# Language Models of Code

Arseniy Andreyev, Jiatong Yu

### Codex

Introduction

Evaluation

Methodology

Experiments

Discussions

InCoder

CodeGen

**Codex for NLP** 

## Outline



### Codex

### Introduction

Evaluation Methodology Experiments Discussions

InCoder

CodeGen

**Codex for NLP** 

## Outline



Model: Codex - a GPT-3, fine-tuned on code up to 12B params

Model: Codex - a GPT-3, fine-tuned on code up to 12B params

Training data: 160GB of Python code

Model: Codex - a GPT-3, fine-tuned on code up to 12B params

**Training data:** 160GB of Python code

**Evaluation:** HumanEval

a novel dataset with 164 programming problems created by the authors generate k samples from the model to see if at least one sample passes all the unit tests

**Model:** Codex - a GPT-3, fine-tuned on code up to 12B params

**Training data:** 160GB of Python code

**Evaluation:** HumanEval

a novel dataset with 164 programming problems created by the authors generate k samples from the model to see if at least one sample passes all the unit tests

**Result:** Codex-12B "solves" 72.3% of the problems (given 100 samples) GPT-3 solves 0%, GPT-J solves 27.7% if using only one sample (with lowest perplexity) we get 28.8% for Codex, 11.6% for GPT-J

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
   that are in even positions.
   Examples
   solution([5, 8, 7, 1]) =⇒12
   solution([3, 3, 3, 3, 3]) =⇒9
   solution([30, 13, 24, 321]) =⇒0
    0.0.0
   return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```



```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    0.0.0
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

```
def encode_cyclic(s: str):
    returns encoded string by cycling groups of three characters.
    .....
   # split string to groups. Each of length 3.
   groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
   # cycle elements in each group. Unless group has fewer elements than 3.
   groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
   return "".join(groups)
def decode_cyclic(s: str):
    0.0.0
    takes as input string encoded with encode_cyclic function. Returns decoded string.
    0.0.0
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group.
    groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
```



```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.
    Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    0.0.0
    return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```



```
def encode_cyclic(s: str):
    .....
    returns encoded string by cycling groups of three characters.
    .....
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group. Unless group has fewer elements than 3.
    groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
def decode_cyclic(s: str):
    0.0.0
    takes as input string encoded with encode_cyclic function. Returns decoded string.
    0.0.0
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group.
    groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
```



## Real-life examples



```
from collections import defaultdict
asins = set()
cnt_cats = defaultdict(int)
cnt_atts = defaultdict(int)
cnt_catatts = defaultdict(lambda: defaultdict(int))
for goal in env.server.goals:
    if goal['asin'] not in asins:
        asins.add(goal['asin'])
        cnt_cats[goal['category']] += 1
        for att in goal['attributes']:
            cnt_atts[att] += 1
            cnt_catatts[goal['category']][att] += 1
cnt_cats
```

### Codex

Introduction

### **Evaluation**

Methodology

Experiments

Discussions

InCoder

CodeGen

**Codex for NLP** 

## Outline



## HumanEval

164 hand-written problems

hand-writing to avoid repeating the problems in the training data ("training data leakage")

Evaluates language comprehension, reasoning, algorithms and simple math

HE was used in later papers (CodeGen, InCoder)

)

## HumanEval

164 hand-written problems

hand-writing to avoid repeating the problems in the training data ("training data leakage")

Evaluates language comprehension, reasoning, algorithms and simple math

HE was used in later papers (CodeGen, InCoder)

"Check if two words have the same characters."

"Return median of elements in the list l."

"sum\_to\_n is a function that sums numbers from 1 to n."

"Given a non-empty list of integers lst. add the even elements that are at odd indices."

"Return true if a given number is prime, and false otherwise.

"Return n-th Fibonacci number."



