

a Visual Language Model for Few-Shot Learning

Andrea Wynn and Xindi Wu 11/21/2022

Overview

Motivation

Flamingo Model Architecture

Training Data & Objective

In-Context Learning & Fine Tuning

Evaluation & Ablation Results

Limitations

Related Work: CM3 & Frozen

Discussion

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." *arXiv preprint arXiv:2010.11929* (2020).

Motivation

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021. 6

Motivation

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021. 7

A photo of a dog.

Motivation

The first vision-language model that has in-context learning ability

Motivation | Challenges

GPT-3VITVisualBERTCLIPFlamingo

Challenges of multimodal generative modelling

- Unifying strong single-modal models
 - Interleave **cross-attention** layers with language only self-attention layers

Motivation | Challenges

GPT-3 VIT VisualBERT CLIP Flamingo

Challenges of multimodal generative modelling

- Unifying strong single-modal models
 - Interleave **cross-attention** layers with language only self-attention layers
- Supporting images and videos
 - **Perceiver-based** architecture with a fixed number of visual tokens

Motivation | Challenges

GPT-3 VIT VisualBERT CLIP Flamingo

Challenges of multimodal generative modelling

- Unifying strong single-modal models
 - Interleave **cross-attention** layers with language only self-attention layers
- Supporting images and videos
 - **Perceiver-based** architecture with a fixed number of visual tokens
- Heterogeneous training data
 - **Combine** web scraping with existing image-text or video-text datasets.

Separately trained image + language models, with novel layers in between

Input/Output

Interleaved inputs: text/images/video

Selected single image samples

Selected dialogue samples

0

0

 \odot

0

What is in this picture?

made out of?

P it. What is the monster

P etables.

OD

It's a bowl of soup

with a monster face on

It's made out of veg-

It's made out of a

No. it's made out of

a kind of fabric. Can you see what kind?

woolen fabric.

Outputs:free-form text

Selected video samples.

Separately trained image + language models, with novel layers in between

Separately trained image + language models, with novel layers in between

$$p(y|x) = \prod_{\ell=1}^{L} p(y_{\ell}|y_{<\ell}, x_{\leq \ell}),$$

Vision Encoder

Pretrained and frozen Normalizer Free ResNet (NFNet)

Brock, Andy, et al. "High-performance large-scale image recognition without normalization." International Conference on Machine Learning. PMLR, 2021. 17

<pre>def perceiver_resampler(x_f, # The [T, S, d] visual features (T=time, S=space) time embeddings, # The [T, 1, d] time new embeddings</pre>
x. # R learned latents of shape [R d]
num_layers, # Number of layers
):
"""The Perceiver Resampler model."""
Add the time position embeddings and flatten.
$x_f = x_f + time_embeddings$
$x_f = flatten(x_f) \# [T, S, d] \rightarrow [T * S, d]$
Apply the Perceiver Resampler layers.
<pre>for i in range(num_layers):</pre>
Attention.
$x = x + attention_i(q=x, kv=concat([x_f, x]))$
Feed forward.
$x = x + ffw_i(x)$
return x


```
x_f, # The [T, S, d] visual features (T=time, S=space)
  time_embeddings, # The [T, 1, d] time pos embeddings.
  x, # R learned latents of shape [R, d]
  num_layers, # Number of layers
# Add the time position embeddings and flatten.
x_f = x_f + time_embeddings
x_f = flatten(x_f) # [T, S, d] -> [T * S, d]
# Apply the Perceiver Resampler layers.
  # Attention.
  x = x + attention_i(q=x, kv=concat([x_f, x]))
 # Feed forward.
 x = x + ffw_i(x)
return x
```



```
x_f, # The [T, S, d] visual features (T=time, S=space)
  time_embeddings, # The [T, 1, d] time pos embeddings.
 x, # R learned latents of shape [R, d]
  num_layers, # Number of layers
# Add the time position embeddings and flatten.
x_f = x_f + time_embeddings
x_f = flatten(x_f) # [T, S, d] -> [T * S, d]
# Apply the Perceiver Resampler layers.
for i in range(num_layers):
  # Attention.
  x = x + attention_i(q=x, kv=concat([x_f, x]))
  # Feed forward.
 x = x + ffw_i(x)
return x
```


Conditioning the Language Model

24

Pre-Lecture Question

Describe how Flamingo handles input sequences of arbitrarily interleaved textual and visual data, and combines pre-trained text-only and vision-only models.

