Lecture 4: Continued: Bits, bytes, binary numbers, and the representation of information

- computers represent, process, store, copy, and transmit everything as numbers
 - hence "digital computer"
- the numbers can represent anything
 - not just numbers that you might do arithmetic on
- the meaning depends on context
 - as well as what the numbers ultimately represent
 - e.g., numbers coming to your computer or phone from your wi-fi connection could be email, movies, music, documents, apps, Zoom meeting, ...

Some things are intrinsically discrete / digital

- another kind of conversion
 - letters are converted into numbers when you type on a keyboard
 - the letters are stored (a Word document), retrieved (File/Open...), processed (paper is revised), transmitted (submitted by email), printed on paper
- letters and other symbols are inherently discrete
- encoding them as numbers is just assigning a numeric value to each one, without any intrinsic meaning
- what letters and other symbols are included?
- how many digits/letter?
 - determined by how many symbols there are
 - how do we disambiguate if symbols have different lengths?
- how do we decide whose encoding to use?
- the representation is arbitrary
- but everyone has to agree on it
 - if they want to work together

ASCII: American Standard Code for Information Interchange

- an arbitrary but agreed-upon representation for USA
- widely used everywhere

32	space	e 33	!	34	"	35	#	36	\$	37	Ŷ	38	&	39	'
40	(41)	42	*	43	+	44	,	45	-	46		47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	<	61	=	62	>	63	?
64	Ø	65	А	66	В	67	С	68	D	69	Ε	70	F	71	G
72	Н	73	I	74	J	75	Κ	76	\mathbf{L}	77	М	78	Ν	79	0
80	Р	81	Q	82	R	83	S	84	Т	85	U	86	V	87	W
88	Х	89	Y	90	Z	91	[92	\setminus	93]	94	^	95	_
96	`	97	а	98	b	99	С	100	d	101	е	102	f	103	g
104	h	105	i	106	j	107	k	108	l	109	m	110	n	111	0
112	р	113	q	114	r	115	S	116	t	117	u	118	v	119	W
120	х	121	У	122	Z	123	{	124	I	125	}	126	~	127	del
000	1000	0 sp	pace	e 00	01	0001	!	0001	001	LO "	00	0100	11	# .	• •

Hexadecimal notation

- binary numbers are bulky
- hexadecimal notation is a shorthand
- it combines 4 bits into a single digit, written in base 16
 a more compact representation of the same information
- hex uses the symbols A B C D E F for the digits 10 .. 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

0	0000	1	0001	2	0010	3	0011
4	0100	5	0101	6	0110	7	0111
8	1000	9	1001	A	1010	В	1011
С	1100	D	1101	Ε	1110	F	1111

Decimal, binary, hex

dec	bin	hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

ASCII, using hexadecimal numbers

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0	NUL	SOH	STX	ЕТХ	EOT	ENQ	АСК	BEL	BS	ΗT	LF	VT	FF	CR	SO	SI
1	DLE	DC 1	DC2	DC3	DC4	NAK	SYN	ЕТΒ	CAN	ΕM	SUB	ESC	FS	GS	RS	US
2	SPC		11	#	\$	%	3	I	()	*	+	,	_	■	/
3	0	1	2	3	4	5	6	7	8	9	•	•	<	=	>	?
4	@	A	В	С	D	Ε	F	G	Η	I	J	Κ	L	Μ	Ν	0
5	Ρ	Q	R	S	Τ	U	V	Ш	X	Y	Ζ	Γ	١]	^	_
6	``	а	b	C	d	е	f	g	h	i	j	k	I	m	n	0
7	р	q	r	S	t	u	V	W	X	y	Ζ	{		}	~	DEL

2C80

Coptic

Coptic (unicode.org)

