Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity

Presenters: Zhou Lu, Wenhan Xia

Background

Dense vs Sparse Models

Dense model (e.g. GPT3)

- Most popular
- Excellent performance
- Expensive training and computation

Sparse model

- Less popular
- Good performance
- Potentially cheaper computation

Dense Model

Sparse Model

How to make inference more computationally efficient?

Mixture of Experts (MoE)

- Train many experts (models), expensive training
- Route an input to a few experts, cheap inference

History of MoE

The idea of mixture of experts has been 30 years already

- Adaptive mixtures of local experts. JJNH91
- Twenty years of mixture of experts. YWG12
- Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. Shazeer et al 17
- Gshard (Levipkhin et al 20) and Switch Transformers (FZS17)

Shazeer et al 17

- The first work that made MoE works well
- Train the largest model and achieve state-of-the-art results

Method:

- Train many neural networks as the candidate set of experts
- Train a gating network to map the input to a few experts

The MoE (gating) layer

Let h(x) be the initial output, use softmax to get weights

$$p_i(x) = \frac{e^{h(x)_i}}{\sum_j^N e^{h(x)_j}}.$$

Final output is the convex combination of experts

$$y = \sum_{i \in \mathcal{T}} p_i(x) E_i(x).$$

Typically, we consider only the top-k experts where k<N

Some Technical Challenges

- Complexity
- Communication costs
- Training instabilities

Switch transformer

• The guiding design principle: maximizing the parameter count efficiently

• A fourth axis: increasing the parameter count, keeping FLOPs constant

• The sparsely activated layers split unique weights on different devices

Dense feed forward network (FFN) layer is replaced by a sparse Switch FFN layer (light blue box)

New ingredients

• Switch routing

• Distributed switch implementation

• Differentiable load balance loss

Switch routing

- Previous method: using top-k experts out of N experts
- Now routing to only a single expert

Advantages:

- 1, Reduced routing computation
- 2, Reduced communication cost
- 3, Better performance

Distributed switch implementation

Setting the expert capacity: the number of tokens each expert computes

expert capacity =
$$\left(\frac{\text{tokens per batch}}{\text{number of experts}}\right) \times \text{capacity factor.}$$

- Capacity factor = 1: potential overflow issue
- Capacity factor > 1: additional buffer for imperfect distribution

Terminology

- Experts: Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor
- Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

Tradeoff: a larger capacity factor alleviates this overflow issue, but also increases computation and communication costs

A differentiable load balancing loss

Given N experts and a batch with T tokens, we add an auxiliary loss:

$$loss = \alpha \cdot N \cdot \sum_{i=1}^{N} f_i \cdot P_i$$

 f_i is the fraction of tokens dispatched to expert i

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{B}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$

 P_i is the fraction of the router probability allocated for expert i

$$P_i = \frac{1}{T} \sum_{x \in \mathcal{B}} p_i(x).$$

Why such loss?

- The paper wants both vectors to have values of 1/N
- It's claimed that the auxiliary loss encourages uniform routing since it is minimized under a uniform distribution

$$\sum_{i=1}^{N} (f_i \cdot P_i) = \sum_{i=1}^{N} (\frac{1}{N} \cdot \frac{1}{N}) = \frac{1}{N}$$

Rethinking the loss choice

The claim is wrong: minimal value can be smaller than 1/N, achieved by non-uniform distributions. Consider this example with N=2, T=3

	Expert 1	Expert 2
Token 1	0.51	0.49
Token 2	0.51	0.49
Token 3	0	1

$$f = \left(\frac{2}{3}, \frac{1}{3}\right), \qquad P = (0.34, 0.66), \qquad \langle f, P \rangle = 0.447 < \frac{1}{2}$$

Open question: can we design a better loss?

Putting It All Together: The Switch Transformer

First test of Switch Transformer is on "Colossal Clean Crawled Corpus" (C4)

- A masked language modeling task is used for the pre-training objective
- 15% of tokens are dropped out and replaced by the masked sequence
- The negative log perplexity is recorded to compare the models

Model	Capacity Factor	Quality after $100k$ steps (\uparrow)	Time to Quality Threshold (1)	Speed (\uparrow) (examples/sec)
		(Neg. Log Perp.)	(hours)	(010011111100/000)
T5-Base	1000	-1.731	Not achieved [†]	1600
T5-Large		-1.550	131.1	470
MoE-Base	2.0	-1.547	68.7	840
Switch-Base	2.0	-1.554	72.8	860
MoE-Base	1.25	-1.559	80.7	790
Switch-Base	1.25	-1.553	65.0	910
MoE-Base	1.0	-1.572	80.1	860
Switch-Base	1.0	-1.561	62.8	1000
Switch-Base+	1.0	-1.534	67.6	780

Switch transformers are better, fixing time or quality

Key findings

• Switch Transformers outperform both carefully tuned dense models and MoE Transformers on a speed-quality basis.

