Language Models of Code

Arseniy Andreyev, Jiatong Yu

Outline

Codex
2022.11
Introduction "Hey, GitHub!"
Evaluation
Methodology
Experiments
Discussions Sop2.3
CodeGen: Multi-turn Program
InCoder Synthesis
CodeGen
Codex for NLP

2020

CodeBERT, PyMT5, TransCoder,
ContraCode...

Outline

Codex
2022.11

Introduction "Hey, GitHub!"

Evaluation

Methodology -

Experiments

Discussions so2n3

CodeGen: Multi-turn Program

InCoder Synthesis
Codex for NLP

2020

CodeBERT, PyMT5, TransCoder,
ContraCode...

Brief overview

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Training data: 160GB of Python code

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Training data: 160GB of Python code

Evaluation: HumanEval
a novel dataset with 164 programming problems created by the authors
generate k samples from the model to see 1f at least one sample passes all the unit tests

Brief overview

Task: generate code using LLMs
Given natural-language prompt (docstring), output the code that implements it

Model: Codex - a GPT-3, fine-tuned on code
up to 12B params

Training data: 160GB of Python code

Evaluation: HumanEval
a novel dataset with 164 programming problems created by the authors
generate k samples from the model to see 1f at least one sample passes all the unit tests

Result: Codex-12B “solves” 72.3% of the problems (given 100 samples)

GPT-3 solves 0%, GPT-J solves 27.7%
if using only one sample (with lowest perplexity) we get 28.8% for Codex, 11.6% for GPT-J

Some examples

Some examples

def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]1) ==>12
solution([3, 3, 3, 3, 3]) ==>9
solution([30, 13, 24, 321]) ==>0

return sum(lst[i] for i in range(0,len(1lst)) if 1 % 2 == 0 and 1st[i] % 2 == 1)
-

Some examples

def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==>9
solution([30, 13, 24, 321]) ==>0

return sum(lst[i] for i in range(0,len(1lst)) if 1 % 2 == 0 and 1st[i] % 2 == 1)

def

def

encode_cyclic(s: str):

returns encoded string by cycling groups of three characters.

split string to groups. Each of length 3.

groups = [s[(3 * i):min((3 x 1 + 3), len(s))] for i in range((len(s) + 2) // 3)]

cycle elements in each group. Unless group has fewer elements than 3.

groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

decode_cyclic(s: str):

takes as input string encoded with encode_cyclic function. Returns decoded string.

split string to groups. Each of length 3.

groups = [s[(3 * 1i):min((3 * 1 + 3), len(s))] for i in range((len(s) + 2) // 3)]

cycle elements in each group.

groups = [(group[-1] + group[:-1]1) if len(group) == 3 else group for group in groups]
return "".join(groups)

Some examples

def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==>9
solution([30, 13, 24, 321]) ==>0

return sum(lst[i] for i in range(0,len(1lst)) if 1 % 2 == 0 and 1st[i] % 2 == 1)

def

def

encode_cyclic(s: str):

returns encoded string by cycling groups of three characters.

split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 x 1 + 3), len(s))] for i in range((len(s) + 2) // 3)]
cycle e aach group. Unless group has fewer elements than 3.

groups = [(group[1:] ¥ group[0]) if len(group) == 3 else group for group in groups]
return "" Ngin(group#
decode_cyclic(s: str):

takes as input string encoded with encode_cyclic function. Returns decoded string.

split string to groups. Each of length 3.
groups = [s[(3 * 1i):min((3 * 1 + 3), len(s))] for i in range((len(s) + 2) // 3)]

cycle elements in eagh group.
group[:-11))if len(group) == 3 else group for group in groups]

groups = [(group[-1]
return "".join(groups)

Real-life examples

import time

s t = time.time()

if self.use_amp:
.scaler.scale(loss).backward()

elif .use_apex:

with amp.scale_loss(loss, self.optimizer) as scaled_loss:

scaled_loss.backward()

elif T.deepspeed:

loss = .deepspeed.backward(loss)
else:

loss.backward()
e t = time.time()

print(I

cnt_cats =

cnt_atts = def

cnt_catatts = defaultdict

for goal in env.server.goals:

if goal['asin'] asins:

asins.add(goal['asin'])
cnt_cats[goal['category']] += 1
for att in goal['attributes']:

cnt_cats

Outline

Codex

2022.11
Introduction "Hey, GitHub!"
Evaluation
2022.4
MethOdOIOgy InCoder: Code Infilling and
. Synthesis
Experiments
Discussions 2022.3
CodeGen: Multi-turn Program
Synthesis
InCoder
2021.7
COdeGen Codex: Evaluating Large
Language Models Trained on Code
Codex for NLP
2020
CodeBERT, PyMT5, TransCoder,
ContraCode...

