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Language Models have been Getting Bigger...
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https://venturebeat.com/ai/microsoft-trains-worlds-largest-transformer-language-model/
https://huggingface.co/blog/large-language-models
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Q1: Why do we care about
studying scaling law of LLMs?



Common carbon footprint benchmarks
B Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1

1,984
passenger)

Human life (avg 1 year) I 11,023
American life (avg 1 year) I 36,156

US car including fuel (avg 1 lifetime) - 126,000

GPT-3 1,216,950
- 103,617

T5

Created with Datawrapper

[Data Source: (Strubell et al., 2019)] [Data Source: (Patterson et al. 2021)]



https://arxiv.org/abs/1906.02243
https://arxiv.org/pdf/2104.10350.pdf

Big Models Require Big Pockets, and not just at training

Sources estimate that training GPT-3 required at least $4,600,000

That’s a lot, but at least few-shot means the model only has to be trained once?


https://lambdalabs.com/blog/demystifying-gpt-3/

Big Models Require Big Pockets, and not just at training

Sources estimate that training GPT-3 required at least $4,600,000
That’s a lot, but at least few-shot means the model only has to be trained once?

Yes, but inference is still expensive

One recent estimate pegged the cost of running GPT-3 on a single AWS web
server to cost $87,000 a year at minimum

$ $
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https://lambdalabs.com/blog/demystifying-gpt-3/

Our assumption

bigger models — better performance

This may be true, but is increasing model size the
most efficient way of improving performance?
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Understanding FLOPs

(floating point operations)

C~6ND

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data
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Understanding FLOPs — Forward Pass

Matrix multiplication (e.g., attention QKV projection) requires

2 * size of matrix (1 for multiplication, 1 for addition)

—All A12
A21 A22

Aln ]
A2n

A1y + Araxo + -+
Aglxl + A22$2 + -

A1 + Aoz + -+

+ Alnxn
+ Aann

+ Amnxn_
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Understanding FLOPs — Forward Pass

N 1s roughly the sum of size of all matrices
FLOPs for forward pass on a single token 1s roughly 2N
FLOPs for forward pass for the entire dataset 1s roughly 2ND
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Understanding FLOPs — Backward Pass

Backward pass needs to calculate the derivative of loss with
respect to each hidden state and for each parameter

FLOPs for backward pass is roughly twice of forward pass

FLOPs for backward pass for the entire dataset is roughly 4ND
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Understanding FLOPs

C~6ND

If we had a computational budget on C,
Increasing model size N = Decreasing dataset size D

But we also expect more data — better performance
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Key Question

Increase N — better performance
Increase D — better performance

But we have a budget on C ~ 6ND
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Key Question

1o maximize model performance,

how should we allocate C to N and D?
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Key Question

1o maximize model performance,

how should we allocate C to N and D?

Nopt (C), Dopt (C) = argmin
N,D s.t. FLOPs(N,D)=C

[Equation Source: (Hoffman et al., 2022)]

L(N, D)

20


https://arxiv.org/pdf/2203.15556.pdf

Key Question (rephrased)

What is the relationship between loss and N, D?

L“(ND)AE+A+B
777 N« DB

[Equation Source: (Hoffman et al., 2022)]
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https://arxiv.org/pdf/2203.15556.pdf

Is Power-Law
the best fit?

Based on empirical observation
No theoretical background

(Hoffman et al.) also observe
concavity in their model at high
compute budgets, suggesting the
need for a more detailed model

[Figure Source: (Hoffman et al., 2022)]
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Kaplan et al., 2020

Scaling Laws for Neural Language Models

Jared Kaplan * Sam McCandlish*
Johns Hopkins University, OpenAl OpenAl
jaredk@jhu.edu sam@openai.com
Tom Henighan Tom B. Brown Benjamin Chess Rewon Child
OpenAl OpenAl OpenAl OpenAl
henighan@Qopenai.com tom@openai.com bchess@openai.com rewon@openai.com

Scott Gray Alec Radford Jeffrey Wu Dario Amodei
OpenAl OpenAl OpenAl OpenAl
scott@openai.com alec@openai.com jeffwuCopenai.com damodei@openai.com
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Training Details

