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Background



Dense vs Sparse Models

Dense model (e.g. GPT3) Sparse model

« Most popular * Less popular

» Excellent performance » Good performance
« Expensive training and » Potentially cheaper

computation computation
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How to make inference more computationally efficient?



Mixture of Experts

(MoE)

e Train many experts (models), expensive training

e Route an input to a few experts, cheap inference

Gating Network

Expert 1

Input

Expert 2

Expert k




History of MoE

The idea of mixture of experts has been 30 years already

Adaptive mixtures of local experts. JINH91
Twenty years of mixture of experts. YWG12

Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer. Shazeer et al 17

Gshard (Levipkhin et al 20) and Switch Transformers (FZS17)



Shazeer et al 17
* The first work that made MoE works well

» Train the largest model and achieve state-of-the-art results

Method:
« Train many neural networks as the candidate set of experts

« Train a gating network to map the input to a few experts



The MoE (gating) layer

Let h(x) be the initial output, use softmax to get weights
6,h('.c),'

Z;V Ch,(;r)j ;

wlE) =

Final output is the convex combination of experts

y =) pi(z)Ei(z).

€T

Typically, we consider only the top-k experts where k<N



Some Technical Challenges

« Complexity
« Communication costs

 Training instabilities
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Switch transformer

. The guiding design principle: maximizing the parameter count efficiently

. Afourth axis: increasing the parameter count, keeping FLOPs constant

. The sparsely activated layers split unique weights on different devices
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New ingredients

« Switch routing
» Distributed switch implementation

o Differentiable load balance loss
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Switch routing

e Previous method: using top-k experts out of N experts

e Now routing to only a single expert

Advantages:
1, Reduced routing computation
2, Reduced communication cost

3, Better performance
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Distributed switch implementation

Setting the expert capacity: the number of tokens each expert computes

tokens per batch

expert capacity :( ) X capacity factor.

number of experts

« Capacity factor = 1: potential overflow issue

« Capacity factor > 1: additional buffer for imperfect distribution

15



Terminology

. Experts: Split across devices,
each having their own unique
parameters. Perform standard feed-
forward computation.

. Expert Capaclty: Baich size of
each expert. Calculated as

« (tokens_per_batch / num_experts) *
capacity_factor

. Capaclty Factor: Used when
calculating expert capacity. Expert
capacity allows more buffer to help
mitigate token overflow during
routing.

(Capacity Factor: 1.0)
Expert 1 Expert 2 Expert 3

Devicc 0 Deviee 1 Device 2
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(Capacity Factor: 1.5)
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Tradeoff: a larger capacity factor alleviates this overflow issue,
but also increases computation and communication costs
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A differentiable load balancing loss

Given N experts and a batch with T tokens, we add an auxiliary loss:

N
loss:a-N-Zfi‘Pi
i=1

f; is the fraction of tokens P; is the fraction of the router
dispatched to expert i probability allocated for expert i
1
k= T Z 1{argmax p(z) = i} Pi= % ZP"(”L)

zeB TeEB
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Why such loss?

e The paper wants both vectors to have values of 1/N

e It's claimed that the auxiliary loss encourages uniform routing since it is
minimized under a uniform distribution

Eij\il(fi * P-i) = Z{V_l(% ) %) - %
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Rethinking the loss choice

The claim is wrong: minimal value can be smaller than 1/N, achieved by
non-uniform distributions. Consider this example with N=2, T=3

- Expert 1 Expert 2

Token 1 0.51 0.49
Token 2 0.51 0.49
Token 3 0 1

2 1 =
f= <_,_), P =(034,0.66), (f,P)=0447 <7
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Open question: can we design a better loss?
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Putting It All Together: The Switch Transformer

First test of Switch Transformer is on “Colossal Clean Crawled Corpus” (C4)

e A masked language modeling task is used for the pre-training objective
e 15% of tokens are dropped out and replaced by the masked sequence

e The negative log perplexity is recorded to compare the models
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Model Capacity Quality after Time to Quality Speed (1)
Factor 100k steps (1) Threshold (})  (examples/sec)