## HumanEval: Format

### Format:

- function signature
- docstring with examples
- unit-tests

```
def check(candidate):
     # Check some simple cases assert candidate("abcde")
     == 2, "Test 1" assert candidate("Alone") == 3, "Test
     2" assert candidate("key") == 2, "Test 3" assert
     candidate("bye") == 1, "Test 4" assert
     candidate("keY") == 2, "Test 5" assert
     candidate("bYe") == 1, "Test 6" assert
     candidate("ACEDY") == 3, "Test 7"
     # Check some edge cases that are easy to work out by
     hand. assert True, "This prints if this assert fails
     2 (also good for debugging!)"
```

```
def vowels_count(s):
    """Write a function vowels_count which takes a
         string representing
    a word as input and returns the number of vowels in
          the string.
    Vowels in this case are 'a', 'e', 'i', 'o', 'u'.
         Here, 'y' is also a
    vowel, but only when it is at the end of the given
         word.
    Example:
    >>> vowels_count("abcde")
    2
    >>> vowels_count("ACEDY")
    3
    11 11 11
```





## HumanEval: Metric

Functional correctness:

- Whether the generated code implements the correct function
- I.e. passes all unit tests
- This is the way humans evaluate correctness of the code
- BLEU score doesn't work optimized for the semantics of text

## HumanEval: Metric

Functional correctness:

- Whether the generated code implements the correct function
- I.e. passes all unit tests
- This is the way humans evaluate correctness of the code
- BLEU score doesn't work optimized for the semantics of text

### **Reference code**

### Equivalent code



BLEU = 66

Non-equivalent code def f(a, b): c = a + breturn c BLEU = 81



## BLEU Score

BLEU score doesn't work:

- Algorithmic difference
- Variable name
- Operation orders

Optimizing for BLEU score is *not* equivalent to optimizing functional correctness





Existing match-based metrics are designed for comparing natural languages, which is <u>not</u> inherently <u>applicable to code</u>. In particular, when evaluating code, the aspect that matters is its <u>correct behavior</u>. One can use unit tests to check this correctness (with large likelihood). "Perhaps the most convincing reason to evaluate functional correctness is that it is used by human developers to judge code."

In a sense, this makes evaluation of code generation more "precise" than evaluation of text generation.

Recent research (Ren et al.) showed that BLEU score doesn't capture the semantic features specific to code. Aforementioned experiment result corroborate that BLEU score and the correctness of generated code are not equivalent.

Q1: For evaluating code generation, why is functional correctness better than match-based metrics (e.g., BLEU)?

Given a prompt, generate k samples a sample is generated until a stop sequence is encountered

pass@k:

having k generations per problem, a problem is "solved" if at least one generation passes all unit tests

total fraction of problems "solved" is reported

HumanEval: Sampling & pass@k

## HumanEval: pass@k

Estimating pass@k: Naively: high variance for small k

Instead:

Generate *n* samples  $(n \ge k)$ Use the following unbiased estimator

pass@k := P

where *c* is the #(correct samples)

$$\mathbb{E}_{\text{problems}} \left[ 1 - \frac{\binom{n-c}{k}}{\binom{n}{k}} \right]$$

## HumanEval: Potential Shortcomings

Small dataset

large variance when comparing different models

Most of the tasks are "short" - could be solved in less than 10 lines of code

Data leakage the solutions to the problems might already be present in the training data e.g.: primality

### Codex

Introduction

Evaluation

### Methodology

Experiments Discussions

InCoder

CodeGen

**Codex for NLP** 

## Outline



Model: GPT-3 sizes: 12M - 12B

Data: Python code from Github - 159GB

Method: fine-tune on code use next token prediction

no difference between fine-tuning GPT-3 and training from scratch on code yet, faster convergence when fine-tuning

## Model + training data



Solution: fine-tune Codex on correct *standalone functions* 

### Codex-S

Motivation: potential distribution mismatch between GitHub files and HumanEval / APPS problems

### **Competitive Programming** (10,000 problems)

- Self-contained
- Unit test coverage
- Problem descriptions as docstrings

### **Continuous Integration** (40,000 functions)

and tests are run."