Model: Decoder-only Transformer (N = 0.7K ~ 1.5B params)
Dataset: WebText2 (D = 22B tokens)

Batch Size (B): 0.5M

Step Size (S): 0.25M

Optimizer: Adam (+ Adafactor)

Learning rate: 3000 warmup steps, max LR = 2e-3, cosine decay to 0

Loss: autoregressive cross-entropy loss over 1024-token context
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Main Results

Performance scales with model size (N) and dataset size (D)
If assuming fixed batch size,

D should increase by 1.7x when N increases by 2x

If assuming optimal batch size,

D should increase by 1.3x when N increases by 2x

26



Main Results

Performance scales with model size (N) and dataset size (D)
If assuming fixed batch size,
D should increase by 1.7x when N increases by 2x

If assuming optimal batch size,

D should increase by 1.3x when N increases by 2x

Commonly Cited Result
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Outline

2. Initial Scaling Law (Kaplan et al.. 2020)
a. Fixed Batch Size Case

b. Optimal Batch Size Case

c. Limitations
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https://arxiv.org/pdf/2001.08361.pdf

Experiment 1 : Change D
Fix N=1.5B
Fix B=0.5M
Vary D = 21M ~ 22B (fixed subsets of WebText2)

Early stop whenever loss ceased to decrease
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Experiment 2 : Change N
Fix D = 22B
Fix B=0.5M
Fix S=0.25M
Vary N = 0.7K ~ 1.5B

Train until convergence
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Results of Experiment 1, 2
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[Figure Source: (Kaplan et al.. 2020)]
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Experiment 3 : Change both D and N
Fix B=0.5M
Vary N =0.4M ~ (0.7B
Vary D =21M ~ 22B

Early stop whenever loss ceased to decrease
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Result of Experiment 3

Data Size Bottleneck
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[Figure Source: (Kaplan et al.. 2020)]
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Conclusion

D should increase by 1.7x when N increases by 2x
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Conclusion

D should increase by 1.7x when N increases by 2x

But what 1f we have a compute budget?
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2. Initial Scaling Law (Kaplan et al.. 2020)
a. Fixed Batch Size Case

b. Optimal Batch Size Case

c. Limitations
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Compute-Optimal Batch Size

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al.. 2018)

37


https://arxiv.org/pdf/1812.06162.pdf

Compute-Optimal Batch Size

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al.. 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)
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Compute-Optimal Batch Size

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al.. 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)

B << Critical Batch Size: FLOP minimized

39
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Compute-Optimal Batch Size

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al.. 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)

B << Critical Batch Size: FLOP minimized

B >> Critical Batch Size: Training Time (i.e., step size) minimized
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Compute-Optimal Batch Size

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al.. 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)

B << Critical Batch Size: FLOP minimized
B >> Critical Batch Size: Training Time (i.e., step size) minimized

B == Critical Batch Size: Trade-off
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Compute-Optimal Batch Size

Critical Batch Size vs. Performance

106‘5

105

—e— Empirical B¢, N =3M
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‘.1. ;;M ~—-= Bgit=2.1x 108 tokens - L—48
‘ Noise Scale Measurement

Critical Batch Size (Tokens)

100 6x10°  4x10° 3x10°

_ WebText2 Train Loss
[Figure Source: (Kaplan et al.. 2020)]
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Revisiting Experiment 3

Assuming we ran Experiment 3 again with B << Critical Batch Size,

It 1s possible to estimate the minimum FLOP (C_min) to reach the same loss

B C
14+ B/Bgit(L)

Cmin (C)
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Revisiting Experiment 3

Assuming we ran Experiment 3 again with B << Critical Batch Size,
It 1s possible to estimate the minimum FLOP (C_min) to reach the same loss

And the optimal model size N for the target C_min
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Nx C

min

Conclusion

073 D Cm.

n

0.27
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Conclusion

Nx C .0.73 Dx C .0.27
m

min n

D should increase by 1.3x when N increases by 2x
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2. Initial Scaling Law (Kaplan et al.. 2020)
a. Fixed Batch Size Case

b. Optimal Batch Size Case

c¢. Limitations
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Limitations

1. Needs to adjust batch size during training

2. Results were based on early stop, while learning rate
schedule was calculated for the full 250K steps
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Learning Rate Schedule and Early Stop
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0 DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions
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Given a particular FLOPs (Floating Point Operation) budget,
how should one trade-off model size and training data?