(Neg. Log Perp.) (hours)

T5-Base -1.731 Not achieved! 1600
TH-Large -1.550 131.1 470
MoE-Base 2.0 -1.547 68.7 840
Switch-Base 2.0 -1.554 72.8 860
MoE-Base 1.25 -1.559 80.7 790
Switch-Base 1.25 -1.553 65.0 910
MoE-Base 1.0 -1.572 80.1 860
Switch-Base 1.0 -1.561 62.8 1000
Switch-Base+ 1.0 -1.534 67.6 780

Switch transformers are better, fixing time or quality
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Key findings
e Switch Transformers outperform both carefully tuned dense models and
MoE Transformers on a speed-quality basis.

e The Switch Transformer has a smaller computational footprint

e Switch Transformers perform better at lower capacity factors (1.0, 1.25)
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Improved Training and Fine-Tuning Techniques

» Selective precision with large sparse models
o Smaller parameter initialization for stability

« Regularizing large sparse models
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Selective precision with large sparse models

e [nstability hinders the ability to train using efficient bfloat16 precision
e Casting expensive float32 precision only on the router function

e Benefit from efficiency of bfloat16 and stability of float 32
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Model Quality Speed

(precision) (Neg. Log Perp.) (1) (Examples/sec) (1)
Switch-Base (float32) -1.718 1160
Switch-Base (bfloat16) -3.780 |diverged| 1390

Switch-Base (Selective precision) -1.716 1390

Selective precision achieves benefits on both quality and speed
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Smaller parameter initialization

¢® The weight matrices are initialized by sampling from a truncated normal
distribution with mean u = 0 and standard deviation o = /s/n

e We reduce the default initialization scale s = 1.0 by a factor of 10

e This both improves quality and reduces the likelihood of instability
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Model (Initialization scale) Average Quality Std. Dev. of Quality
(Neg. Log Perp.) (Neg. Log Perp.)
Switch-Base (0.1x-init) -2.72 0.01
Switch-Base (1.0x-init) -3.60 0.68

Smaller parameter initialization improves both quality and stability
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Regularizing large sparse models

e Overfitting is an issue: many fine-tuning tasks have very few examples
e Switch Transformers have more parameters: more severe overfitting

e A simple remedy: increasing the dropout inside the experts, which we
name as expert dropout
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Model (dropout) GLUE |CNNDM SQuAD SuperGLUE

T5H-Base (d=0.1) 82.9 19.6 83.5 72.4
Switch-Base (d=0.1) 84.7 19.1 83.7 73.0
Switch-Base (d=0.2) 84.4 19.2 83.9 73.2
Switch-Base (d=0.3) 83.9 19.6 83.4 70.7

Switch-Base (d=0.1, ed=0.4)] 85.2 19.6 83.7 73.0

A smaller dropout rate (0.1) at non-expert layers and a larger
dropout rate (0.4) at expert layers is the best



Scaling properties

e When the model is not bottlenecked by computation or amount of data
e Use the large C4 corpus and train until diminishing returns

e Increasing the experts keeps the computational cost approximately fixed
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Scaling versus

e Fixed training steps: more parameters (experts) speeds up training

e Fixed training time: Switch Transformers yield a substantial speed-up

e Large dense models: Switch-Base is still more sample efficient and
yields a 2.5x speedup
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Improved language learning abilities for downstream applications
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Downstream Results
e Fine-tuning
e Distillation

e Multilingual Learning
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Downstream Results
e Fine-tuning
e Distillation

e Multilingual Learning
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Downstream: fine-tuning

mixture of tasks
(sentiment analysis,
sentence similarities etc)

Model GLUE SQuAD SuperGLUE| Winogrande (XL)
T5-Base 84.3 85.5 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
Tb5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 18.7 51.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
T5-Large 20.9 56.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5
Model CB Web QA CB Natural QA CB Trivia QA
T5-Base 26.6 25.8 24.5
Switch-Base 27.4 26.8 30.7
T5-Large 27.7 27.6 29.5
Switch-Large 31.3 29.5 36.9

significant improvements across many tasks %



Downstream: fine-tuning

Model GLUE SQuAD SuperGLUE  Winogrande (XL)
T5-Base 84.3 85.5 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
Tb5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 18.7 51.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
Tb5-Large 20.9 56.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5