	2C8	2C9	2CA	2CB	2CC	2CD	2CE	2CF
0	2	θ	Π	Ø	₽	L	φ	100
1	۵	θ	Π	ω	P	L	φ	10
2	B	1	P	7	đ)	6	Ŧ	ъ
3	в	1	P	-	ф	6	Ţ	ъ
4	Γ	κ	С	۹	3	í	ĸ	
5	Г	κ	С	٩	3	í	R	
6	Д	λ	Т	Ξ	1	r	षी	
7	Д	λ	т	8	1	1	ट्टि	
8	е	м	Y	2	8	ш	P	
9	е	м	Y	2	8	ц	₽	1
A	5	N	φ	-	9	A	oc	1.
в	5	N	ф	-	9	Æ	20	2
с	Z	Z	x	m	3	δ	20	11
D	Z	Z	×	m	3	б	M	5
E	H	0	4	Ħ	P	Г	м	4
F	H	0	*	-	P	E		107

dec	bin	hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

2CFF

				1F60	1F61	1F62	1F63	1F64						
Emoji		0	1F600	1F610	1F620	1F630	1F640	8	1F608	1F618	1F628	1F638	17648	
		1	15601	15611	15621	15631	17641	9	1F609	1F619	1F629	1F639	1F649	
dec	bin	hex	2	Ę)	٢	æ	•	•	А	٢	٦	3	3	%
0	0000	0		1F602	1F612	1F622	1F632	1F642		1F60A	1F61A	1F62A	1F63A	1F64A
1 2	0001 0010	1 2 3 4 5 6 7	3	Θ	6	\mathfrak{S}	٩	\odot	в	3	(\mathbf{c})	ଞ	3	10
3	0011			1F603	1F613	1F623	1F633	1F643		1F60B	1F61B	1F62B	1F638	1F64B
4 5 6	0100		4	8	(iii)		\bigcirc	•	с	3	9		•	i i i i i i i i i i i i i i i i i i i
7	0111			1F604	1F614	1F624	1F634	1F644		1F60C	1F61C	1F62C	1F63C	1F64C
8 9 10	1000 1001 1010	8 9 A	5	3	\odot	۲	6		D	۲	(Ð	3	<u>æ</u> ,
11	1011	В		1F605	1F615	1F625	1F635	1F645		1F60D	1F61D	1F62D	1F63D	1F64D
12 13	1100 1101 1110	C D E	6	8	25	\odot	\odot	(3)	Е	3	3	\odot	۲	<u>Ø</u>
15	1111	F		1F606	1F616	1F626	1F636	1F646		1F60E	1F61E	1F62E	1F63E	1F64E
			7	3	•;	3	Θ	ŏ	F	٣	۲	•	$\overline{\mathbf{S}}$	\mathbf{A}
				1F607	1F617	1F627	1F637	1F647		1F60F	1F61F	1F62F	1F63F	1F64F

Color

• TV & computer screens use Red-Green-Blue (RGB) model

- each color is a combination of red, green, blue components
 R+G = yellow, R+B = magenta, B+G = cyan, R+G+B = white
- for computers, color of a pixel is usually specified by three numbers giving amount of each color, on a scale of 0 to 255
- this is often expressed in hexadecimal so the three components can be specified separately (in effect, as bit patterns)
 - 000000 is black, FFFFFF is white
- printers, etc., use cyan-magenta-yellow[-black] (CMY[K])

Approximations using 2ⁿ

2^24 = 2^4 * 2^20 = 16 * 1,000,000 (16,777,216)

 $2^{64} = 2^{4} * 2^{60}$ = 16 * 1,000,000,000,000,000,000 (18,446,744,073,709,551,616)

A very important idea

- number of items and number of digits are tightly related:
 - one determines the other
 - maximum number of different items = base number of digits
 - e.g., 9-digit SSN: $10^9 = 1$ billion possible numbers
 - e.g., to represent up to 100 "characters": 2 digits is enough
 - but for 1000 characters, we need 3 digits
 - the same for bits: 9 bits can represent up to $2^9 = 512$ items
- interpretation depends on context
 - without knowing that, we can only guess what numbers mean

Things to remember

- digital devices represent everything as numbers
 - discrete values, not continuous or infinitely precise
- all modern digital devices use binary numbers (base 2) internally
 - instead of decimal (base 10)
- it's all bits at the bottom
 - a bit is a "binary digit", that is, a number that is either 0 or 1
 - computers ultimately represent and process everything as bits
- groups of bits represent larger things
 - numbers, letters, words, names, pictures, sounds, instructions, ...
 - the interpretation of a group of bits depends on their context
 - the representation is arbitrary; standards (often) define what it is
- the number of digits used in the representation determines how many different things can be represented
 - number of values = base ^{number of digits}
 - e.g., 10², 2¹⁰