Nopt(c): Dopt(C) = argmin L(N, D)
N,D s.t. FLOPs(N,D)=C

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data

54



N, D should scale at same rate

Approach Coeff. a where N, < C* Coeff. b where D, o C®
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

[Table Source: (Hoffman et al., 2022)] o


https://arxiv.org/pdf/2203.15556.pdf

Q2: How do the conclusions of
(Kaplan et al.) and (Hoffman et al.) differ?

What caused the differences?



Early Stopping leads to Underperformance
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(Kaplan et al.) vs (Hoffman et al.)

(Kaplan et al.)

Learning rate - based on 250K steps

Batch Size - based on B <= critical batch size
(Hoffman et al.)

Learning rate - based on actual step size

Batch Size - fixed
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3. Modified Scaling Law (Hoffman et al.. 2022)
a. Approach 1

b. Approach 2

c. Approach 3
d. Results


https://arxiv.org/pdf/2203.15556.pdf

Approach 1: Fix N and vary D
For each N, train 4 different models with different D
Interpolate these curves to get a continuous mapping

For each FLOPs, pick the model with the lowest training loss

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data

60
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Approach 1: Fix N and Vary D
For each N, train 4 different models with different D
Interpolate these curves to get a continuous mapping

For each FLOPs, pick the model with the lowest training loss

Fit a power law relationship between C and N, D

62
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Results of Approach 1

Approach Coeff. a where N, < C*  Coeff. b where D, o C?
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

[Table Source: (Hoffman et al., 2022)]
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Outline

3. Modified Scaling Law (Hoffman et al.. 2022)
a. Approach 1

b. Approach 2
c. Approach 3
d. Results
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Approach 2: IsoFLOP Profiles
For each FLOPs budget C, train models of different size N
For each model, choose the appropriate D such that C ~ 6ND

E.g., bigger models are trained on less data to meet FLOPs
constraint

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data

66
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Approach 2: IsoFLOP Profiles
For each FLOPs budget C, train models of different size N
For each model, choose the appropriate D such that C ~ 6ND

E.g., bigger models are trained on less data to meet FLOPs
constraint

Fit a power law relationship between C and N, D
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Results of Approach 2

Approach Coeff. a where N, < C*  Coeff. b where D, o C?
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

[Table Source: (Hoffman et al., 2022)]
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Outline

3. Modified Scaling Law (Hoffman et al.. 2022)
a. Approach 1

b. Approach 2

c. Approach3
d. Results
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Approach 3: Parametric Loss Function

\ ) A B
L(N,D) Z E+ — + —
N« = DA
1. E: loss of 1deal generative model (entropy of natural
language)
2. N: larger model — better performance
3. D: larger dataset — better performance

72



Determining Coefficients

. Choose initial values of E, A, B, a, B from a grid of values
. Find the Huber loss based on the predicted log loss of the
model on (N, D) and observed log loss (data from Approach
1,2)

. Iteratively, run the L-BFGS algorithm (some variant of
Gradient Descent)
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Results of Approach 3

Approach Coeff. a where N, < C*  Coeff. b where D, o C?
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

[Table Source: (Hoffman et al., 2022)]
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Outline

3. Modified Scaling Law (Hoffman et al.. 2022)
a. Approach 1

b. Approach 2

c. Approach 3
d. Results


https://arxiv.org/pdf/2203.15556.pdf

Results of Approach 1 ~ 3

Approach Coeff. a where N, < C*  Coeff. b where D, o C?
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

[Table Source: (Hoffman et al., 2022)]
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Today’s models are overparameterized and undertrained
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Given Gopher’s compute budget, can we train a
more computationally efficient model?

