


Welcome!

Introductions:
What is your year / background / research interests?

What do you want to learn from this class?

About me:

First semester at Princeton and first time teaching this class
Interested in machine learning for structural biology, cryo-EM methods, and 3D
computer vision:

We will explore this new research area, its various subfields and connections to
other topics in computer science throughout this semester

Previous research in physics-based simulations for protein folding, free energy
estimation




Course logistics

o Website: https://www.cs.princeton.edu/courses/archive/fall22/cos597N/

e Instructor: Ellen Zhong (she/her)
o Office hours: Mondays 4:00-5:00p, CS 314

e Class meetings: Thursdays 3:00-5:00p
e Aside from today, all classes will involve a group discussion of assigned papers
e Attendance is mandatory — contact me in advance if there are extenuating circumstances
e Following university Covid-19 policy; masks are optional

o Additional spaces for paper discussion:
e Optional “precept” for student-only paper discussion on Tue or Wed — will send doodle poll
e Slack for sharing helpful resources, more related papers, or #random!


https://www.cs.princeton.edu/courses/archive/fall22/cos597N/

Course Design

e Goals of this course:
e Learn about machine learning methods applied to problems in structural biology

e Learn how to critically read and evaluate papers
e Learn how to pose research problems and practice written scientific communication skills

e Bonus: Exposure to relevant basic and applied ML research in industry from guest
speakers

e There are two components of this class:

e Weekly in-class discussions on assigned papers
e | am tentatively planning on assigning six written assignments throughout the semester

e Two assignments involve writing an NSF GRFP proposal
e Four assignments involve short essays



Prerequisites

* This is an advanced, interdisciplinary paper reading class.

* You should have exposure/working knowledge of machine learning concepts and deep
learning architectures.

- | will provide supplementary reading/primers. Add any helpful resources you find to
the #resources channel in slack!

* No prior knowledge of biology is required, however, students should expect to develop
a sufficient understanding of each application area to evaluate new developments.

- Key prerequisite: Interest in achieving a deep understanding of both ML algorithms
and structural biology problems

* Interested in “Al for science”? A key ability is to be able to read and understana
papers from both communities




Grading

Primarily based on participation (65%)
 Written assignments (%35)

Please monitor your own participation in discussions

If you are falling noticeably below average, please increase your participation, or |
may begin to call on you

Examples: Posing or answering questions, explaining background material

Grades are not the goal of this graduate-level seminar
-+ The goal is to learn about this research area and engage with your peers!
A highly interdisciplinary area — everyone brings a unique perspective.



Additional logistics

+ Papers posted the preceding Friday by noon
* Any important course announcements will be communicated through email

- | will be updating the course website, not Canvas

+ Some dates/topics may change later in the semester
-+ There will be a few guest lecturers during the semester. The tentative format is:

- Departmental seminar (tentatively during class 3p-4p)
+ Paper discussion 4-5p either led by E.Z. or the guest lecturer

* Any other questions?

- Full syllabus here
- Website here: https://www.cs.princeton.edu/courses/archive/tall22/cos597N/



https://docs.google.com/document/d/1gBtxhRIMZPTqSuBfomWnrBEyJYm7sUqcjySGmowTo4I/edit?usp=sharing
https://www.cs.princeton.edu/courses/archive/fall22/cos597N/

Rest of this class

 An introduction to structural biology through the lens of biology, chemistry, physics,
and computer science

+ Recent breakthroughs in structural biology from machine learning (AlphaFold2)
* An overview of topics in this course
* Discussion on paper reading strategies



An introduction to
structural biology

Motivation: What is structural
biology? What are proteins?
Why should you care?

Background: History of
structural biology and
protein structure 101

Current moment in machine
learning for structural
biology

Newly characterized
marine virus

10 nm

(Image courtesy of Jason Kaelbler)



The central dogma of molecular biology

DNA sequence

ATGCACTTGAGCAGGGAAGAAA...

RNA sequenc

AUGCACUUGAGCAGGGAAGAAA...

e

Protein sequence

MSTAGKVIKCKAAVLW!

L LKKPE..

