Training Compute-Optimal Large Language Models

By Anika Maskara and Simon Park 10/24/2022

Outline

1. Introduction

- 2. Initial Scaling Law (Kaplan et al., 2020)
- 3. Modified Scaling Law (<u>Hoffman et al., 2022</u>)
- 4. Chinchilla (<u>Hoffman et al., 2022</u>)
- 5. Beyond Scaling Law

Language Models have been Getting Bigger...

....a lot bigger

....a lot bigger

....a lot bigger

Q1: Why do we care about studying scaling law of LLMs?

Common carbon footprint benchmarks

lbs of CO2 equivalent

Created with Datawrapper

Big Models Require Big Pockets, and not just at training

Sources estimate that training GPT-3 required at least \$4,600,000

That's a lot, but at least few-shot means the model only has to be trained once?

Big Models Require Big Pockets, and not just at training

Sources estimate that training GPT-3 required at least \$4,600,000

That's a lot, but at least few-shot means the model only has to be trained once? Yes, but **inference is still expensive**

One recent estimate pegged the cost of **running GPT-3** on a single AWS web server to cost **\$87,000 a year** at minimum

Our assumption

bigger models \rightarrow better performance

This may be true, but is increasing model size the most *efficient* way of improving performance?

Understanding FLOPs (floating point operations)

C ~ 6ND

- C = number of FLOPs (computations)
- N = number of model parameters
- D = amount of training data

Understanding FLOPs — Forward Pass

Matrix multiplication (e.g., attention QKV projection) requires2 * size of matrix (1 for multiplication, 1 for addition)

$$\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \cdots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \cdots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \cdots + A_{mn}x_n \end{bmatrix}$$

Understanding FLOPs — Forward Pass

N is roughly the sum of size of all matrices

FLOPs for **forward** pass on a **single token** is roughly **2N**

FLOPs for forward pass for the entire dataset is roughly 2ND

Understanding FLOPs — Backward Pass

Backward pass needs to calculate the derivative of loss with respect to **each hidden state** and for **each parameter**

FLOPs for **backward** pass is roughly **twice** of **forward** pass

FLOPs for **backward** pass for the **entire dataset** is roughly **4ND**

Understanding FLOPs

C ~ 6ND

If we had a **computational budget** on C, **Increasing** model size N = **Decreasing** dataset size D

But we also expect **more data** → **better performance**

Key Question

Increase $N \rightarrow$ better performance

Increase $D \rightarrow$ better performance

But we have a **budget** on **C** ~ **6ND**

Key Question

To maximize model performance,

how should we allocate C to N and D?

Key Question

To maximize model performance,

how should we allocate C to N and D?

$$N_{opt}(C), D_{opt}(C) = \operatorname*{argmin}_{N,D \text{ s.t. FLOPs}(N,D)=C} L(N,D)$$

Key Question (rephrased)

What is the *relationship* between *loss* and *N*, *D*?

$\hat{L}(N,D) \triangleq E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}$

Is Power-Law the best fit?

Based on empirical observation

No theoretical background

(Hoffman et al.) also observe concavity in their model at high compute budgets, suggesting the **need for a more detailed model**

Outline

- 1. Introduction
- 2. Initial Scaling Law (Kaplan et al., 2020)
- 3. Modified Scaling Law (Hoffman et al., 2022)
- 4. Chinchilla (<u>Hoffman et al., 2022</u>)
- 5. Beyond Scaling Law

Kaplan et al., 2020

Scaling Laws for Neural Language Models

Jared Kaplan * Johns Hopkins University, OpenAI jaredk@jhu.edu Sam McCandlish*

OpenAI

sam@openai.com

~---

Tom Henighan	Tom B. Brown	Benjamin Chess	Rewon Child
OpenAI	OpenAI	OpenAI	OpenAI
henighan@openai.com	tom@openai.com	bchess@openai.com	rewon@openai.com
Scott Gray	Alec Radford	Jeffrey Wu	Dario Amodei
OpenAI	OpenAI	OpenAI	OpenAI
scott@openai.com	alec@openai.com	jeffwu@openai.com	damodei@openai.com