Chinchilla Gopher

VS

[Image Source] [Image Source]
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My, Chinchilla is small(er)

Model Size (# Parameters) Training Tokens
LaMDA (Thoppilan et al., 2022) 137 Billion 168 Billion
GPT-3 (Brown et al., 2020) 175 Billion 300 Billion
Jurassic (Lieber et al., 2021) 178 Billion 300 Billion
Gopher (Rae et al., 2021) 280 Billion 300 Billion
MT-NLG 530B (Smith et al., 2022) 530 Billion 270 Billion
Chinchilla 70 Billion 1.4 Trillion

[Image Source] [Table Source: (Hoffman et al., 2022)]
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Comparison with Gopher

N smaller by 4x, D larger by 4x

Less compute for inference and fine-tuning

But also stronger performance
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Performance of Chinchilla

[Image Source] [Image Source]
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Evaluations Tasks for Chinchilla

Language Modelling
MMLU

Reading Comprehension
BIG-bench

Common Sense

Closed Book QA
Gender Bias and Toxicity
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Evaluations Tasks for Chinchilla

Language Modelling
MMLU

Reading Comprehension
BIG-bench

Common Sense

Closed Book QA
Gender Bias and Toxicity

84



Language Modelling

Measure test perplexity (in bits-per-byte) of 20 datasets from
the Pile (Gao et al.. 2021)

Chinchilla outperforms Gopher on all 20 datasets

Note: because of large training data, there 1s an increased risk of
train/test leak
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Analysis Per Dataset

[Table Source: (Hoffman et al., 2022)]

Subset

Chinchilla (70B) Gopher (280B)

pile cc
pubmed_abstracts
stackexchange
github
openwebtext2
arxiv
uspto_backgrounds
freelaw
pubmed_central
dm_mathematics
hackernews
nih_exporter
opensubtitles
europarl

books3

philpapers
gutenberg pg 19
bookcorpus2
ubuntu_irc

0.667
0.559
0.614
0.337
0.647
0.627
0.526
0.476
0.504
1.111
0.859
0.572
0.871
0.833
0.675
0.656
0.548
0.714
1.026

0.691
0.578
0.641
0.377
0.677
0.662
0.546
0.513
0.525
1.142
0.890
0.590
0.900
0.938
0.712
0.695
0.656
0.741
1.090
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Evaluations Tasks for Chinchilla

Language Modelling
MMLU

Reading Comprehension
BIG-bench

Common Sense

Closed Book QA
Gender Bias and Toxicity

87



MMLU — Massive Multitask Language Understanding

Answer exam-like multiple choice questions on 57 subjects
(Hendrycks et al.. 2020)

E.g., college mathematics, high school physics, professional law
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Example Data from MMLU

An observational study in diabetics assesses the role of an increased plasma fibrinogen level on
the risk of cardiac events. 130 diabetic patients are followed for 5 years to assess the development
of acute coronary syndrome. In the group of 60 patients with a normal baseline plasma fibrinogen
level, 20 develop acute coronary syndrome and 40 do not. In the group of 70 patients with a high
baseline plasma fibrinogen level, 40 develop acute coronary syndrome and 30 do not. Which of
the following is the best estimate of relative risk in patients with a high baseline plasma fibrinogen
level compared to patients with a normal baseline plasma fibrinogen level?

(A) (40/30)/(20/40)

(B) (40*40)/(20*30)

(C) (40*70)/(20*60)

(D) (40/70)/(20/60)

Figure 69: A Virology example.

[Figure Source: (Hendrycks et al.. 2020)]
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Chinchilla Outperforms Gopher on Average

Random 25.0%
Average human rater 34.5%
175B GPT-3 5-shot 43.9%
280B Gopher 5-shot 60.0%
70B Chinchilla 5-shot 67.6%

Average human expert performance 89.8%

[Table Source: (Hoffman et al., 2022)]

90


https://arxiv.org/pdf/2203.15556.pdf

Analysis Per Task

Chinchilla outperforms Gopher on 51 tasks

Achieves a similar performance on 2 tasks

Underperforms Gopher on 4 tasks (college mathematics,
econometrics, moral scenarios, formal logic)
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Analysis Per Task
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Analysis Per Task

Chinchilla achieves > 90% accuracy on 4 tasks

High school government and politics, international law,
sociology, US foreign policy

First model to achieve 90% accuracy on a particular subject
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Evaluations Tasks for Chinchilla

Language Modelling
MMLU

Reading Comprehension
BIG-bench

Common Sense

Closed Book QA
Gender Bias and Toxicity
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Reading Comprehension

Answer a fill-in-the-blank question on a passage

LAMBADA (Paperno et al.. 2016): novel excerpt

RACE-M, RACE-H (Lai et al., 2017): middle-, high-school
exam questions
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Example Data from LAMBADA

Context: The battery on Logan’s radio must have been on the way out. So he told himself. There was no other
explanation beyond Cygan and the staff at the White House having been overrun. Lizzie opened her eyes with
a flutter. They had been on the icy road for an hour without incident.

