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Outline

1). Motivation: why retrieval-based LMs? 

2). Related Work: existing retrieval-based LMs

3). Method: RETRO (Borgeaud et al., 2022)

4). Results
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https://arxiv.org/pdf/2112.04426.pdf


Prior work: GPT-2 & GPT-3

● GPT-3 is massive!
● 175B parameters (~117x GPT-2)

Figure from blog post 3

https://jalammar.github.io/illustrated-retrieval-transformer/


Motivation

● It seems scaling larger and larger models is the main way of improving the 
performance…
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Motivation

● It seems scaling larger and larger models is the main way of improving the 
performance…

But with a tremendous increase in training energy cost!

1). Additional computations at training and inference time

2). Increased memorization of the training data

Can we separate language information from world knowledge information? 
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Retrieval-based Language Models

● Knowledge is encoded explicitly
● The model learns to search for relevant passages, then use the retrieved 

information for crafting knowledgeable response

Figure from stanford blog post 8

http://ai.stanford.edu/blog/retrieval-based-NLP/


Why is retrieval important? 

● Tackling inefficiency
○ Retrieval-based models can be much smaller and faster
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Existing methods

Type 1

Type 2

Type 1: Token-level Retrieval (mainly) for LM – augmenting prediction of next token

Type 2: Passage-level Retrieval (mainly) for QA – retrieving passages relevant to the question
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Type 1: Token-level retrieval for LM

● Augment LM model with kNN-based model.
● Target is the next token.

Figure from kNN-LM paper (Khandelwal et al. 2019) 13



Type 1: Token-level retrieval for LM

● No interaction between context encoder (for retrieval) and LM during 
training.

● What’s the relationship between lambda and the size of database?
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Type 1: Token-level retrieval for LM

> No interaction between Context encoder and LM during training.

How to train them together?

● SPALM: Adding an extra gating network to post-process the retrieved data.
● TRIME: Training with in-batch memories.

○ Incorporating retrieval into the training objective:
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Type 1: Token-level retrieval for LM

Figure from TRIME paper (Zhong et al. 2022) 16



Existing methods

Type 1

Type 2

Type 1: Token-level Retrieval (mainly) for LM – augmenting prediction of next token

Type 2: Passage-level Retrieval (mainly) for QA – retrieving passages relevant 
to the question
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Type 2: Passage-level Retrieval for QA

● Contrastively train the retriever.
● Can be plugged into a QA system for retrieving context.

18Figure from the talk of DRP paper (Karpukhin et al. 2020)

https://slideslive.com/38939151/dense-passage-retrieval-for-opendomain-question-answering


Type 2: Passage-level Retrieval for QA

Figure from the talk of DRP paper (Karpukhin et al. 2020) 19

https://slideslive.com/38939151/dense-passage-retrieval-for-opendomain-question-answering


Existing methods

“Limited” scale: 
- Datasets are up to billions of tokens.
- Models are ~100M parameters.
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This paper: RETRO architecture (for LM)
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Component 1: Frozen BERT encoder for retrieval

Why frozen the encoders given that training them is helpful (as shown in previous 
works like DPR)?
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Component 1: Frozen BERT encoder for retrieval

Why frozen the encoders given that training them is helpful (as shown in previous 
works like DPR)?

> “avoid having to periodically re-compute embeddings over the entire database during training”
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Component 1: Frozen BERT encoder for retrieval

● Format of the retrieval neighbors: [N, F] where N is used as key and F is the 
continuation of N.

● Metric: d(C, N) = ||BERT(C) - BERT(N)||.
● RET(C) = ([N^1, F^1], …, [N^k, F^k]).
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Component 2: Chunked cross-attention (CCA)

Background

● Input chunks: Divide input of 
length 2048 into chunks of 
length 64.

● N, F in the retrieval database 
are also of length 64.
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Component 2: Chunked cross-attention (CCA)

How to maintain causality?

● Chunk-wise autoregressive
● Adding (encoded) neighbor 

of chunk i to the last token of 
chunk i and chunk i+1.

● Intuition: Ideally if neighbor 
is exactly same as chunk, its 
continuation will be the next 
chunk.
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Miscellaneous

● Encoder for post-processing 
neighbors: A small (19M 
params) BERT encoder for 
conditioning neighbors on 
query.

● In the implementation, the 
retrieval models contain one 
RETRO-block every 3 blocks, 
starting from layer 6. (Why?)
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Q1. Describe how the text is stored in RETRO's database (keys and values) and 
how they are encoded and integrated into the language model.

● Format of the retrieval neighbors:
○  [N, F] where N is used as key and F is the continuation of N.