Training Details

Model: Decoder-only Transformer (N = 0.7K ~ 1.5B params)

```
Dataset: WebText2 (D = 22B tokens)
```

```
Batch Size (B): 0.5M
```

```
Step Size (S): 0.25M
```

```
Optimizer: Adam (+ Adafactor)
```

Learning rate: 3000 warmup steps, max LR = 2e-3, cosine decay to 0

Loss: autoregressive cross-entropy loss over 1024-token context

Main Results

- Performance scales with model size (N) and dataset size (D)
- If assuming fixed batch size,
 D should increase by 1.7x when N increases by 2x
- If assuming optimal batch size,
 D should increase by 1.3x when N increases by 2x

Main Results

- Performance scales with model size (N) and dataset size (D)
- If assuming **fixed batch size**,

D should increase by 1.7x when N increases by 2x

If assuming **optimal batch size**, **D** should increase by **1.3x** when **N** increases by **2x**

Commonly Cited Result

Outline

- 2. Initial Scaling Law (Kaplan et al., 2020)
 - a. Fixed Batch Size Case
 - b. Optimal Batch Size Case
 - c. Limitations

Experiment 1 : Change D

Fix N = 1.5B

Fix B = 0.5M

Vary D = 21M ~ 22B (fixed subsets of WebText2)

Early stop whenever loss ceased to decrease

Experiment 2 : Change N

Fix D = 22B

- Fix B = 0.5M
- Fix S = 0.25M
- Vary N = $0.7K \sim 1.5B$

Train until convergence

Results of Experiment 1, 2

Experiment 3 : Change both D and N

Fix B = 0.5M

Vary $N = 0.4M \sim 0.7B$

Vary $D = 21M \sim 22B$

Early stop whenever loss ceased to decrease

Result of Experiment 3

Data Size Bottleneck

Conclusion

D should increase by 1.7x when N increases by 2x

Conclusion

D should increase by 1.7x when N increases by 2x

But what if we have a compute budget?

Outline

- 2. Initial Scaling Law (Kaplan et al., 2020)
 - a. Fixed Batch Size Case
 - b. Optimal Batch Size Case
 - c. Limitations
Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., \sim 1M at the end of training for the best models in Experiments 1 \sim 3)

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., \sim 1M at the end of training for the best models in Experiments 1 \sim 3)

B << Critical Batch Size: FLOP minimized

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., \sim 1M at the end of training for the best models in Experiments 1 \sim 3)

B << Critical Batch Size: FLOP minimized

B >> Critical Batch Size: Training Time (i.e., step size) minimized

Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., \sim 1M at the end of training for the best models in Experiments 1 \sim 3)

B << Critical Batch Size: FLOP minimized

B >> Critical Batch Size: Training Time (i.e., step size) minimized

B == Critical Batch Size: **Trade-off**

Critical Batch Size vs. Performance

Revisiting Experiment 3

Assuming we ran Experiment 3 again with **B** << Critical Batch Size,

It is possible to estimate the **minimum FLOP (C_min) to reach the same loss**

$$C_{\min}(C) \equiv \frac{C}{1 + B/B_{\rm crit}(L)}$$

Revisiting Experiment 3

Assuming we ran Experiment 3 again with **B** << Critical Batch Size,

It is possible to estimate the **minimum FLOP (C_min) to reach the same loss**

And the **optimal** model size **N** for the **target C_min**

Conclusion

$N \propto C_{min}^{0.73}$ $D \propto C_{min}^{0.27}$

Conclusion

$N \propto C_{min}^{0.73} \quad D \propto C_{min}^{0.27}$

D should increase by 1.3x when N increases by 2x

Outline

- 2. Initial Scaling Law (<u>Kaplan et al., 2020</u>)
 - a. Fixed Batch Size Case
 - b. Optimal Batch Size Case
 - c. Limitations

Limitations

1. Needs to adjust batch size during training

2. Results were based on **early stop**, while **learning rate schedule** was calculated for the full 250K steps

Learning Rate Schedule and Early Stop

Learning Rate Schedule and Early Stop

Learning Rate Schedule and Early Stop

51

Outline

- 1. Introduction
- 2. Initial Scaling Law (Kaplan et al., 2020)
- 3. Modified Scaling Law (Hoffman et al., 2022)
- 4. Chinchilla (<u>Hoffman et al., 2022</u>)
- 5. Beyond Scaling Law