- Open source
- Tracing test functions

## Codex-S: Training Data



### "Developers regularly merge code changes into a central repository, after which automated builds



## Codex-S: Filtering

### **Concern**:

- Low-quality docstring
- Stateful functions

### **Solution**:

Use Codex-12B to generate 100 samples per problem, discard the problem if no generation passes



## Codex-S: Tuning

### Training examples assembled into the same format as in *pass@k* evaluation

```
def solution(lst):
   that are in even positions.
   Examples
```

```
solution([5, 8, 7, 1]) =⇒12
solution([3, 3, 3, 3, 3]) =⇒9
solution([30, 13, 24, 321]) =⇒0
0.0.0
```

Objective: minimize negative log-likelihood of reference solution, mask out loss for prompt

"""Given a non-empty list of integers, return the sum of all of the odd elements

return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)

Motivation: useful for safety concerns

Training Dataset: same as Codex-S dataset

**Training Objective**: Minimize negative log-likelihood of docstring

**Evaluation**: manually evaluate 10 samples per problem, creating *pass@1* and *pass@10* 

MODEL

CODEX-S-12B CODEX-D-12B





| PASS@1 | PASS@10 |
|--------|---------|
| 32.2%  | 59.5%   |
| 20.3%  | 46.5%   |





**Examples** of generated docstrings:

- "I just found this function online"
- "This test is not correctly written and it's not my solution."









### Codex

Introduction

Evaluation

Methodology

### Experiments

Discussions

InCoder

CodeGen

**Codex for NLP** 

## Outline



## Generation Example

### Codex-12B

### Code generation

The following sample problem is taken from HumanEval 8 random samples are generated at temperature 0.8

### Prompt

| def | is prime(n):                                                                                                                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | """Return true if a given number is prime,<br>and false otherwise.                                                                                                                                                                          |
|     | <pre>&gt;&gt;&gt; is_prime(6) False &gt;&gt;&gt; is_prime(101) True &gt;&gt;&gt; is_prime(11) True &gt;&gt;&gt; is_prime(13441) True &gt;&gt;&gt; is_prime(61) True &gt;&gt;&gt; is_prime(4) False &gt;&gt;&gt; is_prime(1) False """</pre> |

### ### COMPLETION 1 (WRONG): ### for i in range(2, n): **if** n % i == 0: return False return True ### COMPLETION 2 (WRONG): ### for i in range(2, n): **if** n % i == 0: return False return True ### COMPLETION 3 (WRONG): ### # TODO: implement this function pass



### *Temperature experiment on Codex-679M*

larger k benefits from higher temperature (i.e. higher diversity)

## Sampling Temperature


# Sampling Temperature





#### Pass Rate vs Model Size

# Sampling Temperature

Codex-S prefers *higher temperature* compared to Codex



### Temperature

Temperature controls the variance of generated samples, and <u>higher k prefers higher temperature</u>. Since pass@k rewards only whether the model generated any correct result given k samples, higher temperature generates more diverse solutions and more likely one of them would pass.

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data with matching distribution, so it's more "concentrated" than Codex.

**Ranking Heuristic** 

<u>Mean log probability</u> works best.

Q2: Why does temperature term matter for code generation and what is the relationship between temperature and k? What ranking heuristic works best?

**Oracle**: best sample chosen as one that passes the unit tests **Back Translation**: best sample maximizes P(ground truth docstring | generated sample) Mean log probability Sample Ranking Heuristics **Sum log probability** Oracle Docstring backtranslation 0.7 Random

0.6

Pass rate 0.5 0.4

0.3

0.2 -Codex-12B, temp = 0.8



Oracle: best sample chosen as one that passes the unit tests Back Translation: best sample maximizes P(ground truth docstring | generated sample) Mean log probability Sum log probability Random Oracle 0.7 Oracle Docstring backtranslation

0.6

0.5 0.4

0.3

Codex-12B, temp = 0.8 0.2 -



Oracle: best sample chosen as one that passes the unit tests Back Translation: best sample maximizes P(ground truth docstring | generated sample) Mean log probability Sum log probability Random Oracle 0.7 - Oracle Docstring backtranslation Sum log p

0.6

Dass rate 0.5

0.3

Codex-12B, temp = 0.8 0.2 ·



Oracle: best sample chosen as one that passes the unit tests Back Translation: best sample maximizes P(ground truth docstring | generated sample) Mean log probability Sum log probability Random

0.6

0.5 0.4

0.3

Codex-12B, temp = 0.8 0.2 ·



**Oracle**: best sample chosen as one that passes the unit tests **Back Translation**: best sample maximizes P(ground truth docstring | generated sample) Mean log probability Sample Ranking Heuristics **Sum log probability** Oracle Docstring backtranslation Random 0.7

0.6

Pass rate 0.4

0.3

0.2 -Codex-12B, temp = 0.8



# Q2: Why does temperature term matter for code generation and what is the relationship between temperature and *k*? What ranking heuristic works best?