HumanEval

164 hand-written problems

hand-writing to avoid repeating the problems in
the training data (“training data leakage™)

Evaluates language comprehension, reasoning,
algorithms and simple math

HE was used 1n later papers (CodeGen, InCoder)

HumanEval

164 hand-written problems

hand-writing to avoid repeating the problems in - —

the training data (“training data leakage™) ‘ “Check if two words have the same
characters.” |

Evalqates langque comprehension, reasoning, ‘ “Return median of elements in the list |
algorithms and simple math | L.”

“sum to n is a function that sums
numbers from 1 to n.”

HE was used 1n later papers (CodeGen, InCoder)

1 \
- “Given a non-empty list of integers lst. |
add the even elements that are at odd

indices.”

|

|

1
| “Return true if a given number is prime, |
1 and false otherwise. }
». \
|

“Return n-th Fibonacci number.”

HumanEval: Format

def vowels count (s) :
""h"write a function vowels count which takes a

Format: string representing
a word as 1input and returns the number of vowels 1in
e function signature the string.

Vowels in this case are ’"a’, ’e’, 717, ’o0’, ’‘u’.
Here, "y’ 1s also a

¢ dOCStI’iIlg Wlth examples vowel, but only when it is at the end of the given

word.

 unit-tests

Example:
>>> vowels count ("abcde”)
2

>>> vowels _count ("ACEDY")
3

mmn

def check(candidate):
Check some simple cases assert candidate("abcde")
== 2, "Test 1" assert candidate("Alone") == 3, "Test
2" assert candidate('"key") == 2, "Test 3" assert
candidate('"bye") == 1, "Test 4" assert
candidate("keY") 2, "Test 5" assert
candidate("bYe") 1, "Test 6" assert
candidate("ACEDY") == 3, "Test 7"
Check some edge cases that are easy to work out by
hand. assert True, "This prints if this assert fails
2 (also good for debugging!)"

HumanEval: Metric

Functional correctness:

Whether the generated code implements the
correct function

I.e. passes all unit tests

This 1s the way humans evaluate correctness of
the code

BLEU score doesn’t work

optimized for the semantics of text

10

HumanEval: Metric

Functional correctness: Reference code
Whether the generated code implements the def f(a, b):
correct function c=a->b

return c

I.e. passes all unit tests

This 1s the way humans evaluate correctness of

the code Equivalent code
def f(a, b): Non-equivalent code
_ def f(a, b):
BLEU score doesn’t work summ = © ()
summ += a c=a+b

optimized for the semantics of text cumm —= b return c

return summ
BLEU = 81

BLEU = 66

10

BLEU Score

BLEU score doesn’t work: HumanEval/72 HumanEval/38
» Algorithmic difference 7 == correct = correct
. B wrong 20 - BEE wrong
e Variable name 15 -
» Operation orders 10 -
5 -
° ° ° ° ° 0 - l l -
Optimizing for BLEU score 1s not equivalent to 00 01 02 03 0.0 0.2 0.4
L , HumanEval/4 HumanEval/21
optimizing functional correctness
3 - BN correct BN correct
B wrong 10.0 - B wrong
2 - 7.5 =
5.0 -
1 -t
2.5 -
0 - 0.0 = S
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
BLEU score

11

Q1: For evaluating code generation, why 1s functional correctness better than
match-based metrics (e.g., BLEU)?

Existing match-based metrics are designed for comparing natural languages, which is not inherently
applicable to code. In particular, when evaluating code, the aspect that matters is its correct behavior.
One can use unit tests to check this correctness (with large likelihood).

“Perhaps the most convincing reason to evaluate functional correctness is that it is used by human
developers to judge code.”

In a sense, this makes evaluation of code generation more “precise’ than evaluation of text
generation.

Recent research (Ren et al.) showed that BLEU score doesn t capture the semantic features specific to
code. Aforementioned experiment result corroborate that BLEU score and the correctness of
generated code are not equivalent.

12

HumanEval: Sampling & pass@k

Given a prompt, generate k samples
a sample 1s generated until a stop sequence 1s encountered

pass@k:

having k generations per problem, a problem 1s “solved” 1f at least one generation passes all unit
tests

total fraction of problems “solved” 1s reported

13

HumanEval: pass(@k

Estimating pass(@k:
Naively: high variance for small k

Instead:
Generate n samples (n > k)
Use the following unbiased estimator

pass@k := [E 1 (f:)
Problems i (k)]

where c 1s the #(correct samples)

14

HumanEval: Potential Shortcomings

Small dataset
large variance when comparing different models

Most of the tasks are “short” - could be solved 1n less than 10 lines of code

Data leakage
the solutions to the problems might already be present in the training data
e.g.: primality

COMPLETION 4 (CORRECT) :
if n < 2: return False

1f n == 2: return True
1f n%2 == 0: return False
return not any(nsk == 0 for k in range (3, int (n

*%x0.5)+1,2))

15

Outline

Codex

2022.11
Introduction “Hey, GitHub!"
Evaluation
2022.4
MethOdOlOgy InCoder: Code Infilling and
. Synthesis
Experiments
Discussions 2022.3
CodeGen: Multi-turn Program
Synthesis
InCoder
2021.7
COdeGen Codex: Evaluating Large
Language Models Trained on Code
Codex for NLP
2020
CodeBERT, PyMT5, TransCoder,
ContraCode...