Answer:

For example, the input contains an image of a dog together with a text description and an image of a cat with an incomplete text description. The text is parsed from the input with images replaced with placeholders the images are also extracted from the input passed through a frozen vision encoder and then mapped through the perceiver resampler to produce a fixed number of visual tokens per input.

Training Data

my cat.

Mixture of Datasets

A kid doing a kickflip.

Image-Text Pairs dataset [N=1, T=1, H, W, C]

Video-Text Pairs dataset [N=1, T>1, H, W, C]

Multi-Modal Massive Web (M3W) dataset [N>1, T=1, H, W, C]

- N: Number of visual inputs for a single example
- T: Number of video frames
- H, W, C: height, width, color channels

Interleaved Image/Text: MultiModal MassiveWeb (M3W)

- Interleaved text and image training data
- Compiled from webpage HTML
- Randomly sample 256 token subsequence and extract first 5 images

Example:

Multi-Modal Massive Web (M3W) dataset [N>1, T=1, H, W, C]

Image-Text Pairs: ALIGN

"motorcycle front wheel"

"thumbnail for version as of 21 57 29 june 2010"

"file london barge race 2 jpg"

"moustache seamless wallpaper design"

"file frankfurt airport skyline 2017 05 jpg"

"st oswalds way and shops"

Source: https://arxiv.org/pdf/2102.05918v2.pdf

Image-Text Pairs: Long Text & Image Pairs (LTIP)

Video & Text Pairs (VTP)

Data Augmentation & Preprocessing

- Visual inputs resized to 320x320
- M3W Data Augmentation: Randomizing image placement

(a) This is my dog! <dog image>(b) <dog image> That was my dog!

This is my cat! <cat image> <cat image> That was my cat!

Training Objective

$$\sum_{m=1}^{M} \lambda_m \cdot \mathbb{E}_{(x,y)\sim\mathcal{D}_m} \left[-\sum_{\ell=1}^{L} \log p(y_\ell | y_{<\ell}, x_{\leq \ell}) \right]$$

- Weighted sum of dataset specific expected negative log likelihood of text, given some visual inputs
- AdamW optimizer
- No weight decay for Perceiver Resampler
- Weight decay of 0.1 for other parameters

Pre-Lecture Question

Describe what datasets are used for mixed training. How important is each type of dataset empirically?

Answer:

Datasets - M3W (interleaved images and text), ALIGN (large, lower quality image + text pairs), LTIP (image + text pairs), VTP (video + text pairs)

Importance (lambda weights) - 1.0 (M3W), 0.2 (ALIGN), 0.2 (LTIP), 0.03 (VTP)

Number of datasets (M) - 4

Flamingo Evaluation

Benchmark Tasks

	Dataset	DEV	Gen.	Custom prompt	Task description
	ImageNet-1k [94]	1			Object classification
	MS-COCO [15]	1	1		Scene description
	VQAv2 [3]	1	1		Scene understanding QA
e	OKVQA [69]	1	1		External knowledge QA
lag	Flickr30k [139]		1		Scene description
Ц	VizWiz [35]		1		Scene understanding QA
	TextVQA [100]		1		Text reading QA
	VisDial [20]				Visual Dialogue
	HatefulMemes [54]			1	Meme classification
	Kinetics700 2020 [102]	1			Action classification
	VATEX [122]	1	1		Event description
	MSVDQA [130]	1	1		Event understanding QA
	YouCook2 [149]		1		Event description
0	MSRVTTQA [130]		1		Event understanding QA
lde	iVQA [135]		1		Event understanding QA
5	RareAct [73]			1	Composite action retrieval
	NextQA [129]		1		Temporal/Causal QA
	STAR [128]				Multiple-choice QA

Benchmark Tasks: ImageNet-1k

partridge

Persian cat Siamese cat

lynx

. . .

keeshond

miniature schnauzer standard schnauzer giant schnauzer

Source: https://link.springer.com/content/pdf/10.1007/s11263-015-0816-y.pdf

Benchmark Tasks: Visual Question Answering (VQA)

What color are her eyes? What is the mustache made of?