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre* *Equal contributions *Given a particular FLOPs (Floating Point Operation) budget, how should one trade-off model size and training data?*

$$N_{opt}(C), D_{opt}(C) = \operatorname*{argmin}_{N,D \text{ s.t. FLOPs}(N,D)=C} L(N,D)$$

- C = number of FLOPs (computations)
- N = number of model parameters
- D = amount of training data

N, D should scale at same rate

Approach	Coeff. <i>a</i> where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
 Minimum over training curves IsoFLOP profiles Parametric modelling of the loss 	0.50 (0.488, 0.502) 0.49 (0.462, 0.534) 0.46 (0.454, 0.455)	0.50 (0.501, 0.512) 0.51 (0.483, 0.529) 0.54 (0.542, 0.543)
Kaplan et al. (2020)	0.73	0.27

Q2: How do the conclusions of (Kaplan et al.) and (Hoffman et al.) differ? What caused the differences?

Early Stopping leads to Underperformance

(Kaplan et al.) vs (Hoffman et al.)

```
(Kaplan et al.)
```

```
Learning rate - based on 250K steps
```

```
Batch Size - based on B <= critical batch size
```

(Hoffman et al.)

Learning rate - based on actual step size

Batch Size - fixed

Outline

- 3. Modified Scaling Law (<u>Hoffman et al., 2022</u>)
 - a. Approach 1
 - b. Approach 2
 - c. Approach 3
 - d. Results

Approach 1: Fix N and vary D

For each N, train 4 different models with different D

Interpolate these curves to get a continuous mapping

For each FLOPs, pick the model with the lowest training loss

- C = number of FLOPs (computations)
- N = number of model parameters
- D = amount of training data

Approach 1: Fix N and Vary D

For each N, train 4 different models with different D

Interpolate these curves to get a continuous mapping

For each FLOPs, pick the model with the lowest training loss

Fit a power law relationship between C and N, D

[Figure Source: (Hoffman et al., 2022)]

Results of Approach 1

Approach	Coeff. <i>a</i> where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
1. Minimum over training curves	0.50 (0.488, 0.502)	0.50 (0.501, 0.512)
2. IsoFLOP profiles	0.49 (0.462, 0.534)	0.51 (0.483, 0.529)
3. Parametric modelling of the loss	0.46 (0.454, 0.455)	0.54 (0.542, 0.543)
Kaplan et al. (2020)	0.73	0.27

Outline

- 3. Modified Scaling Law (<u>Hoffman et al., 2022</u>)
 - a. Approach 1
 - b. Approach 2
 - c. Approach 3
 - d. Results

Approach 2: IsoFLOP Profiles

For each FLOPs budget C, train models of different size N

For each model, **choose the appropriate D** such that C ~ 6ND

E.g., bigger models are trained on less data to meet FLOPs constraint

- C = number of FLOPs (computations)
- N = number of model parameters
- D = amount of training data

[Figure Source: (Hoffman et al., 2022)]

Approach 2: IsoFLOP Profiles

For each FLOPs budget C, train models of different size N

For each model, **choose the appropriate D** such that C ~ 6ND

E.g., bigger models are trained on less data to meet FLOPs constraint

Fit a power law relationship between C and N, D

[Figure Source: (Hoffman et al., 2022)]

Results of Approach 2

Approach	Coeff. <i>a</i> where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
1. Minimum over training curves	0.50 (0.488, 0.502)	0.50 (0.501, 0.512)
2. IsoFLOP profiles	0.49 (0.462, 0.534)	0.51 (0.483, 0.529)
3. Parametric modelling of the loss	0.46 (0.454, 0.455)	0.54 (0.542, 0.543)
Kaplan et al. (2020)	0.73	0.27

Outline

- 3. Modified Scaling Law (<u>Hoffman et al., 2022</u>)
 - a. Approach 1
 - b. Approach 2
 - c. Approach 3
 - d. Results

Approach 3: Parametric Loss Function

$$\hat{L}(N,D) \triangleq E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}$$