16

Model + training data

Model: GPT-3
sizes: 12M - 12B

Data: Python code from Github - 159GB

Method: fine-tune on code

use next token prediction

no difference between fine-tuning GPT-3 and training from scratch on code
yet, faster convergence when fine-tuning

17

Codex-S

Motivation: potential distribution mismatch between GitHub files and HumanEval / APPS problems

Solution: fine-tune Codex on correct standalone functions

18

Codex-S: Tramning Data

Competitive Programming (10,000 problems)
- Self-contained

- Unit test coverage
- Problem descriptions as docstrings

Continuous Integration (40,000 functions)

“Developers regularly merge code changes into a central repository, after which automated builds
and tests are run.

- Open source

- Tracing test functions

Google Cloud

Code Push to GitHub Run tests on Deploy to Google Cloud
Travis CI Platform and run

end-to-end tests

19

Codex-S: Filtering

Concern:
- Low-quality docstring .
- Stateful functions [
Codex-12B Codex5
Solution:
Use Codex-12B to generate 100 samples per problem, \ _]

discard the problem if no generation passes

Filtered

Training Data

20

Codex-S: Tuning

Training examples assembled into the same format as 1n pass@k evaluation

def solution(lst):

"""Given a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.

Examples

solution([5, 8, 7, 1]) ==>12
solution([3, 3, 3, 3, 3]) ==>9
solution([30, 13, 24, 321]) ==>0

return sum(lst[i] for 1 in range(0,len(lst)) if 1 % 2 == 0 and 1lst[1i] % 2 == 1)

Objective: minimize negative log-likelihood of reference solution, mask out loss for prompt

21

Docstring Generation docsring Rugl Neaden
[cods [og docsiring

Motivation: useful for safety concerns
Training Dataset: same as Codex-S dataset
Training Objective: Minimize negative log-likelihood of docstring

Evaluation: manually evaluate 10 samples per problem, creating pass@ 1 and pass@ 10

MODEL PASS@] PASS@10

CODEX-S-12B 32.2% 59.5%
CoDEX-D-12B 20.3% 46.5%

22

Docstring Generation docsring Rugl Neaden
[cods [og docsiring

Examples of generated docstrings:
® "| just found this function online"

® "This test is not correctly written and it's not my solution."

23

Outline

Codex

2022.11
Introduction “Hey, GitHubl"
Evaluation
2022.4
MethOdOIOgy InCoder: Code Infilling and
. Synthesis
Experiments
Discussions 2022.3
CodeGen: Multi-turn Program
Synthesis
InCoder
2021.7
COdeGen Codex: Evaluating Large
Language Models Trained on Code
Codex for NLP
2020
CodeBERT, PyMT5, TransCoder,
ContraCode...

24

Generation Example

Codex-12B

Code generation Generated samples Generated samples

COMPLETION 1 (WRONG) : ### ### COMPLETION 4 (CORRECT) :
. if n < 2: return False
for 1 in range (2, n):

_ , check if n is divisible by i e A o SR :
if n $ i == 0: if n%2 == 0: return False even numbers not prime

return not any(n¥k == 0 for k in range(3,int (n

The following sample problem is taken from HumanEval
handle n=1, 2 cases
8 random samples are generated at temperature 0.8

return False Fails for n = 1
(returns True) x%0.5)+1,2))

check if divisible by odd number up to \/n

return True

def is prime (n):
""'"Return true i1f a given number 1s prime,

and false otherwise. ### COMPLETION 2 (WRONG): ### ## COMPLETION 5 (WRONG): ###

o def helper(n):
>>> is prime (6) for 1 in range(2, n): # check if an odd number is multiple of any
False if n & 1 == 0- exactly the same as integer up to the square root of the number

>>> is prime (101) COMPLETION 1 # if this is true, n 1is not prime
True return False for 1 in range (2, int(n**0.5 + 1)):

o

>>> 1is prime (11) return True if n $ 1 ==
True return False

>>> 1s prime (13441) return True
True # 1f helper returns true, then n is prime, else n

>>> 1s_prime (61) ### COMPLETION 3 (WRONG) : ### 1s not prime

True ’ if helper(n): :

>>> is prime (4) # TODO: implement this function return True Fails for n = 1
False pass else: (returns True)
>>> 1s prime (1) Fails for all unit test return False

False cases

mmn

25

Sampling Temperature

Tlemperature experiment on Codex-679M

larger k benefits from higher temperature
(1.e. higher diversity)

20

Pass@K vs K, Temperature

Pass@k

1 ' ' oo ' ! oo
10° 101 102
Number of samples (k)