Human genome:
* Contains around 3 billion base pairs
* Encodes ~20k genes

Proteins are the final product of the
genetic information flow

Modern molecular biology research: how
s life implemented by our genetic code?



Structural biology: The study of proteins and other biomolecules

through their 3D structure

DNA sequenc

ATGCACTTGAGCAGGGAAGAAA...

RNA sequenc

AUGCACUUGAGCAGGGAAGAAA...

e

e

Protein sequence

MSTAGKVIKCKAAVLW.

L LKKPE..

MRNA protein

(myoglobin, 1078 bases) (myoglobin, 153 aa)
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coding sequence (465 bases) 3'UTR

Cell Biology By The Numbers. lllustration by David Goodsell.



Structural biology: The study of proteins and other biomolecules

through their 3D structure

DNA sequence
ATGCACTTGAGCAGGGAAGAAA...

RNA sequence
AUGCACUUGAGCAGGGAAGAAA...

Protein sequence
MSTAGKVIKCKAAVLWELKKPE..

Protein folding



All essential biological processes are carried out by proteins and
rotein complexes

- Fundamental molecules of life
- Medicine and health
- Nanotech and biotech
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W h at are p rOte i N S? A. Amino Acids with Electrically Charged Side Chains
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See Afinsen’s hypothesis, Dill et al. 2008, The Protein Folding Problem



https://www.annualreviews.org/doi/10.1146/annurev.biophys.37.092707.153558

Primary, secondary, and tertiary structure

* Ribbon diagram for visual interpretation of structure, developed by

Jane Richardson in the late 1970s - early 1980s Ao aces primary protei s
sequence;o achano
+ See her keynote at MLSB 2021 @ NeurlPS for a historical overview e

e« O

Secondary Protein Structure

Pleated sheet =——s——— Alpha helix == Secondary protein structure
hydrogen bonding of the peptide
backbone causes the amino
acids to fold into a repeating
pattern

Tertiary protein structure
three-dimensional folding
pattern of a protein due to side
chain interactions
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Quaternary protein structure
protein consisting of more
than one amino acid chain

Cu,Zn Superoxide Dismutase

https://stories.duke.edu/sciences-mother-of-ribbon-diagrams-celebrates-50-years-at-duke


https://www.mlsb.io/index_2021.html

Many proteins are enzymes that catalyze chemical reactions

+ The precise structural
arrangement of amino acid
residues creates the
opportunity to bind and
catalyze chemical reactions

- Catalysis is carried out at an
active site or binding site

- What are some examples of
enzymes?

Polypeptides can be cleaved either chemically or enzymatically. Enzymes
that catalyse the hydrolytic cleavage of peptide bonds are called proteases.

https://www.nature.com/scitable/content/protease-mechanisms-14462487



Proteins form large macromolecular machines

RNA polymerase

ATP synthase TR https://pdb101.rosb.org/



Proteins form large, dynamic macromolecular machines
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Experimental approach for protein structure determination

The first protein structure by Linus
Pauling, Robert Corey, and Herman
Branson in 1951

NMR spectroscopy

X-ray crystallography

Cryo-electron microscopy (cryo-EM)
2017 Nobel prize in Chemistry

Opened up new areas of structural
biology through recent technological
advances

New computational challenges and
opportunities

Released Entries (Cumulative)
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Abdella et al Science 2021

Growth of EM Archives 2021-12-22

B EMDB maps [ PDB EM models
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Recap: Understanding protein structure through different
lenses

(Biology) — Protein function (and dysfunction), genomic and cellular contexts
(Chemistry) — Amino acids, pKa, biological catalysts

(Physics) — Statistical mechanics, the Boltzmann distribution, and free energy
landscapes

In this class, our goal is to explore a computer science perspective on
problems in structural biology




Motivations for this course

o Structural biology poses a rich set of algorithmic challenges and scientific
opportunities

« A new and rapidly-evolving field
e 1st NeurlPS workshop on MLSB (2020)

o “..structural biology... has emerged as an area of great promise for machine
learning”

e 2nd NeurlPS workshop on MLSB (2021)

e “Structural biology ... is a field on the cusp of transformation.... recent
machine-learning based modeling approaches have shown that it will
become routine to predict and reason about structure at proteome scales
with unprecedented atomic resolution.”