● Chunked cross-attention.
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Experiments Outline

1). Models and Datasets

2). Scaling on Models and Data

3). RETRO-fitting

4). RETRO on Question Answering

5). Evaluations on leakage filtering
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Models

1). Baseline Transformer 

● Replace LayerNorm with RMSNorm
● Relative position encodings

2). RETRO [Off]

● Without retrieval data

3). RETRO [On]
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Models

1). Baseline Transformer 

2). RETRO [Off]

3). RETRO [On]
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Less percentage increase for larger models



Datasets

● Multilingual version of MassiveText (Rae et al., 2021) for both training and 
retrieval data
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https://arxiv.org/abs/2112.11446


Datasets

● C4 (Raffel et al., 2020)
● The Pile (Gao et al., 2020)
● Curation Corpus (Curation, 2020)
● A set of manually selected Wikipedia articles

● WikiText-103 (Merity et al., 2017)
● Lambada (Paperno et al., 2016)

Bits-per-byte (bpb)

Accuracy

Perplexity
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Example Data from LAMBADA

● Designed to evaluate the capabilities of computational models for text 
understanding by means of a word prediction task

● Models must be able to keep track of information in the broader discourse
● Measured in accuracy

38Figure from LAMBADA (Paperno et al., 2016)

https://arxiv.org/pdf/1606.06031v1.pdf


Evaluation Metric: Bits-per-bytes
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Evaluation Metric: Bits-per-bytes
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Evaluation Metric: Bits-per-bytes

1). Split the evaluation sequences into chunks of length m <= 64

2). For each evaluation chunk C, retrieve 10 closest neighbours in the training data

3). Compute the longest token substring common to both the evaluation chunk 
and its neighbours
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Evaluation Metric: Bits-per-bytes

1). Split the evaluation sequences into chunks of length m <= 64

2). For each evaluation chunk C, retrieve 10 closest neighbours in the training data

3). Compute the longest token substring common to both the evaluation chunk 
and its neighbours

● Ranges from 0 (chunk never 
seen) to 1 (chunk entirely seen)

● Indicates how much overlap 
there is between the evaluation 
chunk and training data
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Evaluation Metric: Bits-per-bytes

4). Obtain the log-likelihood of each chunk C, and the number of bytes it encodes

Filtered bits-per-bytes (bpb) as follows:
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C4, The Pile, Curation, Manually selected Wiki articles



Evaluation Metric: Bits-per-bytes

4). Obtain the log-likelihood of each chunk C, and the number of bytes it encodes

Filtered bits-per-bytes (bpb) as follows:

Shows bpb on the set of chunks that overlap less than α% with the training chunks

Full evaluation bits-per-bytes (bpb) performance is recovered by bpb(1)

46
Tokenizer agnostic The lower, the better



Model Scaling

● On all datasets, RETRO outperforms the baseline at all model sizes
● Improvements do not diminish as we scale the models
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Data Scaling

● Scaling the retrieval database at evaluation improves performance
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Relative bpb improvement on the Pile

● RETRO outperforms baseline on almost all datasets except dm_mathematics 
and ubuntu_irc

Jurassic-1 and Gopher outperform GPT-3! 50

https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://arxiv.org/abs/2112.11446


RETRO-fitting

● Extend baseline models into RETRO models
● Freeze the pre-trained weights
● Only train chunked cross-attention and neighbour encoder parameters
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RETRO-fitting

● RETRO-fitting Models quickly surpasses the performance of baseline models
● Close to RETRO models trained from scratch
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Performance on QA

● Fine-tune on the Natural Questions dataset
● Measures exact string match accuracy

53Figure from Natural Questions

Format in: “question: {question} \n answer: {answer}”

https://ai.google.com/research/NaturalQuestions/databrowser


Performance on QA

● Fine-tune on the Natural Questions dataset
● Measures exact string match accuracy
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Performance on QA

● RETRO 7.5B (DPR retrieval)
○ Has access to the question as well as the top 20 DPR Wiki passages and their titles via CCA

55



Performance on QA
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Performance on QA
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Performance wrt. Dataset Leakage

● Filtered bpb as eval loss
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Performance wrt. Dataset Leakage

● Filtered bpb as eval loss

More details in table 19 and Fig. 12 61



Q2.  Describe how RETRO defines dataset leakage. Do retrieval-based models like 
RETRO actually exploit evaluation dataset leakage or not?

● Filtered bits-per-bytes.
● Yes, retrieval-based models like RETRO do exploit evaluation dataset leakage, 

as indicated in the figure below. 
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Sampling Results: “Beavers are interesting animals”
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Thanks for listening!
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Q3: Do you think that retrieval-based LMs can work 
similarly as standard dense LLMs in terms of downstream 
applications (e.g., prompting, fine-tuning)? 

What are key challenges of scaling up retrieval-based LMs?
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