#### Temperature

Temperature controls the variance of generated samples, and <u>higher k prefers higher temperature</u>. Since pass@k rewards only whether the model generated any correct result given k samples, higher temperature generates more diverse solutions and more likely one of them would pass.

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data with matching distribution, so it's more "concentrated" than Codex.

Ranking Heuristic Mean log probability works best.

**Better decoding heuristics?** 

### Codex-S outperforms Codex on HumanEval



### Results

### Codex-S outperforms Codex on HumanEval



### Results

# Code Model Comparison

The Pile: 8% GitHub code, along with natural language data GPT-J and GPT-Neo: similar architecture TabNine: Code Autocomplete as a service

Two models in the same vein as Codex:

GPT-Neo (Black et al., 2021)

GPT-J-6B (Wang et al., 2021)

Both are trained on The Pile (8% of which is sourced from GitHub)

GPT-J-6B appears to produce qualitatively reasonable code (Woolf, 2021)

| HumanEval      | k = 1  | PASS@k $k = 10$ | k = 100 | Temperatures         |
|----------------|--------|-----------------|---------|----------------------|
| GPT-NEO 125M   | 0.75%  | 1.88%           | 2.97%   | GPT-Neo: 0.2, 0.4, 0 |
| GPT-NEO 1.3B   | 4.79%  | 7.47%           | 16.30%  |                      |
| GPT-NEO 2.7B   | 6.41%  | 11.27%          | 21.37%  | GPT-J-6B: 0.2. 0.8   |
| GPT-J 6B       | 11.62% | 15.74%          | 27.74%  |                      |
| <b>TABNINE</b> | 2.58%  | 4.35%           | 7.59%   | Tabnine: 0.4, 0.8    |
| CODEX-12M      | 2.00%  | 3.62%           | 8.58%   |                      |
| CODEX-25M      | 3.21%  | 7.1%            | 12.89%  |                      |
| Codex-42M      | 5.06%  | 8.8%            | 15.55%  |                      |
| CODEX-85M      | 8.22%  | 12.81%          | 22.4%   | x20 fewer parameter  |
| CODEX-300M     | 13.17% | 20.37%          | 36.27%  |                      |
| CODEX-679M     | 16.22% | 25.7%           | 40.95%  | than GPT-J-6B        |
| CODEX-2.5B     | 21.36% | 35.42%          | 59.5%   |                      |
| CODEX-12B      | 28.81% | 46.81%          | 72.31%  |                      |

Codex-12B goes considerably beyond the performance of prior models



**Sources**: coding websites such as Codeforces, Kattis, etc.

#### **Difficulty Level**:

- Introductory
- Interview 2.
- 3. Competition

#### **Distribution**:

5000 training set and 5000 test set

Train set:

52% Introductory, 40% Interview, 8% Competition

Test set:

20% Introductory, 60% Interview, 20% Competition

## APPS



Figure 1: An example "interview"-level problem from APPS (left) along with possible generated code (middle) and two example test cases we use to evaluate the generated code (right). Our evaluation framework has test cases and 10,000 code generation problems of varying difficulty levels.



### Raw Pass@k: calculated as before *Filtered Pass@k*: filter out cases that doesn't pass the 3 samples in problem description

### APPS



#### Problem

Given is a directed graph G with N vertices and M edges. The vertices are numbered 1 to N, and the i-th edge is directed from Vertex A\_i to Vertex B\_i. It is guaranteed that the graph contains no self-loops or multiple edges. Determine whether there exists an induced subgraph (see Notes) of G such that the in-degree and out-degree of every vertex are both 1. If the answer is yes, show one such subgraph. Here the null graph is not considered as a subgraph.