Best Temperature vs K

0.8 -
0.6 -

0.4 /
1/

Best temperature

1 ' ' oo e ! ' oo rr
10° 101 102
Number of samples (k)

Sampling Temperature

Pass Rate vs Model Size

0.7 4 —— pass@1 (T*=0.2)

pass@100 (T*=0.8)
0.6 1

K

©® 0.4
0.3]

Pass

0.2 -
0.1

0.0 - —

R | A | L | L | L | A |
10° 10° 107 10° 10° 101°
Non-embedding parameters

27

Sampling Temperature

Codex-S prefers higher temperature compared to Codex

Codex-S Best Temperature vs K

1.0 . — Codex

Codex-S
0.8 1

0.6 1 /
0.4

0.2 A /

Best temperature

0.0
10° 101t
Number of samples (k)

28

Q2: Why does temperature term matter for code generation and what 1s the
relationship between temperature and £? What ranking heuristic works best?

Temperature
lemperature controls the variance of generated samples, and higher K prefers higher temperature. Since

pass@k rewards only whether the model generated any correct result given k samples, higher temperature
generates more diverse solutions and more likely one of them would pass.

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data
with matching distribution, so it's more "concentrated" than Codex.

Ranking Heuristic
Mean log probability works best.

29

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests
Back Translation: best sample maximizes P(ground truth docstring | generated sample)

Mean 1 robabilit . .
¢ 05 P obab Y Sample Ranking Heuristics
Sum log probability .
Random 0.7 4 —— Docstring backtranslation
— Sum logp
— Mean logp
0.6 41 —— Random
2 0.5 -
v
£ 0.4 -
0.3 -
Codex-12B, temp = 0.8 0.2 -
i | ' ' L | ' ' L |
10° 101 107

Number of samples (k)

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests
Back Translation: best sample maximizes P(ground truth docstring | generated sample)

Mean lOg pl‘Obablllty Sample Ranking Heuristics
Sum log probability ———
Random 0.7 4 —— Docstring backtranslation
— Sum logp
— Mean logp
0.6 1 — Random
2 0.5 -
£ 0.4 -
0.3 -
Codex-12B, temp = 0.8 0.2 -

10° 101 102
Number of samples (k)

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests

Back Translation: best sample maximizes P(ground truth docstring | generated sample)

Mean log probability Sample Ranking Heuristics
Sum log probability ———
Rand()m 0.7 4 —— Docstring backtranslation
- Sum logp
— Mean logp
0.6 1 —— Random
2 0.5 -
£ 0.4 -
0.3 -
A MV
- o — v 1
Codex-12B, temp = 0.8 0.2 = ~ N Wuh

™ ' L L | ' ™

10° 101 10°
Number of samples (k)

32

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests

Back Translation: best sample maximizes P(ground truth docstring | generated sample)

Mean log probability Sample Ranking Heuristics
Sum log probability ——
Rand()m 0.7 4 —— Docstring backtranslation
- Sum logp
— Mean logp
0.6 1 —— Random
2 0.5 -
£ 0.4 -
0.3 -
A MV
- o — v 1
Codex-12B, temp = 0.8 0.2 = ~ N Wuh

™ ' L L | ' ™

10° 101 10°
Number of samples (k)

33

Sampling Heuristics

Oracle: best sample chosen as one that passes the unit tests

Back Translation: best sample maximizes P(ground truth docstring | generated sample)

Mean lOg pl‘Obablllty Sample Ranking Heuristics
Sum log probability .
Random 0.7 4 —— Docstring backtranslation
— Sum logp
— Mean logp
0.6 1 — Random
2 0.5 -
£ 0.4 -
0.3 -
WAW'VM
- — _ — U iy
Codex-12B, temp = 0.8 0.2 e N w“m
™ ' . T rrrr| ' T r T rrrj
10° 10t 102

Number of samples (k)

Q2: Why does temperature term matter for code generation and what 1s the
relationship between temperature and £? What ranking heuristic works best?

Iemperature
lemperature controls the variance of generated samples, and higher K prefers higher temperature. Since

pass@k rewards only whether the model generated any correct result given k samples, higher temperature
generates more diverse solutions and more likely one of them would pass.

Codex-S prefers higher temperature than Codex. This could be explained as Codex-S is fine-tuned on data
with matching distribution, so it's more "concentrated” than Codex.

Ranking Heuristic
Mean log probability works best.

Better decoding heuristics?