• The Switch Transformer has a smaller computational footprint

• Switch Transformers perform better at lower capacity factors (1.0, 1.25)

Improved Training and Fine-Tuning Techniques

• Selective precision with large sparse models

• Smaller parameter initialization for stability

• Regularizing large sparse models

Selective precision with large sparse models

- Instability hinders the ability to train using efficient bfloat16 precision
- Casting expensive float32 precision only on the router function
- Benefit from efficiency of bfloat16 and stability of float 32

Model	Quality	Speed
(precision)	(Neg. Log Perp.) (\uparrow)	(Examples/sec) (\uparrow)
Switch-Base (float32)	<mark>-1.718</mark>	1160
Switch-Base (bfloat16)	-3.780 [diverged]	1390
Switch-Base (Selective precision)	-1.716	1390

Selective precision achieves benefits on both quality and speed

Smaller parameter initialization

- The weight matrices are initialized by sampling from a truncated normal distribution with mean $\mu = 0$ and standard deviation $\sigma = \sqrt{s/n}$
- We reduce the default initialization scale s = 1.0 by a factor of 10
- This both improves quality and reduces the likelihood of instability

Model (Initialization scale)	Average Quality	Std. Dev. of Quality
Switch-Base (0.1x-init)	-2.72	0.01
Switch-Base (1.0x-init)	-3.60	0.68

Smaller parameter initialization improves both quality and stability

Regularizing large sparse models

- Overfitting is an issue: many fine-tuning tasks have very few examples
- Switch Transformers have more parameters: more severe overfitting
- A simple remedy: increasing the dropout inside the experts, which we name as expert dropout

Model (dropout)	GLUE	CNNDM	SQuAD	SuperGLUE
T5-Base $(d=0.1)$	82.9	19.6	83.5	72.4
Switch-Base $(d=0.1)$	84.7	19.1	83.7	73.0
Switch-Base $(d=0.2)$	84.4	19.2	83.9	73.2
Switch-Base $(d=0.3)$	83.9	19.6	83.4	70.7
Switch-Base $(d=0.1, ed=0.4)$	85.2	19.6	83.7	73.0

A smaller dropout rate (0.1) at non-expert layers and a larger dropout rate (0.4) at expert layers is the best

Scaling properties

- When the model is not bottlenecked by computation or amount of data
- Use the large C4 corpus and train until diminishing returns
- Increasing the experts keeps the computational cost approximately fixed

Scaling versus

• Fixed training steps: more parameters (experts) speeds up training

• Fixed training time: Switch Transformers yield a substantial speed-up

• Large dense models: Switch-Base is still more sample efficient and yields a 2.5x speedup

Improved language learning abilities for downstream applications

Downstream Results

- Fine-tuning
- Distillation
- Multilingual Learning

Downstream Results

- Fine-tuning
- Distillation
- Multilingual Learning

mixture of tasks (sentiment analysis, sentence similarities etc)

Model	GLUE	SQuAD	SuperGLUE	Winogrande (XL)
T5-Base	84.3	85.5	75.1	66.6
Switch-Base	86.7	87.2	79.5	73.3
T5-Large	87.8	88.1	82.7	79.1
Switch-Large	88.5	88.6	84.7	83.0
Model	XSum	ANLI (R3)	ARC Easy	ARC Chal.
T5-Base	18.7	51.8	56.7	35.5
Switch-Base	20.3	54.0	61.3	32.8
T5-Large	20.9	56.6	68.8	35.5
Switch-Large	22.3	58.6	66.0	35.5
Model	CB Web QA	CB Natural QA	CB Trivia QA	
T5-Base	26.6	25.8	24.5	
Switch-Base	27.4	26.8	30.7	
T5-Large	27.7	27.6	29.5	
Switch-Large	31.3	29.5	36.9	