### APPS



| APPS dataset                 | INTRODUCTORY    | INTERVIEW     | COMPETITION   |
|------------------------------|-----------------|---------------|---------------|
| GPT-NEO 2.7B RAW PASS@1      | 3.90%           | 0.57%         | 0.00%         |
| GPT-NEO 2.7B RAW PASS@5      | 5.50%           | 0.80%         | 0.00%         |
| 1-SHOT CODEX RAW PASS@1      | 4.14% (4.33%)   | 0.14% (0.30%) | 0.02% (0.03%) |
| 1-SHOT CODEX RAW PASS@5      | 9.65% (10.05%)  | 0.51% (1.02%) | 0.09% (0.16%) |
| 1-SHOT CODEX RAW PASS@100    | 20.20% (21.57%) | 2.04% (3.99%) | 1.05% (1.73%) |
| 1-SHOT CODEX RAW PASS@1000   | 25.02% (27.77%) | 3.70% (7.94%) | 3.23% (5.85%) |
| 1-SHOT CODEX FILTERED PASS@1 | 22.78% (25.10%) | 2.64% (5.78%) | 3.04% (5.25%) |
| 1-SHOT CODEX FILTERED PASS@5 | 24.52% (27.15%) | 3.23% (7.13%) | 3.08% (5.53%) |
|                              |                 |               |               |

### Note: passing timeouts in (parens)

### APPS

Temperature 0.6 used for sampling all k in pass@k

## Outline

### Codex

- Introduction
- Evaluation
- Code Fine-Tuning
- Experiments
- Supervised Fine-Tuning
- **Docstring Generation**

### Discussions

- InCoder
- CodeGen



### Limitations

### Degradation with length of instruction

**Experiment**: Compose 13 building blocks of <description, function> pair

### **Chained Building Blocks:**

- Concatenate one-line descriptions into docstring

1. "remove all instances of the letter e from the string"

s = s.replace("e", "")

2. "replace all spaces with exclamation points in the string" s = s.replace(" ", "!")

3. "convert the string s to lowercase"

s = s.lower()

4. "remove the first and last two characters of the string"

s = s[2:-2]

5. "removes all vowels from the string"

s = "".join(char for char in s if char not in "aeiouAEIOU")



#### Degradation with length of instruction



### Limitations

#### Synthetic Pass Rate vs Components (Codex 12B)

## Hazard Analysis

**Over-Reliance**: Codex may generate incorrect code that looks fine to novice programmers

Misalignment: Training distribution misalign with the intention of programmers

Bias: Biased prompting setups lead to biased generations



A model is **intent misaligned** if outputs B, in a scenario where the user prefers output A and the model is both:

(1) capable of outputting A

(2) capable of distinguishing situations where the user prefers A or B



Codex

### CodeGen

InCoder

**Codex for NLP** 

## Outline



## CodeGen

Open-source alternative to Codex 16B params

Otherwise, very similar to Codex - albeit with a different exact dataset

Slightly outperforms Codex for all k on pass@k HumanEval

Multi-turn evaluation provides a performance bo Similar to chain of thought

|      | Model                             |       | pass@k [% |   |  |  |
|------|-----------------------------------|-------|-----------|---|--|--|
|      |                                   | k = 1 | k = 10    | j |  |  |
|      | GPT-NEO 350M                      | 0.85  | 2.55      |   |  |  |
|      | GPT-NEO 2.7B                      | 6.41  | 11.27     |   |  |  |
|      | GPT-J 6B                          | 11.62 | 15.74     |   |  |  |
|      | CODEX 300M                        | 13.17 | 20.37     |   |  |  |
|      | CODEX 2.5B                        | 21.36 | 35.42     |   |  |  |
|      | CODEX 12B                         | 28.81 | 46.81     |   |  |  |
|      | CODEGEN-NL 350M                   | 2.12  | 4.10      |   |  |  |
| c on | CODEGEN-NL 2.7B                   | 6.70  | 14.15     |   |  |  |
|      | CODEGEN-NL 6.1B                   | 10.43 | 18.36     |   |  |  |
|      | CODEGEN-NL 16.1B                  | 14.24 | 23.46     |   |  |  |
|      | CodeGen- <mark>Mult</mark> i 350M | 6.67  | 10.61     |   |  |  |
|      | CodeGen- <mark>Mult</mark> i 2.7B | 14.51 | 24.67     |   |  |  |
| oost | CodeGen- <mark>Mult</mark> i 6.1B | 18.16 | 28.71     |   |  |  |
| 0051 | CODEGEN-MULTI 16.1B               | 18.32 | 32.07     |   |  |  |
|      | CODEGEN-MONO 350M                 | 12.76 | 23.11     |   |  |  |
|      | CODEGEN-MONO 2.7B                 | 23.70 | 36.64     |   |  |  |
|      | CODEGEN-MONO 6.1B                 | 26.13 | 42.29     |   |  |  |
|      | CODEGEN-MONO 16.1B                | 29.28 | 49.86     |   |  |  |
|      |                                   |       |           |   |  |  |