How many slices of pizza are there? Is this a vegetarian pizza?

Is this person expecting company? What is just under the tree?

Does it appear to be rainy? Does this person have 20/20 vision?

Benchmark Tasks: Kinetics700 2020

- Taken from YouTube videos
- Format: label, youtube_id, start time, end time

label	youtube_id	time_start	time_end
clay pottery making	OdWlqevl	19	29
javelin throw	07WQ2iBlw	1	11
climbing a rope	ONTAs-fAO	29	39
sipping cup	0135AkU34	68	78
flipping pancake	33Lscn6sk	4	14
tickling	30AstUWtU	45	55

Benchmark Tasks: MSVDQA

Q: what is a man with long hair and a beard is playing ?

A: guitar

Q: what are two people doing?

A: dance

Q: what are some guys playing in a ground?

A: football

Q: who talks to judges?

A: girl

Classification Task Results

Model	Method	Prompt size	shots/class	ImageNet top 1	Kinetics700 avg top1/5
SotA	Fine-tuned	T .1	full	90.9 [127]	89.0 [134]
SotA	Contrastive	, ,	0	85.7 [<mark>82</mark>]	69.6 [85]
NFNetF6	Our contrastive		0	77.9	62.9
		8	1	70.9	55.9
Flamingo-3B	RICES	16	1	71.0	56.9
0		16	5	72.7	58.3
		8	1	71.2	58.0
Flamingo-9B	RICES	16	1	71.7	59.4
Flamingo-9B		16	5	75.2	60.9
	Random	16	≤ 0.02	66.4	51.2
		8	1	71.9	60.4
Flamingo-80B	RICES	16	1	71.7	62.7
		16	5	76.0	63.5
	RICES+ensembling	16	5	77.3	64.2

Fine Tuning Results

Method		7	сосо	VATEX	-2112-21	71 M 71 A	MSRVTTQA		VisDial	YouCook2		TextVQA	HatefulMemes
	test-dev	test-std	test	test	test-dev	test-std	test	valid	test-std	valid	valid	test-std	test seen
Flamingo - 32 shots	67.6	-	113.8	65.1	49.8	-	31.0	56.8		86.8	36.0	-	70.0
SimVLM [124]	80.0	80.3	143.3	-	-	1.00	10-1	-	-	<i></i>		15	
OFA [119]	79.9	80.0	149.6	-	-	-	-	÷	-	-	-	-	-
Florence [140]	80.2	80.4	-	-	-	-	-	-	-	-	-	-	-
Flamingo Fine-tuned	82.0	82.1	138.1	84.2	65.7	65.4	47.4	61.8	59.7	118.6	<u>57.1</u>	54.1	86.6
Pastriated SatAt	80.2	80.4	143.3	76.3	-	-	46.8	75.2	74.5	138.7	54.7	73.7	79.1
Resulcted SolA	[140]	[140]	[124]	[153]	-	-	[51]	[79]	[79]	[132]	[137]	[84]	[62]
Unrestricted Sot A	81.3	81.3	149.6	81.4	57.2	60.6	-	÷	75.4	- 1	-	-	84.6
omesticied sola	[133]	[133]	[119]	[153]	[65]	[65]	-	-	[123]	-	-	-	[152]

Model Scaling

A.5	Requires	Froze	en	Trainable		Total
	model sharding	Language	Vision	GATED XATTN-DENSE	Resampler	count
Flamingo-3B	×	1.4B	435M	1.2B (every)	194M	3.2B
Flamingo-9B	×	7.1B	435M	1.6B (every 4th)	194M	9.3B
Flamingo	1	70B	435M	10B (every 7th)	194M	80B