35

Results

Codex-S outperforms Codex on HumanEval

pass@k

0.8

0.6

0.4

0.2

0.0

Codex pass@]1
Codex pass@100
Codex-S pass@1
~——— Codex-S pass @100

Codex — Codex-S:
pass @ 100 avg. gain: 15.1% /

/”
o’ ”

-
-
i =" Codex —» Codex-S:
____,4 _—"’

10° 10’ 10°
non-embedding parameters

36

10°

pass@ 1 avg. gain: 6.5%

1010

Results

Codex-S outperforms Codex on HumanEval

Codex-S Ranking Heuristics

- Codex oracle

- Codex mean logp

- Codex random
Codex-S oracle
Codex-S mean logp
Codex-S random

Pass rate

Number of samples (k)

37

Code Model Comparison

The Pile: 8% GitHub code, along with natural language data

GPT-J and GPT-Neo: similar architecture
TabNine: Code Autocomplete as a service

38

Two models in the same vein as Codex:

GPT-Neo (Black et al., 2021) GPT-J-6B (Wang et al., 2021)

Both are trained on The Pile (8% of which is sourced from GitHub)

GPT-J-6B appears to produce qualitatively reasonable code (Woolf, 2021)

PASS@EL

k=10

k = 100

GPT-NEO 125M
GPT-NEO 1.3B
GPT-NEO 2.7B
GPT-J 6B

0.75%
4.79%
6.41%
11.62%

1.88%
7.47%
11.27%
15.74%

2.97%
16.30%
21.37%
27.74%

TABNINE

2.58%

4.35%

7.59%

Temperatures
GPT-Neo: 0.2, 0.4, 0.8
GPT-J-6B: 0.2, 0.8
Tabnine: 0.4, 0.8

CODEX-12M
CODEX-25M
CODEX-42M
CODEX-85M
CODEX-300M
CODEX-679M
CODEX-2.5B
CODEX-12B

2.00%
3.21%
5.06%
8.22%
13.17%
16.22%
21.36%
28.81%

3.62%
7.1%
8.8%

12.81%

20.37%
25.7%
35.42%
46.81%

8.58%
12.89%
15.55%

22.4%
36.27%
40.95%

59.5%
72.31%

x20 fewer parameters

than GPT-J-6B

Codex-12B goes considerably beyond the performance of prior models

APPS

Sources: coding websites such as Codeforces, Kattis, etc.

Difficulty Level:
L. IIltI’OdllCtOI'y Problem Generated Code Test Cases
2. Il’ltel’ViGW H-Index def h_index(counts): Input:
. . n = 1eﬂ(COUHtS) [134’1,4:2,1,3;5,6]
3. Competition Given a list of citations counts, ifns o
where each citation is a Generated Code Output:

counts.sort()

nonnegative integer, write a counts.reverse() 4 v
. . . function h_index that outputs - o '
Distribution: the h-index. The h-index is the |» - ! Tnput:

while (h < n and
largest number 4 such that 4 [1000,500,500,250,100,

5000 training set and 5000 test set papers have each least 4 citations. countsfh]-1>=h): 100,100,100,100,75,50,
h +=1 30,20,15,15,10,5,2,1]

Example: return h
. . Input: [3,0,6,1,4] else: Generated Code Output:
Train set: Output: 3 return 0 15 v
0 0 ” 0 111
52% Introductory, 40% IIltCI‘VlGW, 8% COmpetltlon Figure 1: An example “interview”-level problem from APPS (left) along with possible generated code
T . (middle) and two example test cases we use to evaluate the generated code (right). Our evaluation
est set: framework has test cases and 10,000 code generation problems of varying difficulty levels.

20% Introductory, 60% Interview, 20% Competition

39

APPS

Raw Pass@k: calculated as before
Filtered Pass@k: filter out cases that doesn’t pass the 3 samples 1n problem description

40

APPS

Problem

Given 1s a directed graph G with N vertices and M edges. The vertices are numbered 1 to N, and
the 1-th edge 1s directed from Vertex A_1 to Vertex B_1. It is guaranteed that the graph contains no
self-loops or multiple edges. Determine whether there exists an induced subgraph (see Notes) of G
such that the in-degree and out-degree of every vertex are both 1. If the answer 1s yes, show one such
subgraph. Here the null graph is not considered as a subgraph.

41

APPS

APPS dataset INTRODUCTORY INTERVIEW COMPETITION
GPT-NEO 2.7B RAW PASS@ 1 3.90% 0.57% 0.00%
GPT-NEO 2.7B RAW PASS@5 5.50% 0.80% 0.00%
1-SHOT CODEX RAW PASS @] 4.14% (4.33%) 0.14% (0.30%) 0.02% (0.03%)
1-SHOT CODEX RAW PASS@5 9.65% (10.05%) 0.51% (1.02%) 0.09% (0.16%)

1-SHOT CODEX RAW PASS @100 20.20% (21.57%) 2.04% (3.99%) 1.05% (1.73%)
1-SHOT CODEX RAW PASS @ 1000 25.02% (277.77%) 3.70% (7.94%) 3.23% (5.85%)

1-SHOT CODEX FILTERED PASS@1 22.78% (25.10%) 2.64% (5.78%) 3.04% (5.25%)
1-SHOT CODEX FILTERED PASS@5 24.52% (27.15%) 3.23% (7.13%) 3.08% (5.53%)

Note: passing timeouts in (parens) Temperature 0.6 used for sampling all k in pass @k

42

Outline

Codex

2022.11
Introduction "Hey, GitHubl"
Evaluation
. . 2022.4
COde Flne_Tunlng InCoder: Code Infilling and
. Synthesis
Experiments
Supervised Fine-Tuning 2022.3
. . CodeGen: Multi-turn Program
Docstring Generation Synthesis
Discussions
2021.7
Codex: Evaluating Large
InCOder Language Models Trained on Code
CodeGen 2020
CodeBERT, PyMT5, TransCoder,
ContraCode...