	Model	GLUE	SQuAD	SuperGLUE	Winogrande (XL)
	T5-Base	84.3	85.5	75.1	66.6
	Switch-Base	86.7	87.2	79.5	73.3
	T5-Large	87.8	88.1	82.7	79.1
	\mathbf{Switch} -Large	88.5	88.6	84.7	83.0
summarize artic	es				
	Model	XSum	ANLI (R3)	ARC Easy	ARC Chal.
	T5-Base	18.7	51.8	56.7	35.5
S	Switch-Base	20.3	54.0	61.3	32.8
	T5-Large	20.9	56.6	68.8	35.5
	\mathbf{Switch} -Large	22.3	58.6	66.0	35.5
	Model	CB Web QA	CB Natural QA	CB Trivia QA	
	T5-Base	26.6	25.8	24.5	
	Switch-Base	27.4	26.8	30.7	
	T5-Large	27.7	27.6	29.5	
	\mathbf{Switch} -Large	31.3	29.5	36.9	

question answering

Model	GLUE	SQuAD	SuperGLUE	Winogrande (XL)
T5-Base	84.3	85.5	75.1	66.6
Switch-Base	86.7	87.2	79.5	73.3
T5-Large	87.8	88.1	82.7	79.1
Switch-Large	88.5	88.6	84.7	83.0
Model	XSum	ANLI (R3)	ARC Easy	ARC Chal.
T5-Base	18.7	51.8	56.7	35.5
Switch-Base	20.3	54.0	61.3	32.8
T5-Large	20.9	56.6	68.8	35.5
Switch-Large	22.3	58.6	66.0	35.5
Model	CB Web QA	CB Natural QA	CB Trivia QA	
T5-Base	26.6	25.8	24.5	
Switch-Base	27.4	26.8	30.7	
T5-Large	27.7	27.6	29.5	
\mathbf{Switch} -Large	31.3	29.5	36.9	

common sense reasoning

	Model	GLUE	SQuAD	SuperGLUE	Winogrande (XL)	
	T5-Base	84.3	85.5	75.1	66.6	
	Switch-Base	86.7	87.2	79.5	73.3	
	T5-Large	87.8	88.1	82.7	79.1	
	Switch-Large	88.5	88.6	84.7	83.0	
Natural language inference						
	Model	XSum	ANLI (R3)	ARC Easy	ARC Chal.	
	T5-Base	18.7	51.8	56.7	35.5	
	Switch-Base	20.3	54.0	61.3	32.8	
	T5-Large	20.9	56.6	68.8	35.5	
	Switch-Large	22.3	58.6	66.0	35.5	
	Model	CB Web QA	CB Natural QA	A CB Trivia QA		
	T5-Base	26.6	25.8	24.5		
	Switch-Base	27.4	26.8	30.7		
	T5-Large	27.7	27.6	29.5		
	Switch-Large	31.3	29.5	36.9		

Model	GLUE	SQuAD	SuperGLUE	Winogrande (XL)
T5-Base	84.3	85.5	75.1	66.6
Switch-Base	86.7	87.2	79.5	73.3
T5-Large	87.8	88.1	82.7	79.1
Switch-Large	88.5	88.6	84.7	83.0
Model	XSum	ANLI (R3)	ARC Easy	ARC Chal.
T5-Base	18.7	51.8	56.7	35.5
Switch-Base	20.3	54.0	61.3	32.8
T5-Large	20.9	56.6	68.8	35.5
Switch-Large	22.3	58.6	66.0	35.5
				
Model	CB Web QA	CB Natural QA	CB Trivia QA	
T5-Base	26.6	25.8	24.5	
Switch-Base	27.4	26.8	30.7	closed book
T5-Large	27.7	27.6	29.5	CIUSED DOOK
Switch-Large	31.3	29.5	36.9	

Downstream Results

- Fine-tuning
- Distillation
- Multilingual Learning

Knowledge Distillation in a nutshell

Distill knowledge from teacher model to student model. A popular technique for model compression.

$$\mathcal{L}_{dist}(\boldsymbol{w}) = -\sum_{i=1}^{n} \sum_{j=1}^{k} [\operatorname{softmax}(f_{\boldsymbol{w}_{t}}(\boldsymbol{x})/T)]_{j} \log p(y=j|\boldsymbol{x}_{i};\boldsymbol{w})]_{j}$$

$$\mathcal{L}(\boldsymbol{w}) = \alpha \mathcal{L}_{cce}(\boldsymbol{w}) + (1 - \alpha) \mathcal{L}_{dist}(\boldsymbol{w})$$

Distillation techniques

Quality: Neg Log Perplexity

Technique	Parameters	Quality (\uparrow)
T5-Base student	223M	-1.636
Switch-Base teacher	3,800M	-1.444
Distillation	223M	(3%) -1.631
+ Init. non-expert weights from teacher	223M	(20%) -1.598
+ 0.75 mix of hard and soft loss	223M	(29%) -1.580
Initialization Baseline (no distillation)		
Init. non-expert weights from teacher	223M	-1.639

29% quality gain with only 1/20th of the parameters.

