
Language Models of Code
Arseniy Andreyev, Jiatong Yu

1

Outline

Codex

Introduction
Evaluation
Methodology
Experiments
Discussions

InCoder

CodeGen

Codex for NLP

2

Outline

Codex

Introduction
Evaluation
Methodology
Experiments
Discussions

InCoder

CodeGen

Codex for NLP

3

Brief overview

4

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

4

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

4

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Training data: 160GB of Python code

4

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Training data: 160GB of Python code

Evaluation: HumanEval
a novel dataset with 164 programming problems created by the authors
generate k samples from the model to see if at least one sample passes all the unit tests

4

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Training data: 160GB of Python code

Evaluation: HumanEval
a novel dataset with 164 programming problems created by the authors
generate k samples from the model to see if at least one sample passes all the unit tests

Result: Codex-12B “solves” 72.3% of the problems (given 100 samples)
GPT-3 solves 0%, GPT-J solves 27.7%
if using only one sample (with lowest perplexity) we get 28.8% for Codex, 11.6% for GPT-J

4

Some examples

5

Some examples

5

Some examples

5

Some examples

5

Real-life examples

6

Outline

Codex

Introduction
Evaluation
Methodology
Experiments
Discussions

InCoder

CodeGen

Codex for NLP

7

HumanEval
164 hand-written problems

hand-writing to avoid repeating the problems in
the training data (“training data leakage”)

Evaluates language comprehension, reasoning,
algorithms and simple math

HE was used in later papers (CodeGen, InCoder)

8

HumanEval
164 hand-written problems

hand-writing to avoid repeating the problems in
the training data (“training data leakage”)

Evaluates language comprehension, reasoning,
algorithms and simple math

HE was used in later papers (CodeGen, InCoder)

8

“Check if two words have the same
characters.”

“Return median of elements in the list
l.”

“sum_to_n is a function that sums
numbers from 1 to n.”

“Given a non-empty list of integers lst.
add the even elements that are at odd

indices.”

“Return true if a given number is prime,
and false otherwise.

“Return n-th Fibonacci number.”

HumanEval: Format

Format:

• function signature

• docstring with examples

• unit-tests

9

HumanEval: Metric

Functional correctness:
Whether the generated code implements the
correct function
I.e. passes all unit tests
This is the way humans evaluate correctness of
the code

BLEU score doesn’t work
optimized for the semantics of text

10

HumanEval: Metric

Functional correctness:
Whether the generated code implements the
correct function
I.e. passes all unit tests
This is the way humans evaluate correctness of
the code

BLEU score doesn’t work
optimized for the semantics of text

10

BLEU = 81

Non-equivalent code

BLEU = 66

Equivalent code

Reference code

BLEU Score

BLEU score doesn’t work:
• Algorithmic difference
• Variable name
• Operation orders

Optimizing for BLEU score is not equivalent to
optimizing functional correctness

11

Q1: For evaluating code generation, why is functional correctness better than
match-based metrics (e.g., BLEU)?

Existing match-based metrics are designed for comparing natural languages, which is not inherently
applicable to code. In particular, when evaluating code, the aspect that matters is its correct behavior.
One can use unit tests to check this correctness (with large likelihood).
“Perhaps the most convincing reason to evaluate functional correctness is that it is used by human
developers to judge code.”

In a sense, this makes evaluation of code generation more “precise” than evaluation of text
generation.

Recent research (Ren et al.) showed that BLEU score doesn’t capture the semantic features specific to
code. Aforementioned experiment result corroborate that BLEU score and the correctness of
generated code are not equivalent.

12

HumanEval: Sampling & pass@k

Given a prompt, generate samples
a sample is generated until a stop sequence is encountered

pass@k:
having k generations per problem, a problem is “solved” if at least one generation passes all unit
tests
total fraction of problems “solved” is reported

k

13

HumanEval: pass@k

Estimating pass@k:
Naively: high variance for small k

Instead:

Generate samples
Use the following unbiased estimator

where is the #(correct samples)

n (n ≥ k)

c

14

HumanEval: Potential Shortcomings

Small dataset
large variance when comparing different models

Most of the tasks are “short” - could be solved in less than 10 lines of code

Data leakage
the solutions to the problems might already be present in the training data
e.g.: primality