43

[.imitations

Degradation with length of instruction

Experiment: Compose 13 building blocks of <description, function> pair

Chained Building Blocks:

- Concatenate one-line descriptions into docstring

1. "remove all instances of the letter e from the string"

s = s.replace("e", "")

2. “replace all spaces with exclamation points in the string”

s = s.replace(" ", "!")

3. “convert the string s to lowercase”

s = s.lower ()

4. “remove the first and last two characters of the string”

S = s[2:-2]

5. “removes all vowels from the string”

s = "".join(char for char in s if char not in "aeiouAEIOU")

44

[.imitations

Degradation with length of instruction

Synthetic Pass Rate vs Components (Codex 12B)

0.25 1

0.20 A

0.15 A

Pass rate

0.10 A

0.05 A

0.00
-I_I | | | | |

1 2 3 4 5 6
Number of chained components

45

Hazard Analysis

Over-Reliance: Codex may generate incorrect code that looks fine to novice programmers
Misalignment: Training distribution misalign with the intention of programmers

Bias: Biased prompting setups lead to biased generations

A model is intent misaligned if outputs B, in a scenario where the user prefers

output A and the model is both:

(1) capable of outputting A

(2) capable of distinguishing situations where the user prefers A or B

46

Outline

Codex
2022.11
CodeGen "Hey, GitHub!"
InCoder
Codex for NLP
2022.3
CodeGen: Multi-turn Program
Synthesis

2020

CodeBERT, PyMT5, TransCoder,
ContraCode...

47

CodeGen

Open-source alternative to Codex

16B params - pass@%k [%]

k=1 k=10 k=100
GPT-NEO 350M 0.85 2.55 5.95
: . : : GPT-NEO 2.7B 641 11.27 21.37
OtherWISG, Very similar to Codex - albeit with a GPT-J 6B 1162 15.74 7 74
different exact dataset CODEX 300M 1317 2037 3627
CODEX 2.5B 21.36 3542 59.50
CODEX 12B 2881 46.81 7231
. CODEGEN-NL 350M 212 410 7.38
Slightly outperforms Codex for all k on pass@k on CODEGEN-NL 2.7B 670 1415 2284
H E 1 CODEGEN-NL 6.1B 1043 18.36 29.85
umanrva CODEGEN-NL 16.1B 1424 23.46 38.33
CODEGEN-MULTI 350M 6.67 10.61 16.84
CODEGEN-MULTI 2.7B 14.51 24.67 38.56
: : : CODEGEN-MULTI 6.1B 18.16 28.71 44 85
Multi-turn evaluation provides a performance boost CoDEGEN. B 16,15 1832 3207 5080
11 1 CODEGEN-MONO 350M 12.76 23.11 35.19
Similar to chain of thought CODEGEN-MONO 2.7B 2370 36.64 57.01
CODEGEN-MONO 6.1B 26.13 42.29 65.82
CODEGEN-MONO 16.1B 29.28 49.86 75.00

48

AlphaCode

Goal: solving competition problems

Similar approach, except:

41B pal'ameters i GitHub CodeContests E Codeforces Large set Selected
: Problems E Problems ~ O]csoploutteinotnisal ofszgrlwiizjies
encoder-decoder model o ' -
larger sampling SN S IS | Py mw Fillﬁtering
& clusterin
oo - —- LEARNING ----f-------- \ rerine
Avoiding data-leakage of HumanEval oro-tratning > Fine-tuning > LO%E scale Execute

time-separated

- o - e o o e e EE Em o e e En e e Em e e e Ee n e e e o e e e e e =

Performed on par with a “median” human
competitor

49

Outline

Codex
2022.11
C 0 d eG en "Hey, GitHub!"
InCoder
Codex for NLP
2022.3
CodeGen: Multi-turn Program
Synthesis

2020

CodeBERT, PyMT5, TransCoder,
ContraCode...

50

Code Infilling and Synthesis

MOtlvat10n° Sup ports bOth left—tO—I‘lght generatlon InCoder: A Generative Model for Code Infilling and Synthesis
and lnﬁlllng arbltrary blOCkS Of COde Demo of the 6.7B parameter version of InCoder: a decoder-only Transformer model that can both extend and

insert/infill code.

Select one of the examples below, or input your own code into the editor. You can type <infill> to mark a location you
want the model to insert code at.

Click "Extend" to append text at the end of the editor. Click "Infill" to replace all <infill> masks. (Click "Add <infill>
mask" to add a mask at the cursor or replace the current selection.)