Target sentence: Jack was happy to do all of the _____.

Target word: driving

[Figure Source: (Paperno et al., 2016)]
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Example Data from RACE-M, RACE-H

Evidence: “The park 1s open from 8 am to 5 pm.”
Question: The park is open for _ hours a day.

Options: A.eight B.nine C.ten D.eleven

[Figure Source: (Lai et al., 2017)] o7
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Chinchilla Outperforms Gopher

70B 280B 175B 530B

Chinchilla Gopher GPT-3 MT-NLG 530B

LAMBADA Zero-Shot 77.4 74.5 76.2 76.6
RACE-m Few-Shot 86.8 75.1 58.1 -
RACE-h Few-Shot 82.3 71.6 46.8 47.9

[Table Source: (Hoffman et al., 2022)]
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Evaluations Tasks for Chinchilla

Language Modelling
MMLU

Reading Comprehension
BIG-bench

Common Sense

Closed Book QA
Gender Bias and Toxicity
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BIG-bench

Collection of ‘difficult’ tasks for current models (Srivastava et
al., 2022)

Currently has 204 tasks and 1s growing with Github pull requests

(Hoffman et al., 2022) used 62 tasks
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Example Data from BIG-bench

Which of the following sentences makes more sense?

choice: It started raining because the driver turned the
wipers on.

choice: The driver turned the wipers on because it started
raining.

[Figure Source: (Srivastava et al., 2022)] 101
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Analysis Per Task

Chinchilla outperforms Gopher on 58 tasks

Underperforms Gopher on 4 tasks
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Analysis Per Task
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Evaluations Tasks for Chinchilla

Language Modelling
MMLU

Reading Comprehension
BIG-bench

Common Sense

Closed Book QA
Gender Bias and Toxicity
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Common Sense

Answer various common sense questions

E.g., reasoning about the physical world, pronoun resolution,
emotion inferrance
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Example Data from PIQA

,a To separate egg whites from the yolk
/8| using a water bottle, you should...

a. Squeeze the water b. Place the water bottle
bottle and press it and press it against the
against the yolk. yolk. Keep pushing,
Release, which creates which creates suction
suction and lifts the yolk. and lifts the yolk.

a——
o0 al D
w [N

[Figure Source: (Bisk et al., 2019)] 100



https://arxiv.org/pdf/1911.11641.pdf

Example Data from SIQA

REASONING ABOUT EMOTIONAL REACTIONS

[ In the school play, Robin played a hero in the ]

struggle to the death with the angry villain.

(a) sorry for the villain

(b) hopeful that Robin
will succeed v

(c) like Robin should lose

How would others
feel afterwards?

[Figure Source: (Sap et al., 2019)] 107
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Chinchilla Outperforms Gopher

70B 280B 175B 530B
Chinchilla Gopher GPT-3 MT-NLG 530B Supervised SOTA
HellaSWAG 80.8% 79.2% 78.9% 80.2% 93.9%
PIQA 81.8% 81.8% 81.0% 82.0% 90.1%
Winogrande 74.9% 70.1% 70.2% 73.0% 91.3%
SIQA 51.3% 50.6% - - 83.2%
BoolQ 83.7% 79.3% 60.5% 78.2% 91.4%

[Table Source: (Hoffman et al., 2022)]
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Evaluations Tasks for Chinchilla

Language Modelling
MMLU

Reading Comprehension
BIG-bench

Common Sense

Closed Book QA
Gender Bias and Toxicity
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Closed Book QA
Answer short-answer questions without external sources

Question: what color was john wilkes booth’s hair

Wikipedia Page: John_Wilkes_Booth

Long answer: Some critics called Booth “the handsomest man
in America” and a “natural genius”, and noted his having an “as-
tonishing memory”’; others were mixed in their estimation of his
acting. He stood 5 feet 8 inches (1.73 m) tall, had jet-black hair
, and was lean and athletic. Noted Civil War reporter George Al-
fred Townsend described him as a “muscular, perfect man” with
“curling hair, like a Corinthian capital”.

