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Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Training data: 160GB of Python code

Evaluation: HumanEval
a novel dataset with 164 programming problems created by the authors
generate k samples from the model to see if at least one sample passes all the unit tests

Result: Codex-12B “solves” 72.3% of the problems (given 100 samples)
GPT-3 solves 0%, GPT-J solves 27.7%
if using only one sample (with lowest perplexity) we get 28.8% for Codex, 11.6% for GPT-J
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Real-life examples
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HumanEval
164 hand-written problems 

hand-writing to avoid repeating the problems in 
the training data (“training data leakage”) 

Evaluates language comprehension, reasoning, 
algorithms and simple math 

HE was used in later papers (CodeGen, InCoder)
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“Check if two words have the same 
characters.” 

“Return median of elements in the list 
l.” 

“sum_to_n is a function that sums 
numbers from 1 to n.” 

“Given a non-empty list of integers lst. 
add the even elements that are at odd 

indices.” 

“Return true if a given number is prime, 
and false otherwise. 

“Return n-th Fibonacci number.” 



HumanEval: Format

Format: 

• function signature 

• docstring with examples 

• unit-tests
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HumanEval: Metric

Functional correctness: 
Whether the generated code implements the 
correct function 
I.e. passes all unit tests 
This is the way humans evaluate correctness of 
the code 

BLEU score doesn’t work 
optimized for the semantics of text 
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BLEU = 81

Non-equivalent code

BLEU = 66

Equivalent code

Reference code



BLEU Score

BLEU score doesn’t work: 
•  Algorithmic difference  
•  Variable name 
•  Operation orders 

Optimizing for BLEU score is not equivalent to 
optimizing functional correctness 
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Q1: For evaluating code generation, why is functional correctness better than 
match-based metrics (e.g., BLEU)?

Existing match-based metrics are designed for comparing natural languages, which is not inherently 
applicable to code. In particular, when evaluating code, the aspect that matters is its correct behavior. 
One can use unit tests to check this correctness (with large likelihood). 
“Perhaps the most convincing reason to evaluate functional correctness is that it is used by human 
developers to judge code.” 

In a sense, this makes evaluation of code generation more “precise” than evaluation of text 
generation. 

Recent research (Ren et al.) showed that BLEU score doesn’t capture the semantic features specific to 
code. Aforementioned experiment result corroborate that BLEU score and the correctness of 
generated code are not equivalent.
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HumanEval: Sampling & pass@k

Given a prompt, generate  samples  
a sample is generated until a stop sequence is encountered 

pass@k: 
having k generations per problem, a problem is “solved” if at least one generation passes all unit 
tests 
total fraction of problems “solved” is reported 

k
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HumanEval: pass@k

Estimating pass@k: 
Naively: high variance for small k 
  
Instead: 

Generate  samples  
Use the following unbiased estimator 

where  is the #(correct samples)

n (n ≥ k)

c
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HumanEval: Potential Shortcomings

Small dataset 
large variance when comparing different models 

Most of the tasks are “short” - could be solved in less than 10 lines of code 

Data leakage  
the solutions to the problems might already be present in the training data 
e.g.: primality
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Model + training data

Model: GPT-3 
sizes: 12M - 12B 

Data: Python code from Github - 159GB 

Method: fine-tune on code 
use next token prediction 

  
no difference between fine-tuning GPT-3 and training from scratch on code 

yet, faster convergence when fine-tuning 
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Codex-S

Motivation: potential distribution mismatch between GitHub files and HumanEval / APPS problems  

Solution: fine-tune Codex on correct standalone functions 

18



Codex-S: Training Data

Competitive Programming (10,000 problems)  
- Self-contained  
- Unit test coverage  
- Problem descriptions as docstrings  

Continuous Integration (40,000 functions)  

“Developers regularly merge code changes into a central repository, after which automated builds 
and tests are run.”  

- Open source  
- Tracing test functions  
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Codex-S: Filtering

Concern:  
- Low-quality docstring 
- Stateful functions  

Solution: 
Use Codex-12B to generate 100 samples per problem, 
discard the problem if no generation passes
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Codex-S: Tuning

Training examples assembled into the same format as in pass@k evaluation  

Objective: minimize negative log-likelihood of reference solution, mask out loss for prompt  
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Docstring Generation

Motivation: useful for safety concerns  

Training Dataset: same as Codex-S dataset 

Training Objective: Minimize negative log-likelihood of docstring  

Evaluation: manually evaluate 10 samples per problem, creating pass@1 and pass@10 
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Docstring Generation

23



Outline

Codex  

Introduction 
Evaluation  
Methodology 
Experiments  
Discussions 

InCoder 

CodeGen 

Codex for NLP

24



Generation Example
Codex-12B

25



Sampling Temperature

Temperature experiment on Codex-679M 

larger k benefits from higher temperature 
(i.e. higher diversity) 
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Sampling Temperature
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Sampling Temperature

Codex-S prefers higher temperature compared to Codex  
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Q2: Why does temperature term matter for code generation and what is the 
relationship between temperature and k? What ranking heuristic works best?

Temperature 
Temperature controls the variance of generated samples, and higher k prefers higher temperature. Since 
pass@k rewards only whether the model generated any correct result given k samples, higher temperature 
generates more diverse solutions and more likely one of them would pass.  