- 1. E: loss of ideal generative model (entropy of natural language)
- 2. N: larger model \rightarrow better performance
- 3. **D**: larger dataset \rightarrow better performance
Determining Coefficients

- 1. Choose initial values of E, A, B, α , β from a grid of values
- 2. Find the Huber loss based on the predicted log loss of the model on (N, D) and observed log loss (data from Approach 1, 2)
- Iteratively, run the L-BFGS algorithm (some variant of Gradient Descent)

Results of Approach 3

Approach	Coeff. <i>a</i> where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
1. Minimum over training curves	0.50 (0.488, 0.502)	0.50 (0.501, 0.512)
2. IsoFLOP profiles	0.49 (0.462, 0.534)	0.51 (0.483, 0.529)
3. Parametric modelling of the loss	0.46 (0.454, 0.455)	0.54 (0.542, 0.543)
Kaplan et al. (2020)	0.73	0.27

Outline

- 3. Modified Scaling Law (<u>Hoffman et al., 2022</u>)
 - a. Approach 1
 - b. Approach 2
 - c. Approach 3
 - d. Results

Results of Approach $1 \sim 3$

Approach	Coeff. <i>a</i> where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
1. Minimum over training curves	0.50 (0.488, 0.502)	0.50 (0.501, 0.512)
2. IsoFLOP profiles	0.49 (0.462, 0.534)	0.51 (0.483, 0.529)
3. Parametric modelling of the loss	0.46 (0.454, 0.455)	0.54 (0.542, 0.543)
Kaplan et al. (2020)	0.73	0.27

Today's models are overparameterized and undertrained

Outline

- 1. Introduction
- 2. Initial Scaling Law (Kaplan et al., 2020)
- 3. Modified Scaling Law (<u>Hoffman et al., 2022</u>)
- 4. Chinchilla (<u>Hoffman et al., 2022</u>)
- 5. Beyond Scaling Law

Given Gopher's compute budget, can we train a more **computationally efficient** model?

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

[Image Source] [Table Source: (Hoffman et al., 2022)]

Comparison with Gopher

N smaller by 4x, **D larger** by 4x

Less compute for inference and fine-tuning

But also **stronger performance**

Performance of Chinchilla

Evaluations Tasks for Chinchilla

- Language Modelling
- MMLU
- Reading Comprehension
- BIG-bench
- Common Sense
- Closed Book QA
- Gender Bias and Toxicity

Evaluations Tasks for Chinchilla

- Language Modelling
- MMLU
- Reading Comprehension
- BIG-bench
- Common Sense
- Closed Book QA
- Gender Bias and Toxicity

Language Modelling

Measure test perplexity (in bits-per-byte) of 20 datasets from the Pile (<u>Gao et al., 2021</u>)

Chinchilla outperforms Gopher on all 20 datasets

Note: because of large training data, there is an **increased risk of train/test leak**

Analysis Per Dataset

Subset	Chinchilla (70B)	Gopher (280B)
pile_cc	0.667	0.691
pubmed_abstracts	0.559	0.578
stackexchange	0.614	0.641
github	0.337	0.377
openwebtext2	0.647	0.677
arxiv	0.627	0.662
uspto_backgrounds	0.526	0.546
freelaw	0.476	0.513
pubmed_central	0.504	0.525
dm_mathematics	1.111	1.142
hackernews	0.859	0.890
nih_exporter	0.572	0.590
opensubtitles	0.871	0.900
europarl	0.833	0.938
books3	0.675	0.712
philpapers	0.656	0.695
gutenberg_pg_19	0.548	0.656
bookcorpus2	0.714	0.741
ubuntu_irc	1.026	1.090

Evaluations Tasks for Chinchilla

- Language Modelling
- MMLU
- Reading Comprehension
- BIG-bench
- Common Sense
- Closed Book QA
- Gender Bias and Toxicity

MMLU — Massive Multitask Language Understanding

Answer exam-like multiple choice questions on 57 subjects (<u>Hendrycks et al., 2020</u>)

E.g., college mathematics, high school physics, professional law

Example Data from MMLU

An observational study in diabetics assesses the role of an increased plasma fibring en level on the risk of cardiac events. 130 diabetic patients are followed for 5 years to assess the development of acute coronary syndrome. In the group of 60 patients with a normal baseline plasma fibrinogen level, 20 develop acute coronary syndrome and 40 do not. In the group of 70 patients with a high baseline plasma fibrinogen level, 40 develop acute coronary syndrome and 30 do not. Which of the following is the best estimate of relative risk in patients with a high baseline plasma fibrinogen level compared to patients with a normal baseline plasma fibrinogen level? (A) (40/30)/(20/40) (B) (40*40)/(20*30)(C) (40*70)/(20*60) (D) (40/70)/(20/60)

Figure 69: A Virology example.