Short answer: jet-black

[Source: (Kwiatkowski et al., 2019)] 110
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Chinchilla Outperforms Gopher

70B 280B 175B
Method Chinchilla Gopher GPT-3 SOTA (open book)
0-shot 16.6% 10.1% 14.6%
Natural Questions (dev) 5-shot 31.5% 24.5% - 54.4%
64-shot 35.5% 28.2% 29.9%
0-shot 67.0% 52.8% 64.3%
TriviaQA (unfiltered, test)  5-shot 73.2% 63.6% - -
64-shot 72.3% 61.3% 71.2%
0-shot 55.4% 43.5% -
TriviaQA (filtered, dev) 5-shot 64.1% 57.0% - 72.5%
64-shot 64.6% 57.2% -

[Table Source: (Hoffman et al., 2022)]
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A

Outline

Introduction

Initial Scaling Law (Kaplan et al.. 2020)

Modified Scaling Law (Hoffman et al., 2022)
Chinchilla (Hoffman et al., 2022)

Beyond Scaling Law
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Generalization of the Scaling Law

Other architecture — (Kaplan et al., 2020) tests the scaling law on

LSTM and Universal Transformers (encoder-decoder model)

Other dataset — (Hoffman et al., 2022) tests the scaling law on
different datasets (e.g., C4, Github)

Other domain — (Henighan et al., 2020) test the scaling law on

different domains (e.g., image, video)
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Generalization to LSTM

Test Loss 5.4

4.8 1

4.2 ]

3.6 1

3.0 1

2.4 1

LSTMs

1 Layer

2 Layers

Transformers 4 | ayers

105

106 107 108 109
Parameters (non-embedding)
[Figure Source: (Kaplan et al.. 2020)]
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Generalization to Universal Transformers

W
o1

Test Loss

-
o

N
(@)

| —e— 2x Reuse

—e— 4x Reuse
8x Reuse
| ---- Non-recurrent Models N
105 108 107 108 109

Parameters, including reuse (non-embedding)

[Figure Source: (Kaplan et al.. 2020)]
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Generalization to C4 and Github code
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Generalization to C4 and Github code

Approach Coef. a where N,,; o« C* Coef. b where D, o C°
C4 0.50 0.50
GitHub 0.53 0.47
Kaplan et al. (2020) 0.73 0.27

[Figure Source: (Hoffman et al.. 2022)]
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Generalization to Image, Video, etc.

Optimal Model Size vs Compute
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[Figure Source: (Henighan et al., 2020)]

1076 1074 1072 100 102
Compute (PF-days)

118


https://arxiv.org/pdf/2010.14701.pdf

Is Power-Law
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Scaling Law For Fine-Tuning (Tay et al., 2021)

Downstream performance after fine-tuning does not scale with

model size

Downstream performance does scale with depth, but not

necessarily with dimension
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Downstream Performance Does Not Depend on N

[Figure Source:
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Train Large, Then Compress (L1 et al.. 2020)

Common
Practice

Optimal

Train Small Stop Training Lightly
Model When Converged Compress

Train Large Stop Training Heavily
Model Early Compress

[Figure Source: (Li et al., 2020)]
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Deeper and Wider Models Converge in Fewer Steps

| Effect of RoBERTa Depth ‘ | Effect of RoBERTa Hidden Size
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[Figure Source: Slides by (Li et al.. 2020)] 12
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Data Pruning (Sorcher et al.. 2022)

Develop a metric to measure the quality of data

Prune the data to include only high quality data

Importance of dataset size decreases significantly
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The More Data We Prune, The Less Data Matters

A Perceptron in teacher-student setting B
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[Figure Source: (Sorcher et al., 2022)] 129



https://arxiv.org/pdf/2206.14486.pdf

Q3: (a) Do you think we can extend this study of
LLMs to other types such as encoder-decoder models?
Can you make your guess of the scaling law?

(b) These studies stmply consider # of tokens as a
proxy for training corpus. Do you think it 1s possible to
take the quality/redundancy of the training data into
account?
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