15

Outline

Codex

Introduction
Evaluation
Methodology
Experiments
Discussions

InCoder

CodeGen

Codex for NLP

16

Model + training data

Model: GPT-3
sizes: 12M - 12B

Data: Python code from Github - 159GB

Method: fine-tune on code
use next token prediction

no difference between fine-tuning GPT-3 and training from scratch on code

yet, faster convergence when fine-tuning

17

Codex-S

Motivation: potential distribution mismatch between GitHub files and HumanEval / APPS problems

Solution: fine-tune Codex on correct standalone functions

18

Codex-S: Training Data

Competitive Programming (10,000 problems)
- Self-contained
- Unit test coverage
- Problem descriptions as docstrings

Continuous Integration (40,000 functions)

“Developers regularly merge code changes into a central repository, after which automated builds
and tests are run.”

- Open source
- Tracing test functions

19

Codex-S: Filtering

Concern:
- Low-quality docstring
- Stateful functions

Solution:
Use Codex-12B to generate 100 samples per problem,
discard the problem if no generation passes

20

Codex-S: Tuning

Training examples assembled into the same format as in pass@k evaluation

Objective: minimize negative log-likelihood of reference solution, mask out loss for prompt

21

Docstring Generation

Motivation: useful for safety concerns

Training Dataset: same as Codex-S dataset

Training Objective: Minimize negative log-likelihood of docstring

Evaluation: manually evaluate 10 samples per problem, creating pass@1 and pass@10

22

Docstring Generation

23

Outline

Codex

Introduction
Evaluation
Methodology
Experiments
Discussions

InCoder

CodeGen

Codex for NLP

24

Generation Example
Codex-12B

25

Sampling Temperature

Temperature experiment on Codex-679M

larger k benefits from higher temperature
(i.e. higher diversity)

26

Sampling Temperature

27

Sampling Temperature

Codex-S prefers higher temperature compared to Codex

28

Q2: Why does temperature term matter for code generation and what is the
relationship between temperature and k? What ranking heuristic works best?

Temperature
Temperature controls the variance of generated samples, and higher k prefers higher temperature. Since
pass@k rewards only whether the model generated any correct result given k samples, higher temperature
generates more diverse solutions and more likely one of them would pass.

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data
with matching distribution, so it's more "concentrated" than Codex.

Ranking Heuristic
Mean log probability works best.

29

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests
Back Translation: best sample maximizes P(ground truth docstring | generated sample)
Mean log probability
Sum log probability
Random

Codex-12B, temp = 0.8

30

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests
Back Translation: best sample maximizes P(ground truth docstring | generated sample)
Mean log probability
Sum log probability
Random

Codex-12B, temp = 0.8

31

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests
Back Translation: best sample maximizes P(ground truth docstring | generated sample)
Mean log probability
Sum log probability
Random

Codex-12B, temp = 0.8

32

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests
Back Translation: best sample maximizes P(ground truth docstring | generated sample)
Mean log probability
Sum log probability
Random

Codex-12B, temp = 0.8

33

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests
Back Translation: best sample maximizes P(ground truth docstring | generated sample)
Mean log probability
Sum log probability
Random

Codex-12B, temp = 0.8

34

Q2: Why does temperature term matter for code generation and what is the
relationship between temperature and k? What ranking heuristic works best?

Temperature
Temperature controls the variance of generated samples, and higher k prefers higher temperature. Since
pass@k rewards only whether the model generated any correct result given k samples, higher temperature
generates more diverse solutions and more likely one of them would pass.

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data
with matching distribution, so it's more "concentrated" than Codex.

Ranking Heuristic
Mean log probability works best.

Better decoding heuristics?

35

Results

Codex-S outperforms Codex on HumanEval

36

Results

Codex-S outperforms Codex on HumanEval

37

Code Model Comparison

The Pile: 8% GitHub code, along with natural language data
GPT-J and GPT-Neo: similar architecture
TabNine: Code Autocomplete as a service

38

APPS

Sources: coding websites such as Codeforces, Kattis, etc.