3rd NeurlPS workshop on MLSB (2022)

 |In only a few years, structural biology... has been transformed by breakthroughs

from machine learning algorithms. Machine learning models are now routinely being
used by experimentalists:

- to predict structures that can help answer real biological questions (e.g.
AlphaFold),

- accelerate the experimental process of structure determination (e.g. computer
vision algorithms for cryo-electron microscopy), and

 have become a new industry standard for bioengineering new protein
therapeutics (e.g. large language models for protein design).

- More info: mlsb.io


http://mlsb.io

Let’s talk about
AlphaFold2

MIT

Technology Featured Topics Newsletters Events Podcasts
Review

Artificial intelligence

DeepMind’s protein-
folding Al has solved a 50-
year-old grand challenge
of biology

Recycling iteration 1, block 46
Secondary structure assigned from the final prediction

lox

Al has cracked a problem that stumped biologists
for 50 years. It’s a huge deal.




92.4 GDT

AlphaFold performance at CASP14



[1] Moult et al 1995

AlphaFold at CASP14

®* CASP!: Biannual community-wide blinded
competition on ~100 newly solved proteins

®* CASP14 press release: “Artificial
intelligence solution to a 50-year-old
science challenge could ‘revolutionise’
medical research”

* 92.4 median GDT
* (global distance test, 0-100)
* 1.6 A RMSD error

* Above >90 GDT considered within
experimental error

Median Free-Modelling Accuracy

100

ALPHAFOLD 2

80

D
60 ALPHAFOLD

GDT

40

20

CASP7 CASP8 CASP9 CASP10 CASP11  CASP12 CASP13 CASP14
2006 2008 2010 2012 2014 2016 2018 2020

CASP

» AlphaFold2
' Next Best Method

Mohammed AlQuraishi’s blog post, “AlphaFold2 @ CASP14. “It feels like one’s child has left home.”



https://moalquraishi.wordpress.com/2020/12/08/alphafold2-casp14-it-feels-like-ones-child-has-left-home/

Inside the AlphaFold system

Input sequence Statistical
MRKPRTPFTT.. E—

machine

3D structure



Inside the AlphaFold system

MSA

MRKPRTPETT..
MRKPRSPETT...
MRKPATPETT..
MRKPATPEST...
MRKPRTPETS...

Input sequence > Statistical
MRKPRTPFTT... < .
Templates macnine

3D structure




Input sequence >
MRKPRTPEFTT...

Inside the AlphaFold system

MSA

MRKPRTPEFTT..
MRKPRSPEFTT..
MRKPATPETT..
MRKPATPEST...
MRKPRTPETS...

Templates

—
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Inside the AlphaFold system

Embedding Trunk Heads
© 2020 DeepMind Technologies Limited
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A broad liberation of 3D structure

Before: ~100k unique structures — After: >350k predictions today, all ~100M UniProt sequences

Tunyasuvunakool et al, 2021



A broad liberation of 3D structure

Before: ~100k unigue structures — After: >350k predictions today, all ~1O0OM UniProt sequences

* Whole proteome coverage for humans
and 20 other model organisms

* Predicted Local Distance Difference Test
score (pLDDT) as a well-calibrated
measure of confidence

* State-of-the-art predictor of disorder?

Tunyasuvunakool et al, 2021

B oLDDT e [90-100]
oLDDT e [70-90)
oLDDT e [50-70)

0-50)

-
—~



A broad liberation of 3D structure

Before: ~100k unigue structures — After: >350k predictions today, all ~1O0OM UniProt sequences

* Whole proteome coverage for humans
and 20 other model organisms

* Predicted Local Distance Difference Test
score (pLDDT) as a well-calibrated
measure of confidence

* State-of-the-art predictor of disorder?

overage Statistics (pulled from Akdel et al, biorXiv)
Confident predictions (pLDDT > 0.7): Tunyasuvunakool et al, 2021