Distillation compression rates

	Dense			Sparse		
Parameters	223M	1.1B	$2.0\mathrm{B}$	3.8B	7.4B	14.7B
Pre-trained Neg. Log Perp. (\uparrow)	-1.636	-1.505	-1.474	-1.444	-1.432	-1.427
Distilled Neg. Log Perp. (\uparrow)		-1.587	-1.585	-1.579	-1.582	-1.578
Percent of Teacher Performance		37%	32%	30~%	27~%	28~%
Compression Percent		82~%	90~%	95~%	97~%	99~%

compress the model by 99% and maintain 28% of the teacher quality improvements

Distilling fine-tuned SuperGLUE model

Model	Parameters	FLOPS	SuperGLUE (\uparrow)
T5-Base	223M	124B	74.6
Switch-Base	7410M	124B	81.3
Distilled T5-Base	223M	124B	(30%) 76.6

Sparse teacher can be an effective teacher on small dataset

Downstream Results

- Fine-tuning
- Distillation
- Multilingual Learning

Multilingual Learning

Pre-training on 101 languages

Comparison of FLOP-matched Switch model (mSwitch-Base) to T5 base (mT5-Base)

Histogram of speedup on 101 languages

- 5x avg. per step speedup over baseline
- > 4x speedup for 91% languages

Baseline: mT5-Base

Implementation Discussion

Data Parallelism, Model Parallelism and Expert Parallelism

How the data is split over cores

How the model weights are split over cores

51

Switch model design and pre-training performance

Model	Parameters	FLOPs/seq	d_{model}	FFN_{GEGLU}	d_{ff}	d_{kv}	Num. Heads
T5-Base	0.2B	124B	768	1	2048	64	12
T5-Large	0.7B	425B	1024	\checkmark	2816	64	16
T5-XXL	11B	6.3T	4096	\checkmark	10240	64	64
Switch-Base	7B	124B	768	1	2048	64	12
Switch-Large	26B	425B	1024	1	2816	64	16
Switch-XXL	395B	6.3T	4096	\checkmark	10240	64	64
Switch-C	1571B	890B	2080		6144	64	32
Model	Expert Freq.	Num. Experts	Num Layers	Neg. Log Perp. @250k	Neg. Log Perp. @ 500k		
T5-Base	-	12	_	-1.599	-1.556		
T5-Large	-	24	-	-1.402	-1.350		
T5-XXL	-	24	-	-1.147	-1.095		
Switch-Base	1/2	12	128	-1.370	-1.306		
Switch-Large	1/2	24	128	-1.248	-1.177		
Switch-XXL	1/2	24	64	-1.086	-1.008		
Switch-C	1	15	2048	-1.096	-1.043		

Pre-lecture Questions

Pre-Lecture Question 1

How are sparse models different from the dense models by design? What is the biggest insight of Switch Transformers compared to previous Mixture-of-Experts models (Shazeer et al 2017)?

Sparse models generally refer to those with only a subset of the parameters of dense model.

In the context of sparse expert model, a set of parameters are partitioned into "experts" with unique weights. Unlike dense model where the entire network is used for each input, in sparse expert models, only a fraction of the experts/parameters are used for each example.

Switch Transformer routes a token to only a single expert rather than multiple experts, which was proposed in Shazeer 2017.

Pre-Lecture Question 2

How to fine-tune sparse models for downstream tasks? What issue may arise in fine-tuning sparse models and what is the fix in Switch Transformers?

Switch Transformers have significantly more parameters than the FLOP-matched dense baseline, and therefore can be more prone to overfitting on downstream tasks with very few examples.

To fine-tune sparse models, the authors increase the dropout rate at the feedforward stage for each expert.

Follow up work

Follow Up Work - Domain Expert Mixture

Gururangan, Suchin, et al. "Disentangling domains for modular language modeling", 2021.

Follow Up Work - Parallel Training of Experts

Li, Margaret, et al. "Branch-train-merge: Embarrassingly parallel training of expert language models", 2022.

Pre-Lecture Question 3

If we continue scaling up LLMs, sparse vs dense models - which one do you think is more promising? Can you discuss their pros and cons (computation, storage and different use cases e.g., fine-tuning, prompting, in-context learning)?

Thank You!