Model CB Web QA CB Natural QA CB Trivia QA

T5-Base 26.6
Switch-Base 27.4
T5-Large 20T
Switch-Large 31.3

25.8
26.8
27.6
29.5

24.5
30.7
29.5
36.9

significant improvements across many tasks



Downstream: fine-tuning

question answering

Model GLUE SQuAD SuperGLUE  Winogrande (XL)
T5-Base 84.3 85.5 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
Tb5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 18.7 51.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
Tb5-Large 20.9 56.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5

Model CB Web QA CB Natural QA CB Trivia QA
T5-Base 26.6 25.8 24.5
Switch-Base 27.4 26.8 30.7
T5-Large 27.7 27.6 29.5
Switch-Large 31.3 29.5 36.9

significant improvements across many tasks
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Downstream: fine-tuning

common sense reasoning

Model GLUE SQuAD SuperGLUE | Winogrande (XL)
T5-Base 84.3 85.5 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
Th5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Natural language inference
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 18.7 51.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
Th5-Large 20.9 56.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5

Model CB Web QA CB Natural QA CB Trivia QA
T5-Base 26.6 25.8 24.5
Switch-Base 27.4 26.8 30.7
T5-Large 27.7 27.6 29.5
Switch-Large 31.3 29.5 36.9

significant improvements across many tasks



Downstream: fine-tuning

Model GLUE SQuAD SuperGLUE  Winogrande (XL)
T5-Base 84.3 85.5 75.1 66.6
Switch-Base 86.7 87.2 79.5 73.3
T5-Large 87.8 88.1 82.7 79.1
Switch-Large 88.5 88.6 84.7 83.0
Model XSum ANLI (R3) ARC Easy ARC Chal.
T5-Base 18.7 51.8 56.7 35.5
Switch-Base 20.3 54.0 61.3 32.8
T5-Large 20.9 96.6 68.8 35.5
Switch-Large 22.3 58.6 66.0 35.5
Model CB Web QA CB Natural QA CB Trivia QA
T5-Base 26.6 25.8 24.5
Switch-Base 27.4 26.8 30.7
T5-Large 27.7 27.6 29.5 closed book QA
Switch-Large 31.3 29.5 36.9

significant improvements across many tasks
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Downstream Results
e Fine-tuning
e Distillation

e Multilingual Learning
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Knowledge Distillation in a nutshell

Distill knowledge from teacher model to student model.
A popular technique for model compression.

L gist(w Z Z [softmax (fu, (z)/T)]; log p(y = jl@:;w)

=1 g=1

L(w) = aloce(w) + (1 — a)Lgise(w)
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Distillation techniques

Quality: Neg Log Perplexity

Technique Parameters  Quality (1)
T5-Base student 223M -1.636
Switch-Base teacher 3,800M -1.444
Distillation 223M (3%) -1.631
+ Init. non-expert weights from teacher 223M (20%) -1.598
+ 0.75 mix of hard and soft loss 223M (29%) -1.580
Initialization Baseline (no distillation)

Init. non-expert weights from teacher 223M -1.639

29% quality gain with only 1/20th of the parameters.
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Distillation compression rates

Dense Sparse
Parameters 223M | 1.1B 2.0B 3.8B 74B 14.7B
Pre-trained Neg. Log Perp. (1) -1.636 | -1.505 -1.474 -1.444 -1.432 -1.427
Distilled Neg. Log Perp. (1) — | -1.587 -1.585 -1.579 -1.582 -1.578
Percent of Teacher Performance  — 3%  32% 30% 21% 28%
Compression Percent — 8% 9909% 9%5% 97% 99%

compress the model by 99% and maintain 28% of the teacher quality improvements



Distilling fine-tuned SuperGLUE model

Model Parameters FLOPS | SuperGLUE (1)
T5-Base 223M 124B 74.6
Switch-Base 7410M 124B 81.3
Distilled T5-Base 223M 124B (30%) 76.6