Number of Shots

Ablation Studies

Ablation Studies

	Ablated setting	Flamingo-3B original value	Changed value	Overall score↑
		Flamingo-31	3 model	70.7
(i)	Training data	All data	w/o Video-Text pairs w/o Image-Text pairs Image-Text pairs→ LAION w/o M3W	67.3 60.9 66.4 53.4
(ii)	Optimisation	Accumulation	Round Robin	62.9
(iii)	Tanh gating	1	X	66.5
(iv)	Cross-attention architecture	GATED XATTN-DENSE	VANILLA XATTN GRAFTING	66.9 63.1
(v)	Cross-attention frequency	Every	Single in middle Every 4th Every 2nd	59.8 68.8 68.2
(vi)	Resampler	Perceiver	MLP Transformer	66.6 66.7
(vii)	Vision encoder	NFNet-F6	CLIP ViT-L/14 NFNet-F0	64.9 62.7
(viii)	Freezing LM	1	✗ (random init)✗ (pretrained)	57.8 62.7

Pre-Training Dataset Ablation

Dataset	Combination	ImageNet	ageNet				COCO		
	strategy	accuracy	in	nage-to-t	ext	tex	text-to-image		
		top-1	R@1	R@5	R@10	R@1	R@5	R@10	
LTIP	None	40.8	38.6	66.4	76.4	31.1	57.4	68.4	
ALIGN	None	35.2	32.2	58.9	70.6	23.7	47.7	59.4	
LTIP + ALIGN	Accumulation	45.6	42.3	68.3	78.4	31.5	58.3	69.0	
LTIP + ALIGN	Data merged	38.6	36.9	65.8	76.5	15.2	40.8	55.7	
LTIP + ALIGN	Round-robin	41.2	40.1	66.7	77.6	29.2	55.1	66.6	

Frozen Language Model

	Ablated setting	Flamingo 3B value	Changed value	Overall score↑
		Flamingo 3B mode	el (short training)	70.7
(i)	Resampler size	Medium	Small Large	67.9 69.0
(ii)	Multi-Img att.	Only last	All previous	63.5
(iii)	p_{next}	0.5	0.0 1.0	69.6 70.4
(iv)	LM pretraining	MassiveText	C4	62.8
(v)	Freezing Vision	✓	X (random init) X (pretrained)	61.4 68.1
(vi)	Co-train LM on MassiveText	×	✓ (random init)✓ (pretrained)	55.9 68.6
(vii)	and Vision encoder	and NFNetF6	M3W+LAION400M+VTP and CLIP	64.9

0-initialized tanh gating

5	Ablated setting	Flamingo-3B original value	Changed value	Overall score↑
0		Flamingo-3	3 model	70.7
(i)	Training data	All data	w/o Video-Text pairs w/o Image-Text pairs Image-Text pairs→ LAIO w/o M3W	67.3 60.9 66.4 53.4
(ii)	Optimisation	Accumulation	Round Robin	62.9
(iii)	Tanh gating	✓	X	66.5
(iv)	Cross-attention architecture	GATED XATTN-DENSE	VANILLA XATTN GRAFTING	66.9 63.1
(v)	Cross-attention frequency	Every	Single in middle Every 4th Every 2nd	59.8 68.8 68.2
(vi)	Resampler	Perceiver	MLP Transformer	66.6 66.7

Failures: Hallucinations

Survey of Visual LMs

3

CM3

- Causally Masked Multimodal Modeling
- Images tokenized by VQVAE-GAN (source: https://arxiv.org/abs/2012.09841)

Paper: https://arxiv.org/abs/2201.07520

Learning Image Embeddings on Frozen LM Prefix

• Multimodal few shot learning for interleaved vision and text

Discussion

If you are going to build a visual LM for few-shot learning, what are the other ways of fusing visual and textual data? What pre-training data would you consider?