Infill Examples:

Type prediction Docstring to function Function to docstring Class generation

Extend Examples:

Python JavaScript Jupyter StackOverflow Metadata Conditioning Metadata Prediction

Num Tokens: @ ——— 64
Temperature: ¢ I—— 0.6

' Extend || Infill

- Add <infill> mask |

Syntax: | Python V|
1 <I| file ext=.py I>
2 ~ def count_words(filename):
3 """Count the number of occurrences of each word in the file

nn ll|

51

Causal Masking

Training

G1ven document size s, select

Number of masks: n ~ Clamp(Poisson(1),1,16)

Length of each mask: m ~ (Uniform(0,s), Uniform(0,s))

Causally (¥ Y Y V T . Y ‘_ Y v) Y V T v ¥

Lr::::ge [Monte] [Melkonian] [was] a left-wing | |<mask:0>| nationalist militant .] ‘<mask:0>J <a href= Armenian | | _nationalism

Model

R 22 1 ¥ v

<a href= Armenian | | _nationalism

Masked 2
Language [Monte] [Melkonian] [was] [a] [Ieft-wing] <mask> ’ ’nationalist’ [militant J [. J
Model) |

[v v ¥ ¥ v 1 v v yoo_v ¥ v

Monte] [Melkonian] [was a] [Ieft-wing] ’nationalist’ [militant] [.]

Language
Model

52

Causal Masking

Training

Given chosen spans, remove corresponding blocks with mask sentinel token
Move blocks of code to the end of file, each separated by <EOM>

Causally (¥ Y Y V T . Y ‘_ Y v) Y V T v ¥ 1

Lr::::ge [Monte Melkonian was a left-wing | |<mask:0>| nationalist militant .] ‘<mask:0>J
Model) o * :

Masked

Language [Monte] [Melkonian] [was] [a] [Ieft-wing] <mask> ’ ’nationalist’ [militant J [. J
Model) |

L [v v ¥ ¥ v 1 v v yoo_v ¥ v

Model Monte Melkonian was a] [Ieft-wing] ’nationalist’ [militant] [.]

53

Training

Maximize log P([left;, (Mask ,0); right; {Mask 0); SPAN; (EOM)])

Causally
Masked
Language
Model

Masked

Language
Model

Language
Model

Causal Masking

1 v v

v

R 2R 2 v

(e) [oncrien) [was | [

] [Ieﬂ-wing] <mask:0> nationalist [militant] [.

ian

’nationalist’ [militant J [)

J

v v v

href= Armenian | | _nationalism

54

v

R v

y

’nationalist’ [militant] [)

|

Causal Masking

Inferencing

Prompt generation through feeding the corresponding mask sentinel token

Left-to-right generation: Prompt generation with no right context
Infilling:

[A; <Mask:0>; C; <Mask:1>; E; <Mask:2>] — [A; <Mask:0>; C; <Mask:1>; E; <Mask:2>; <Mask:0>; B; <EOM>; <Mask:1>; D; <EOM>]

55

Left-to-Right

Model Size Python Other Other Code Inl12 HE HE HE MBPP
(B) Code (GB) Code(GB) (GB) License ' @] @10 @100 @]
Released
CodeParrot [61] 1.5 50 None None — 4.0 8.7 17.9 —
PolyCoder [68] 2.7 16 238 None — 5.6 9.8 17.7 —
GPT-J [63, 18] 6 6 90 730 — 11.6 15.7 27.7 —
INCODER-6.7B 6.7 52 107 57 Permissive v 152 27.8 47.0 19.4
GPT-NeoX [14] 20 6 90 730 — 154 256 41.2 —
CodeGen-Multi [46] 6.1 62 375 1200 — 18.2 28.7 44.9 —
CodeGen-Mono [46] 6.1 279 375 1200 — 26.1 42.3 65.8 —
CodeGen-Mono [46] 16.1 279 375 1200 — 29.3 499 75.0 —
Unreleased
LaMDA [10, 60, 21] 137 None None 777 — 14.0 — 47.3 14.8
AlphaCode [44] 1.1 54 660 None — 17.1 28.2 45.3 —
Codex-12B [18] 12 180 None >570 — 28.8 46.8 72.3 —
PalLM-Coder [21] 540 ~20 ~200 ~4000 Permissive 36.0 — 88.4 47.0

56

Outline

Codex
2022.11
CodeGen "Hey, GitHub!"
InCoder L
InCoder: Code Infilling and
COdeGen Synthesis

Codex for NLP 2022.3

CodeGen: Multi-turn Program
Synthesis

2021.7

Codex: Evaluating Large
Language Models Trained on Code

2020

CodeBERT, PyMT5, TransCoder,
ContraCode...

o57

Code Model on NLP Tasks

Highlight: Code Models (e.g. Codex) can outperform LLMs (e.g. GPT3) in NLP tasks that involve
structural and logical analysis