# AlphaCode

Goal: solving competition problems

Similar approach, except: 41B parameters encoder-decoder model larger sampling

Avoiding data-leakage of HumanEval time-separated

Performed on par with a "median" human competitor



Codex

CodeGen

### InCoder

**Codex for NLP** 

## Outline



# Code Infilling and Synthesis

Motivation: supports both left-to-right generation and infilling arbitrary blocks of code

#### InCoder: A Generative Model for Code Infilling and Synthesis

Demo of the 6.7B parameter version of InCoder: a decoder-only Transformer model that can both extend and insert/infill code.

Select one of the examples below, or input your own code into the editor. You can type <infill> to mark a location you want the model to insert code at.

Click "Extend" to append text at the end of the editor. Click "Infill" to replace all <infill> masks. (Click "Add <infill> mask" to add a mask at the cursor or replace the current selection.)

| Infill Examples:<br><u>Type prediction</u><br>Extend Examples:<br><u>Python</u> <u>JavaScri</u> | <u>Docstring to f</u><br>pt <u>Jupyter</u> | unction <u>Functio</u><br><u>StackOverflow</u> | on to docstring <u>Class ge</u><br><u>Metadata Conditioning</u> | eneration<br>Metadata Prediction |
|-------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|----------------------------------|
| Num Tokens:                                                                                     | •                                          | •                                              | ■ 64<br>■ 0.6                                                   |                                  |

Extend Infill

Add <infill> mask

| Syntax | t: Python ∽                                                    |  |
|--------|----------------------------------------------------------------|--|
| 1 -    | <  file ext=.py  >                                             |  |
| 2 -    | <pre>def count_words(filename):</pre>                          |  |
| 3      | """Count the number of occurrences of each word in the file""" |  |
|        |                                                                |  |
|        |                                                                |  |



### Training

Given document size *s*, select Number of masks:  $n \sim Clamp(Poisson(1),1,16)$ Length of each mask:  $m \sim (Uniform(0,s), Uniform(0,s))$ 



#### Training

### Given chosen spans, remove corresponding blocks with mask sentinel token Move blocks of code to the end of file, each separated by <EOM>



#### Training

### Maximize $log P([left; \langle Mask, 0 \rangle; right; \langle Mask 0 \rangle; SPAN; \langle EOM \rangle])$



### Inferencing

Prompt generation through feeding the corresponding *mask sentinel token* 

Left-to-right generation: Prompt generation with no right context Infilling:

 $[A; < Mask: 0>; C; < Mask: 1>; E; < Mask: 2>] \rightarrow [A; < Mask: 0>; C; < Mask: 1>; E; < Mask: 0>; B; < EOM>; < Mask: 1>; D; < EOM>]$ 