Chinchilla Outperforms Gopher on Average

	Random	25.0%
	Average human rater	34.5%
175B	GPT-3 5-shot	43.9%
280B	Gopher 5-shot	60.0%
70B	Chinchilla 5-shot	67.6%
	Average human expert performance	89.8%

Chinchilla outperforms Gopher on 51 tasks

Achieves a similar performance on 2 tasks

Underperforms Gopher on **4 tasks** (college mathematics, econometrics, moral scenarios, formal logic)

Chinchilla achieves > 90% accuracy on 4 tasks

High school government and politics, international law, sociology, US foreign policy

First model to achieve 90% accuracy on a particular subject

Evaluations Tasks for Chinchilla

- Language Modelling
- MMLU
- Reading Comprehension
- BIG-bench
- Common Sense
- Closed Book QA
- Gender Bias and Toxicity

Reading Comprehension

Answer a fill-in-the-blank question on a passage

LAMBADA (Paperno et al., 2016): novel excerpt

RACE-M, RACE-H (<u>Lai et al., 2017</u>): middle-, high-school exam questions

Example Data from LAMBADA

Context: The battery on Logan's radio must have been on the way out. So he told himself. There was no other explanation beyond Cygan and the staff at the White House having been overrun. Lizzie opened her eyes with a flutter. They had been on the icy road for an hour without incident.
 Target sentence: Jack was happy to do all of the _____.
 Target word: driving

Example Data from RACE-M, RACE-H

Evidence: "The park is open from 8 am to 5 pm."*Question*: The park is open for ____ hours a day.*Options*: A.eight B.nine C.ten D.eleven

Chinchilla Outperforms Gopher

	70B	280B	175B	530B
	Chinchilla	Gopher	GPT-3	MT-NLG 530B
LAMBADA Zero-Shot	77.4	74.5	76.2	76.6
RACE-m Few-Shot	86.8	75.1	58.1	-
RACE-h Few-Shot	82.3	71.6	46.8	47.9

Evaluations Tasks for Chinchilla

- Language Modelling
- MMLU
- Reading Comprehension
- BIG-bench
- Common Sense
- Closed Book QA
- Gender Bias and Toxicity

BIG-bench

Collection of **'difficult' tasks** for current models (<u>Srivastava et</u> <u>al., 2022</u>)

Currently has 204 tasks and is growing with Github pull requests

(Hoffman et al., 2022) used 62 tasks

Example Data from BIG-bench

Which of the following sentences makes more sense? choice: It started raining because the driver turned the wipers on. choice: The driver turned the wipers on because it started raining.

Chinchilla outperforms Gopher on 58 tasks

Underperforms Gopher on 4 tasks

Evaluations Tasks for Chinchilla

- Language Modelling
- MMLU
- Reading Comprehension
- BIG-bench
- Common Sense
- Closed Book QA
- Gender Bias and Toxicity

Common Sense

Answer various common sense questions

E.g., reasoning about the physical world, pronoun resolution, emotion inferrance

Example Data from PIQA

To separate egg whites from the yolk using a water bottle, you should...

- a. *Squeeze* the water b. bottle and press it against the yolk. *Release,* which creates suction and lifts the yolk.
 - b. *Place* the water bottle and press it against the yolk. *Keep pushing,* which creates suction and lifts the yolk.

Example Data from SIQA

REASONING ABOUT EMOTIONAL REACTIONS

In the school play, Robin played a hero in the struggle to the death with the angry villain.