Difficulty Level:
1. Introductory
2. Interview
3. Competition

Distribution:
5000 training set and 5000 test set

Train set:
52% Introductory, 40% Interview, 8% Competition
Test set:
20% Introductory, 60% Interview, 20% Competition

39

APPS

Raw Pass@k: calculated as before
Filtered Pass@k: filter out cases that doesn’t pass the 3 samples in problem description

40

APPS

41

APPS

42

Outline

Codex

Introduction
Evaluation
Code Fine-Tuning
Experiments
Supervised Fine-Tuning
Docstring Generation
Discussions

InCoder

CodeGen

43

Limitations

Degradation with length of instruction

Experiment: Compose 13 building blocks of <description, function> pair

Chained Building Blocks:
- Concatenate one-line descriptions into docstring

44

Limitations

Degradation with length of instruction

45

Hazard Analysis

Over-Reliance: Codex may generate incorrect code that looks fine to novice programmers

Misalignment: Training distribution misalign with the intention of programmers

Bias: Biased prompting setups lead to biased generations

46

Outline

Codex

CodeGen

InCoder

Codex for NLP

47

CodeGen

Open-source alternative to Codex
16B params

Otherwise, very similar to Codex - albeit with a
different exact dataset

Slightly outperforms Codex for all k on pass@k on
HumanEval

Multi-turn evaluation provides a performance boost
Similar to chain of thought

48

AlphaCode

Goal: solving competition problems

Similar approach, except:
41B parameters
encoder-decoder model
larger sampling

Avoiding data-leakage of HumanEval
time-separated

Performed on par with a “median” human
competitor

49

Outline

Codex

CodeGen

InCoder
Codex for NLP

50

Code Infilling and Synthesis

Motivation: supports both left-to-right generation
and infilling arbitrary blocks of code

51

Causal Masking

Training
Given document size s, select
Number of masks:
Length of each mask:

n ∼ Clamp(Poisson(1),1,16)
m ∼ (Uniform(0,s), Uniform(0,s))

52

Causal Masking

Training

Given chosen spans, remove corresponding blocks with mask sentinel token
Move blocks of code to the end of file, each separated by <EOM>

53

Causal Masking

Training

Maximize log P([left; ⟨Mask ,0⟩; right; ⟨Mask 0⟩; SPAN; ⟨EOM⟩])

54

Causal Masking

Inferencing

Prompt generation through feeding the corresponding mask sentinel token

Left-to-right generation: Prompt generation with no right context
Infilling:

55

Left-to-Right

56

Outline

Codex

CodeGen

InCoder

CodeGen

Codex for NLP

57

Code Model on NLP Tasks

Highlight: Code Models (e.g. Codex) can outperform LLMs (e.g. GPT3) in NLP tasks that involve
structural and logical analysis

58

Codex-NLP: Semantic Parsing

Task: convert an utterance u to a semantic meaning representation m, viewed either as a generation or
classification problem

59

Codex-NLP: Semantic Parsing

Task: convert an utterance u to a semantic meaning representation m, viewed either as a generation or
classification problem

60

Codex-NLP: Reasoning

Task: Given a event/goal T, generate a commonsense reasoning represented as a graph

61

Codex-NLP: Reasoning

Task: Given a event/goal T, generate a commonsense reasoning represented as a graph

62

Codex-NLP: Proof Synthesis

Task: Given a set of facts and a hypothesis, construct a proof of how the facts conclude at the
hypothesis

63

Q3. As a programmer, what types of features would you like to use from a code
model (describe the use cases in detail)? Do you think current code models
already achieve that, or what improvements need to be done in the future?

64

Q3. As a programmer, what types of features would you like to use from a code
model (describe the use cases in detail)? Do you think current code models
already achieve that, or what improvements need to be done in the future?

Features

- Autocomplete:
Given comment and some written code to start with, the model should be able to complete a block of code that
matches the intention of function, variable names, and be able to call (if needed) other functions / imported
libraries

- Docstring Formatting
Given function signature and code, infill missing components in the function docstring to include variable
type, description, return type, etc.

- Code Search
Given a description of intention of function, search a codebase if such function is already implemented

……

65

Q3. As a programmer, what types of features would you like to use from a code
model (describe the use cases in detail)? Do you think current code models
already achieve that, or what improvements need to be done in the future?

Discussion

Code model that can fill in blanks in code or docstring would be better than left-to-right only
generation for many reasons (e.g. to call functions declared both above and below a target function).
HumanEval focuses on standalone functions, which may create a potential misalignment between the
model’s trained goal and intention of programmers.

66

References

(apart from the ones on the website):

AlphaCode: https://arxiv.org/abs/2203.07814
Semantic Parsing with LMs of Code: https://arxiv.org/abs/2112.08696
Natural Language Proofs: https://arxiv.org/abs/2205.12443

67

https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2112.08696
https://arxiv.org/abs/2205.12443