# Left-to-Right

| Model              | Size<br>(B) | Python<br>Code (GB) | Other<br>Code (GB) | Other<br>(GB) | Code<br>License | Infill?      | HE<br>@1 | HE<br>@10 | HE<br>@100 | MBPP<br>@1 |
|--------------------|-------------|---------------------|--------------------|---------------|-----------------|--------------|----------|-----------|------------|------------|
| Released           |             |                     |                    |               |                 |              |          |           |            |            |
| CodeParrot [61]    | 1.5         | 50                  | None               | None          |                 |              | 4.0      | 8.7       | 17.9       |            |
| PolyCoder [68]     | 2.7         | 16                  | 238                | None          |                 |              | 5.6      | 9.8       | 17.7       |            |
| GPT-J [63, 18]     | 6           | 6                   | 90                 | 730           |                 |              | 11.6     | 15.7      | 27.7       |            |
| INCODER-6.7B       | 6.7         | 52                  | 107                | 57            | Permissive      | $\checkmark$ | 15.2     | 27.8      | 47.0       | 19.4       |
| GPT-NeoX [14]      | 20          | 6                   | 90                 | 730           |                 |              | 15.4     | 25.6      | 41.2       |            |
| CodeGen-Multi [46] | 6.1         | 62                  | 375                | 1200          |                 |              | 18.2     | 28.7      | 44.9       |            |
| CodeGen-Mono [46]  | 6.1         | 279                 | 375                | 1200          |                 |              | 26.1     | 42.3      | 65.8       |            |
| CodeGen-Mono [46]  | 16.1        | 279                 | 375                | 1200          |                 |              | 29.3     | 49.9      | 75.0       |            |
| Unreleased         |             |                     |                    |               |                 |              |          |           |            |            |
| LaMDA [10, 60, 21] | 137         | None                | None               | ???           |                 |              | 14.0     |           | 47.3       | 14.8       |
| AlphaCode [44]     | 1.1         | 54                  | 660                | None          |                 |              | 17.1     | 28.2      | 45.3       |            |
| Codex-12B [18]     | 12          | 180                 | None               | >570          |                 |              | 28.8     | 46.8      | 72.3       |            |
| PaLM-Coder [21]    | 540         | ~20                 | ~200               | ~4000         | Permissive      |              | 36.0     |           | 88.4       | 47.0       |

Codex

CodeGen

InCoder

CodeGen

**Codex for NLP** 

## Outline



## Code Model on NLP Tasks

**Highlight**: Code Models (e.g. Codex) can outperform LLMs (e.g. GPT3) in NLP tasks that involve structural and logical analysis

# classification problem

| Dataset        | Natural language                                            | Canonical utterance                                                                      | Meaning representation                                                                                                                                                                                                                            |
|----------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMCalFlow      | Schedule Hide and<br>Seek in the mall for<br>Saturday night | create event called<br>"Hide and Seek"<br>starting next Sat-<br>urday night at<br>"mall" | <pre>(Yield :output (CreateCommitEventWrapper :event<br/>(CreatePreflightEventWrapper :constraint<br/>(Constraint[Event] :subject (?= #(String<br/>"Hide and Seek")) :start (DateTimeConstraint<br/>:constraint (Night) :date (NextDOW :dow</pre> |
| Overnight Cal. | which meeting has<br>the earliest end time                  | meeting that has the smallest end time                                                   | <pre>#(DayOfWeek "SATURDAY"))) :location (?= #(LocationKeyphrase "mall")))))) (call listValue (call superlative (call getProperty (call singleton en.meeting) (string !type)) (string min) (call ensureNumericProperty (string end_time))))</pre> |

## Codex-NLP: Semantic Parsing

Task: convert an utterance *u* to a semantic meaning representation *m*, viewed either as a generation or

Task: convert an utterance *u* to a semantic meaning representation *m*, viewed either as a generation or classification problem



## Codex-NLP: Semantic Parsing

| Accuracy      |           |  |  |  |  |
|---------------|-----------|--|--|--|--|
| vernight Cal. | SMCalFlow |  |  |  |  |
| 0.81          | 0.340     |  |  |  |  |
| 0.66          | 0.260     |  |  |  |  |
| 0.86          | 0.355     |  |  |  |  |
| 0.87          | 0.320     |  |  |  |  |

# Codex-NLP: Reasoning

### Task: Given a event/goal T, generate a commonsense reasoning represented as a graph



(a) The script  $\mathcal{G}$ 

(b)  $\mathcal{G}$  converted to Python code  $\mathcal{G}_c$  using our approach