(a) sorry for the villain
(b) hopeful that Robin will succeed ✓
(c) like Robin should lose

Chinchilla Outperforms Gopher

	70B	280B	175B	530B	
	Chinchilla	Gopher	GPT-3	MT-NLG 530B	Supervised SOTA
HellaSWAG	80.8%	79.2%	78.9%	80.2%	93.9%
PIQA	81.8%	81.8%	81.0%	82.0%	90.1%
Winogrande	74.9%	70.1%	70.2%	73.0%	91.3%
SIQA	51.3%	50.6%	-	-	83.2%
BoolQ	83.7 %	79.3%	60.5%	78.2%	91.4%
Evaluations Tasks for Chinchilla

- Language Modelling
- MMLU
- Reading Comprehension
- BIG-bench
- Common Sense
- Closed Book QA
- Gender Bias and Toxicity

Closed Book QA

Answer short-answer questions without external sources

Question: what color was john wilkes booth's hair **Wikipedia Page:** John_Wilkes_Booth

Long answer: Some critics called Booth "the handsomest man in America" and a "natural genius", and noted his having an "astonishing memory"; others were mixed in their estimation of his acting. He stood 5 feet 8 inches (1.73 m) tall, had jet-black hair , and was lean and athletic. Noted Civil War reporter George Alfred Townsend described him as a "muscular, perfect man" with "curling hair, like a Corinthian capital".

Short answer: jet-black

Chinchilla Outperforms Gopher 70B 280B 175B

	Method	Chinchilla	Gopher	GPT-3	SOTA (open book)
Natural Questions (dev)	0-shot	16.6%	10.1%	14.6%	
	5-shot	31.5%	24.5%		54.4%
	64-shot	35.5%	28.2%	29.9%	
TriviaQA (unfiltered, test)	0-shot	67.0%	52.8%	64.3 %	
	5-shot	73.2%	63.6%	-	-
	64-shot	72.3%	61.3%	71.2%	
TriviaQA (filtered, dev)	0-shot	55.4%	43.5%	-	
	5-shot	64.1%	57.0%	-	72.5%
	64-shot	64.6%	57.2%	-	

Outline

- 1. Introduction
- 2. Initial Scaling Law (Kaplan et al., 2020)
- 3. Modified Scaling Law (<u>Hoffman et al., 2022</u>)
- 4. Chinchilla (<u>Hoffman et al., 2022</u>)
- 5. Beyond Scaling Law

Generalization of the Scaling Law

Other **architecture** — (Kaplan et al., 2020) tests the scaling law on LSTM and <u>Universal Transformers</u> (encoder-decoder model)

Other **dataset** — (Hoffman et al., 2022) tests the scaling law on different datasets (e.g., C4, Github)

Other **domain** — (<u>Henighan et al., 2020</u>) test the scaling law on different domains (e.g., image, video)

Generalization to LSTM

114

Generalization to Universal Transformers

Generalization to C4 and Github code

Generalization to C4 and Github code

Approach	Coef. <i>a</i> where $N_{opt} \propto C^a$	Coef. <i>b</i> where $D_{opt} \propto C^b$
C4	0.50	0.50
GitHub	0.53	0.47
Kaplan et al. (2020)	0.73	0.27

Generalization to Image, Video, etc.

Is Power-Law the best fit?

(Hoffman et al.) observe concavity in their model at high compute budgets

The importance of **dataset** might **increase** for **high compute budgets**.

Scaling Law For Fine-Tuning (<u>Tay et al., 2021</u>)

Downstream performance **after fine-tuning** does not scale with model size

Downstream performance does **scale with depth**, but not necessarily with dimension

Downstream Performance Does Not Depend on N

[Figure Source: (Tay et al., 2021)]

Train Large, Then Compress (Li et al., 2020)

Deeper and Wider Models Converge in Fewer Steps

Data Pruning (Sorcher et al., 2022)

Develop a metric to measure the **quality of data**

Prune the data to include only high quality data

Importance of dataset size decreases significantly

The More Data We Prune, The Less Data Matters

Q3: (a) Do you think we can extend this study of LLMs to other types such as encoder-decoder models? Can you make your guess of the scaling law?

(b) These studies simply consider # of tokens as a proxy for training corpus. Do you think it is possible to take the quality/redundancy of the training data into account?