicated tradeoffs among functionality, speed,
complexity, programmability, power consumption, …

–  Intel and ARM are unrelated, totally incompatible
Intel: lot more instructions, many of which do complex operations

e.g., add two memory locations and store result in a third
ARM: fewer instructions that do simpler things, but faster

e.g., load, add, store to achieve same result
•  how is the CPU connected to the RAM and rest of machine?

–  memory is the real bottleneck; RAM is slow (25-50 nsec to fetch)
modern computers use a hierarchy of memories (caches) so that frequently or

recently used information is accessible to CPU without going to RAM
•  what tricks do designers play to make it go faster?

–  overlap fetch, decode, and execute so several instructions are in various
stages of completion (pipeline)

–  do several instructions in parallel
–  do instructions out of order to avoid waiting
–  multiple "cores" (CPUs) in one package to compute in parallel
–  GPUs to do some computations in parallel at high speed

•  speed comparisons are hard, not very meaningful

Caching: making things seem faster than they are

•  cache: a small very fast memory for recently-used information
–  loads a block of info around the requested info

•  CPU looks in the cache first, before looking in main memory
–  separate caches for instructions and data

•  CPU chip usually includes multiple levels of cache
–  faster caches are smaller

•  caching works because recently-used info is likely to be used again
soon
–  therefore more likely to be in the cache already

•  cache usually loads nearby information at the same time
–  nearby information is more likely to be used soon
–  therefore more likely to be in the cache when needed

•  this kind of caching is invisible to users
–  except that machine runs faster than it would without caching

CPU block diagram (non-artist's conception)

Control unit
Registers

ALU, GPU

PC

memory

ALU = arithmetic/
 logic unit

PC = program counter
 = location of next instr

Cache

Caching is a much more general idea

•  things work more efficiently if what we need is close
•  if we use something now

–  we will likely use it again soon (time locality)
–  or we will likely use something nearby soon (space locality)

•  other caches in computers:
–  CPU registers
–  cache(s) in CPU
–  RAM as a cache for disk or network or …
–  disk as a cache for network
–  network caches as a cache for faraway networks
–  caches at servers

•  some are automatic (in hardware), some are controlled by software,
some you have some control over

Other kinds of computers

•  not all computers are Macs or PCs

•  "supercomputers"
–  usually large number of fairly standard processors
–  extra instructions for well-structured data

•  "distributed" computing
–  sharing computers and computation by network
–  e.g., web servers

•  embedded computers
–  phones, games, music players, ...
–  cars, planes, weapons, ...

•  GPU (graphics processing unit)
–  specialized processor for 3-d graphics, other streaming computations

•  each represents some set of tradeoffs among cost,
 computing power, size, speed, reliability, ...

Turing machines

•  in 1936, Turing showed that a simple model of a
computer is universal
–  now called a Turing machine

•  all computers have the same computational power
–  i.e., they can compute the same things
–  though they may vary enormously in speed, memory, etc.

•  equivalence proven / demonstrated by simulation
–  any machine can simulate any other
–  a "universal Turing machine" can simulate any other

Turing machine
 https://www.youtube.com/watch?v=E3keLeMwfHY

•  see also
–  Turing Test
–  Turing Award
–  Enigma

Alan Turing *38
1912-1954

Fundamental ideas
•  programmable, general-purpose computers

–  simple instructions for arithmetic, moving data, comparison of values
–  select next instruction based on results
–  controls its own operation according to computed results

•  von Neumann architecture
–  change what it does by putting new instructions in memory
–  instructions & data stored in same memory, indistinguishable except by context

attributed to von Neumann, 1946 (and Charles Babbage, Analytical Engine, 1830's)
–  logical structure largely unchanged for 60+ years, evolving now
–  physical structures changing very rapidly

•  Turing machines
–  all computers have exactly the same logical power:
 they can compute exactly the same things; differ only in performance
–  one computer can simulate another computer;

a program can simulate a computer
•  everything is ultimately represented in bits (binary numbers)

–  groups of bits represent larger entities: numbers of various sizes, letters in
various character sets, instructions, memory addresses

–  interpretation of bits depends on context
one person's instructions are another person's data