Sparse teacher can be an effective teacher on small dataset
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Downstream Results
e Fine-tuning
e Distillation

e Multilingual Learning
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Multilingual Learning

Pre-training on 101 languages
Comparison of FLOP-matched Switch model (mSwitch-Base) to TS5 base (mT5-Base)
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Histogram of speedup on 101 languages
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Implementation Discussion

Data Parallelism, Model Parallelism and Expert Parallelism
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How the data is split over cores

Data Model Model and Data Expert and Data Expert, Model and Data
Parallelism Parallelism Parallelism Parallelism Parallelism
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Data

How the model weights are split over cores

Model Model and Data Expert and Data

Expert, Model and Data

Parallelism Parallelism Parallelism Parallelism Parallelism
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Switch model design and pre-training performance

Model Parameters FLOPS/SBQ dmodel FFNGEGLU dff dkv Num. Heads
T5-Base 0.2B 124B 768 v 2048 64 12
T5-Large 0.7B 425B 1024 v 2816 64 16
T5-XXL 11B 6.3T 4096 v 10240 64 64
Switch-Base 7B 124B 768 v 2048 64 12
Switch-Large 268 425B 1024 v 2816 64 16
Switch-XXL 395B 6.3T 4096 v 10240 64 64
Switch-C 15718B 890B 2080 6144 64 32
l
Model Expert Freq. Num. Experts Num Layers Neg. Log Perp. @250k Neg. Log Perp. @ 500k
T5-Base : 12 -1.599 -1.556
ThH-Large 24 -1.402 -1.350
T5-XXL 24 -1.147 -1.095
Switch-Base 1/2 12 128 -1.370 -1.306
Switch-Large 1/2 24 128 -1.248 -1.177
Switch-XXL 1/2 24 64 -1.086 -1.008
Switch-C 1 15 2048 -1.096 -1.043
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Pre-lecture Questions
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Pre-Lecture Question 1

How are sparse models different from the dense models by design? What is the
biggest insight of Switch Transformers compared to previous Mixture-of-Experts

models (Shazeer et al 2017)?

Sparse models generally refer to those with only a subset of the parameters of dense model.

In the context of sparse expert model, a set of parameters are partitioned into "experts" with
unique weights. Unlike dense model where the entire network is used for each input, in
sparse expert models, only a fraction of the experts/parameters are used for each example.

Switch Transformer routes a token to only a single expert rather than multiple experts, which
was proposed in Shazeer 2017.
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Pre-Lecture Question 2

How to fine-tune sparse models for downstream tasks? What issue may arise in

fine-tuning sparse models and what is the fix in Switch Transformers?

Switch Transformers have significantly more parameters than the FLOP-matched dense
baseline, and therefore can be more prone to overfitting on downstream tasks with very

few examples.

To fine-tune sparse models, the authors increase the dropout rate at the feedforward

stage for each expert.
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Follow up work

56



Follow Up Work - Domain Expert Mixture
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Follow Up Work - Parallel Training of Experts

o Branch-Train-Merge
Step 0: initialization

train seed LM on one corpus o
Step 1: branch from existing
experts, or seed LM repeat

Q ? ? 9 § D C] D D < witho?r;%tr:e;rinbsatch
ééé# z y

' randomly drawn | § Step 2: branched training on *

Ldaa nibarches k domains in parallel .
seed corpus Step 3: merge k domain

expert LMs into
_.> ELMforest
* —P
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0000 s
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Li, Margaret, et al. “Branch-train-merge: Embarrassingly parallel training of expert language models”, 2022.
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Pre-Lecture Question 3

If we continue scaling up LLMs, sparse vs dense models - which one do you think is
more promising? Can you discuss their pros and cons (computation, storage and
different use cases e.g., fine-tuning, prompting, in-context learning)?
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Thank You!