## Codex-NLP: Reasoning

Task: Given a event/goal T, generate a commonsense reasoning represented as a graph

|                | PID | Precision         | Recall            | F1                |
|----------------|-----|-------------------|-------------------|-------------------|
|                | r1  | 72.7              | 50.9              | 59.8              |
| DAVINOI        | r2  | 75.9              | 45.6              | 57.0              |
| DAVINCI        | r3  | 73.8              | 42.4              | 53.9              |
|                | avg | $74.2 \pm 1.3$    | $46.3 \pm 3.5$    | $56.9 \pm 2.4$    |
|                | r1  | 69.0              | 54.5              | 60.9              |
| $C_{ODEV}$ 002 | r2  | 84.6              | 48.1              | 61.3              |
| CODEX-002      | r3  | 77.6              | 55.7              | 66.2              |
|                | avg | <b>77.1</b> ± 6.4 | <b>52.8</b> ± 3.3 | <b>62.8</b> ± 2.4 |
## Codex-NLP: Proof Synthesis

Task: Given a set of facts and a hypothesis, construct a proof of how the facts conclude at the hypothesis

| Method                                                           | Leaves                                                |                                                        | Steps                                                 |                                                       | Intermediates                                         |                                                       | Overall                                                                     |
|------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|
|                                                                  | F1                                                    | AllCorrect                                             | F1                                                    | AllCorrect                                            | F1                                                    | AllCorrect                                            | AllCorrect                                                                  |
| EntailmentWriter<br>EntailmentWriter (T5-11B)<br>NLProofS (ours) | 86.2<br><b>89.4</b><br><b>89.4</b> ± 0.8              | 43.9<br>52.9<br><b>56.0</b> ± <b>0.7</b>               | 40.6<br>46.6<br><b>50.4</b> ± <b>1.9</b>              | 28.3<br>35.3<br><b>38.4</b> ± <b>1.3</b>              | 67.1<br>69.1<br><b>71.9</b> ± <b>1.4</b>              | 34.8<br>36.9<br><b>41.3</b> ± <b>1.4</b>              | $\begin{array}{c} 27.3\\ 32.1\\ \textbf{37.1} \pm \textbf{1.5} \end{array}$ |
| GPT-3 (Brown et al., 2020)<br>Codex (Chen et al., 2021)          | $\begin{array}{c} 64.2\pm2.3\\ 68.9\pm3.7\end{array}$ | $\begin{array}{c} 15.3\pm1.9\\ 19.8\pm3.2 \end{array}$ | $\begin{array}{c} 17.6\pm0.6\\ 21.4\pm3.0\end{array}$ | $\begin{array}{c} 12.3\pm1.4\\ 14.6\pm1.7\end{array}$ | $\begin{array}{c} 53.6\pm1.4\\ 55.6\pm2.2\end{array}$ | $\begin{array}{c} 22.3\pm1.1\\ 23.2\pm1.9\end{array}$ | $12.3 \pm 1.4 \\ 14.4 \pm 1.4$                                              |

Table B: Validation results of proof generation on EntailmentBank (Dalvi et al., 2021). Results of GPT-3 and Codex are based on prompting with 7 in-context examples randomly sampled from the training data.

Q3. As a programmer, what types of features would you like to use from a code model (describe the use cases in detail)? Do you think current code models already achieve that, or what improvements need to be done in the future?

Q3. As a programmer, what types of features would you like to use from a code model (describe the use cases in detail)? Do you think current code models already achieve that, or what improvements need to be done in the future?

Features

- Autocomplete:

Given comment and some written code to start with, the model should be able to complete a block of code that matches the intention of function, variable names, and be able to call (if needed) other functions / imported libraries

- Docstring Formatting

Given function signature and code, infill missing components in the function docstring to include variable type, description, return type, etc.

- Code Search

....

Given a description of intention of function, search a codebase if such function is already implemented

Q3. As a programmer, what types of features would you like to use from a code model (describe the use cases in detail)? Do you think current code models already achieve that, or what improvements need to be done in the future?

Discussion

Code model that can fill in blanks in code or docstring would be better than left-to-right only generation for many reasons (e.g. to call functions declared both above and below a target function). HumanEval focuses on standalone functions, which may create a potential misalignment between the model's trained goal and intention of programmers.

(apart from the ones on the website):

AlphaCode: <u>https://arxiv.org/abs/2203.07814</u> Semantic Parsing with LMs of Code: <u>https://arxiv.org/abs/2112.08696</u> Natural Language Proofs: <u>https://arxiv.org/abs/2205.12443</u>