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data 
with matching distribution, so it's more "concentrated" than Codex.  

Ranking Heuristic 
Mean log probability works best.  
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Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests  
Back Translation: best sample maximizes P(ground truth docstring | generated sample) 
Mean log probability 
Sum log probability  
Random  

Codex-12B, temp = 0.8
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Q2: Why does temperature term matter for code generation and what is the 
relationship between temperature and k? What ranking heuristic works best?

Temperature 
Temperature controls the variance of generated samples, and higher k prefers higher temperature. Since 
pass@k rewards only whether the model generated any correct result given k samples, higher temperature 
generates more diverse solutions and more likely one of them would pass.  

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data 
with matching distribution, so it's more "concentrated" than Codex.  

Ranking Heuristic 
Mean log probability works best.  

Better decoding heuristics?  
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Results

Codex-S outperforms Codex on HumanEval 
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Code Model Comparison 

The Pile: 8% GitHub code, along with natural language data  
GPT-J and GPT-Neo: similar architecture  
TabNine: Code Autocomplete as a service 
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APPS

Sources: coding websites such as Codeforces, Kattis, etc. 

Difficulty Level: 
1. Introductory 
2. Interview 
3. Competition 

Distribution: 
5000 training set and 5000 test set 

Train set:  
52% Introductory, 40% Interview, 8% Competition  
Test set:  
20% Introductory, 60% Interview, 20% Competition  
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APPS

Raw Pass@k: calculated as before  
Filtered Pass@k: filter out cases that doesn’t pass the 3 samples in problem description 
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APPS
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APPS
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Limitations

Degradation with length of instruction  

Experiment: Compose 13 building blocks of <description, function> pair 

Chained Building Blocks:  
- Concatenate one-line descriptions into docstring  
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Limitations

Degradation with length of instruction  
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Hazard Analysis

Over-Reliance: Codex may generate incorrect code that looks fine to novice programmers  

Misalignment: Training distribution misalign with the intention of programmers  

Bias: Biased prompting setups lead to biased generations  
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CodeGen

Open-source alternative to Codex 
16B params 

Otherwise, very similar to Codex - albeit with a 
different exact dataset 

Slightly outperforms Codex for all k on pass@k on 
HumanEval 

Multi-turn evaluation provides a performance boost 
Similar to chain of thought
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AlphaCode

Goal: solving competition problems 

Similar approach, except: 
41B parameters 
encoder-decoder model 
larger sampling 

Avoiding data-leakage of HumanEval 
time-separated 

Performed on par with a “median” human 
competitor
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Code Infilling and Synthesis

Motivation: supports both left-to-right generation 
and infilling arbitrary blocks of code 
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Causal Masking

Training 
Given document size s, select  
Number of masks:  
Length of each mask:  

n ∼ Clamp(Poisson(1),1,16)
m ∼ (Uniform(0,s), Uniform(0,s))

52



Causal Masking

Training 

Given chosen spans, remove corresponding blocks with mask sentinel token 
Move blocks of code to the end of file, each separated by <EOM>  

53



Causal Masking

Training 

Maximize  log P([left; ⟨Mask ,0⟩; right; ⟨Mask 0⟩; SPAN; ⟨EOM⟩])
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Causal Masking

Inferencing 

Prompt generation through feeding the corresponding mask sentinel token 

Left-to-right generation: Prompt generation with no right context  
Infilling:  
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Left-to-Right
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Code Model on NLP Tasks

Highlight: Code Models (e.g. Codex) can outperform LLMs (e.g. GPT3) in NLP tasks that involve 
structural and logical analysis  
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Codex-NLP: Semantic Parsing

Task: convert an utterance u to a semantic meaning representation m, viewed either as a generation or 
classification problem  
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Codex-NLP: Reasoning

Task: Given a event/goal T, generate a commonsense reasoning represented as a graph
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Codex-NLP: Proof Synthesis

Task: Given a set of facts and a hypothesis, construct a proof of how the facts conclude at the 
hypothesis 
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Q3.  As a programmer,  what types of features would you like to use from a code 
model (describe the use cases in detail)?  Do you think current code models 
already achieve that, or what improvements need to be done in the future?
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Q3.  As a programmer,  what types of features would you like to use from a code 
model (describe the use cases in detail)?  Do you think current code models 
already achieve that, or what improvements need to be done in the future?

Features  

- Autocomplete: 
Given comment and some written code to start with, the model should be able to complete a block of code that 
matches the intention of function, variable names, and be able to call (if needed) other functions / imported 
libraries  

- Docstring Formatting  
Given function signature and code, infill missing components in the function docstring to include variable 
type, description, return type, etc.  

- Code Search  
Given a description of intention of function, search a codebase if such function is already implemented 

……
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Q3.  As a programmer,  what types of features would you like to use from a code 
model (describe the use cases in detail)?  Do you think current code models 
already achieve that, or what improvements need to be done in the future?

Discussion 

Code model that can fill in blanks in code or docstring would be better than left-to-right only 
generation for many reasons (e.g. to call functions declared both above and below a target function). 
HumanEval focuses on standalone functions, which may create a potential misalignment between the 
model’s trained goal and intention of programmers.  
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