58

Codex-NLP: Semantic Parsing

Task: convert an utterance u to a semantic meaning representation m, viewed either as a generation or
classification problem

Dataset Natural language Canonical utterance = Meaning representation
SMCalFlow Schedule Hide and create event called (Yield :output (CreateCommitEventWrapper :event
Seek in the mall for "Hide and Seek" (CreatePreflightEventWrapper :constraint
Saturday night Starting next Sat- (Constraint [Event] :subject (?= #(String
tuday' Iﬁght at "Hide and Seek")) :start (DateTimeConstraint
"mall" :constraint (Night) :date (NextDOW :dow
(DayOfWeek "SATURDAY"))) :location (?=

(LocationKeyphrase "mall"))))))
Overnight Cal. which meeting has meeting that has the (call listValue (call superlative (call

the earliest end time smallest end time getProperty (call singleton en.meeting) (string

'type)) (string min) (call ensureNumericProperty
(string end_time))))

59

Codex-NLP: Semantic Parsing

Task: convert an utterance u to a semantic meaning representation m, viewed either as a generation or
classification problem

Accuracy
Model Overnight Cal. SMCalFlow
Davinci 0.81 0.340
Curie 0.66 0.260
Davinci Codex 0.86 0.355

Cushman Codex 0.87 0.320

60

Codex-NLP: Reasoning

Task: Given a event/goal T, generate a commonsense reasoning represented as a graph

[Take the pies out to cooD (Open cabinet drawer) class Tree:

™

(Take out several plates)

goal = "serve the potpies on a plate"

'S

def init_ (self):
nodes

///// take_pies_out_to_cool = Node()
open_cabinet_drawer = Node()
(::BegnlfnnUng:) (: ﬂl[nescnno:> take_out_several_plates = Node ()
pies on plate lates evenly 4 edges
‘//// take_pies_out_to_cool.children =
[take_out_several_plates]
[Serve the potpies on a plate] open_cabinet_drawer.children =

[take_out_several_plates]

(a) The script G (b) G converted to Python code G, using our approach

o1

Codex-NLP: Reasoning

Task: Given a event/goal T, generate a commonsense reasoning represented as a graph

PID Precision Recall F1
rl 72.77 50.9 59.8
SAVINCI r2 75.9 45.6 57.0
r3 73.8 42 .4 53.9
avg 742+ 13 463+35 569+24
rl 69.0 54.5 60.9
r2 84.6 48.1 61.3
CODEX-002 o 776 55.7 66.2

avg T771+64 528+3.3 628+24

62

Codex-NLP: Proof Synthesis

Task: Given a set of facts and a hypothesis, construct a proof of how the facts conclude at the

hypothesis

Method Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect Fl1 AllCorrect AllCorrect
EntailmentWriter 86.2 43.9 40.6 28.3 67.1 34.8 27.3
EntailmentWriter (T5-11B) 894 52.9 46.6 35.3 69.1 36.9 32.1
NLProofS (ours) 894+08 56.0+07 504+19 384+13 719+14 413+14 371+15
GPT-3 (BI‘OWH et al., 2020) 642 +2.3 153419 17.6 0.6 123+14 536+14 223+1.1 123+ 14
Codex (Chen et al., 2021) 68.9 + 3.7 198 +3.2 214+4+3.0 146 1.7 556+22 232+1.9 144+ 1.4

Table B: Validation results of proof generation on EntailmentBank (Dalvi et al., 2021). Results of GPT-3 and Codex
are based on prompting with 7 in-context examples randomly sampled from the training data.

03

Q3. As a programmer, what types of features would you like to use from a code
model (describe the use cases 1n detail)? Do you think current code models
already achieve that, or what improvements need to be done in the future?

o4

Q3. As a programmer, what types of features would you like to use from a code
model (describe the use cases 1n detail)? Do you think current code models
already achieve that, or what improvements need to be done in the future?

Features

- Autocomplete:

Given comment and some written code to start with, the model should be able to complete a block of code that

matches the intention of function, variable names, and be able to call (if needed) other functions / imported
libraries

- Docstring Formatting

Given function signature and code, infill missing components in the function docstring to include variable
type, description, return type, etc.

- Code Search

Given a description of intention of function, search a codebase if such function is already implemented

65

Q3. As a programmer, what types of features would you like to use from a code
model (describe the use cases 1n detail)? Do you think current code models
already achieve that, or what improvements need to be done in the future?

Discussion

Code model that can fill in blanks in code or docstring would be better than left-to-right only
generation for many reasons (e.g. to call functions declared both above and below a target function).
HumankEval focuses on standalone functions, which may create a potential misalignment between the
model's trained goal and intention of programmers.

006

References

(apart from the ones on the website):

AlphaCode: https://arxiv.org/abs/2203.07814
Semantic Parsing with LMs of Code: https://arxiv.org/abs/2112.08696
Natural Language Proofs: https://arxiv.org/abs/2205.12443

67

https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2112.08696
https://arxiv.org/abs/2205.12443