* 27% for P. falciparum B pLDDT e [90-100]
* 77% for E. coli pLDDT e [70-90)
®* Highly confident predictions (pLDDT > 0.9) for 25% of all pLDDT e [50-70)

residues LDDT & [0-50)
e —
* ~25% of residues of the proteomes covered with novel and P '

confident predictions




AlphaFold-Multimer

0.6
Minor design modifications to AlphaFold’s .
architecture and losses for multimeric complexes :

o 0.4
Better performance than ColabFold linker hacks 8 s
Requires specification of stoichiometry S .
i
Not as accurate as single chain protein structure 0.1
prediction 00

$ ¢ B8 57 2%

s B s g2

: 3
CAPRI metrics

Incorrect: O < DockQ < 0.23
Acceptable: 0.23 < DockQ < 0.49
Medium: 0.49 < DockQ < 0.80

High: 0.80 < Dock L
'8 < DockQ Evans et al, biorXiv, 2021



Scope and limitations

* Machine learning (defn.): Learning patterns from data

* The protein sequence to structure prediction problem is underspecified

Multiple conformations A homotrimeric complex Ligands/ions

AlphaFold Experiment

CASP target 71024

AlphaFold Experiment
r.m.s.d. = 0.59 A within 8 A of Zn

Jumper et al, 2021



Outlook for the post-AlphaFold era

* “Discovery” of performant neural network architectures for reasoning over
protein sequences and structures



Outlook for the post-AlphaFold era

* “Discovery” of performant neural network architectures for reasoning over
protein sequences and structures

* Many interesting problems remain
* Multiple conformations and dynamics
* Protein design

* |nteractions with DNA/RNA/small molecules



Outlook for the post-AlphaFold era

“Discovery” of performant neural network architectures for reasoning over
protein sequences and structures

Many interesting problems remain

* Multiple conformations and dynamics

* Protein design

* |nteractions with DNA/RNA/small molecules

Protein structure prediction vs. protein structure determination

* Close the loop? Deliberate experimental design?



Overview of selected topics

Weeks 2-4: Protein structure prediction

Weeks 5-6: Cryo-EM

Week 8: Physics-based modeling

Week 9: Protein language modeling

Week 10: Protein design

Week 11: Geometry deep learning and drug discovery
Week 14: Generative modeling of sequence and structure
Week 15: Structural bioinformatics



First two papers

+ The protein structure prediction component of the protein folding problem

+ These are both challenging papers to read — ask questions in slack and in the precept!

Langevin dynamics

Article Sequence s

Improved protein structure prediction using
potentials from deeplearning

¥ |
VU v

/N

Structure X

https://doi.org/10.1038/s41586-019-1923-7 Andrew W. Senior'**, Richard Evans'#, John Jumper'*, James Kirkpatrick#, Laurent Sifre'*,
Tim Green', Chongli Qin', Augustin Zidek', Alexander W. R. Nelson', Alex Bridgland',

Hugo Penedones , Stig Petersen’, Karen Simonyan', Steve Crossan', Pushmeet Kohli',
Accepted: 10 December 2019 David T. Jones??, David Silver', Koray Kavukcuoglu' & Demis Hassabis'

Received: 2 April 2019

Published as a conference paper at ICLR 2019

Published online: 15 January 2020

Protein structure prediction canbe used to determine the three-dimensional shape of
aprotein fromits amino acid sequence’. This problemis of fundamental importance
as the structure of a protein largely determines its function’; however, protein
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Upcoming guest speaker

« Michael Figurnov is a Staff Research
Scientist at DeepMind. He has been
working with the AlphaFold team for the
past four years. Before joining DeepMind,
he did his Ph.D. in Computer Science at
the Bayesian Methods Research Group
under the supervision of Dmitry Vetrov.
His research interests include deep
learning, Bayesian methods, and machine
learning for biology.

e Thursday September 22nd, 3pm, Zoom



Paper reading strategies

- Biology journal papers vs. ML conference papers
- What are your current practices?

- Additional consideration when reading papers:
- What is the historical/social context of this work?
 (How) did this paper impact the field / other research? Who is citing this work?
Why?
- Think about the differences between carrying out the research and writing the
paper. Usually somewhat decoupled.

 For more ideas on different “roles” in paper reading, see https://colinraffel.com/
blog/role-playing-seminar.htm|



https://colinraffel.com/blog/role-playing-seminar.html
https://colinraffel.com/blog/role-playing-seminar.html

