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Language Models have been Getting Bigger…
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[Image Source] [Image Source]

https://venturebeat.com/ai/microsoft-trains-worlds-largest-transformer-language-model/
https://huggingface.co/blog/large-language-models


…..a lot bigger
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…..a lot bigger

5GPT-2 (2019)



…..a lot bigger
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BERT large (2018)



…..a lot bigger

7ELMo (2018)



Q1: Why do we care about 
studying scaling law of LLMs? 

8



9[Data Source: (Strubell et al., 2019)] [Data Source: (Patterson et al. 2021)] 

https://arxiv.org/abs/1906.02243
https://arxiv.org/pdf/2104.10350.pdf


Big Models Require Big Pockets, and not just at training

10

Sources estimate that training GPT-3 required at least $4,600,000

That’s a lot, but at least few-shot means the model only has to be trained once?

https://lambdalabs.com/blog/demystifying-gpt-3/


Big Models Require Big Pockets, and not just at training

11

Sources estimate that training GPT-3 required at least $4,600,000

That’s a lot, but at least few-shot means the model only has to be trained once?

Yes, but inference is still expensive

One recent estimate pegged the cost of running GPT-3 on a single AWS web 
server to cost $87,000 a year at minimum

https://lambdalabs.com/blog/demystifying-gpt-3/


 Our assumption

bigger models → better performance 

12

This may be true, but is increasing model size the 
most efficient way of improving performance?



Understanding FLOPs 
(floating point operations)

13

C ~ 6ND

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data



Understanding FLOPs — Forward Pass

14

Matrix multiplication (e.g., attention QKV projection) requires 
2 * size of matrix (1 for multiplication, 1 for addition)



Understanding FLOPs — Forward Pass
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N is roughly the sum of size of all matrices

FLOPs for forward pass on a single token is roughly 2N

FLOPs for forward pass for the entire dataset is roughly 2ND



Understanding FLOPs — Backward Pass

16

Backward pass needs to calculate the derivative of loss with 
respect to each hidden state and for each parameter

FLOPs for backward pass is roughly twice of forward pass

FLOPs for backward pass for the entire dataset is roughly 4ND



Understanding FLOPs

17

C ~ 6ND
If we had a computational budget on C, 
Increasing model size N = Decreasing dataset size D

But we also expect more data → better performance



 Key Question
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Increase N → better performance

Increase D → better performance

But we have a budget on C ~ 6ND



 Key Question

19

To maximize model performance,

how should we allocate C to N and D?



 Key Question
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To maximize model performance,

how should we allocate C to N and D?

[Equation Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


 Key Question (rephrased)

21

What is the relationship between loss and N, D?

[Equation Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Is Power-Law 
the best fit?
Based on empirical observation

No theoretical background

(Hoffman et al.) also observe 
concavity in their model at high 
compute budgets, suggesting the 
need for a more detailed model

22[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf
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Kaplan et al., 2020

24



Training Details

Model: Decoder-only Transformer (N = 0.7K ~ 1.5B params)

Dataset: WebText2 (D = 22B tokens)

Batch Size (B): 0.5M

Step Size (S): 0.25M

Optimizer: Adam (+ Adafactor)

Learning rate: 3000 warmup steps, max LR = 2e-3, cosine decay to 0

Loss: autoregressive cross-entropy loss over 1024-token context
25



Main Results
● Performance scales with model size (N) and dataset size (D)
● If assuming fixed batch size, 

D should increase by 1.7x when N increases by 2x
● If assuming optimal batch size, 

D should increase by 1.3x when N increases by 2x
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Main Results
● Performance scales with model size (N) and dataset size (D)
● If assuming fixed batch size, 

D should increase by 1.7x when N increases by 2x
● If assuming optimal batch size, 

D should increase by 1.3x when N increases by 2x

Commonly Cited Result

27



Outline
2. Initial Scaling Law (Kaplan et al., 2020)

a. Fixed Batch Size Case

b. Optimal Batch Size Case

c. Limitations
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https://arxiv.org/pdf/2001.08361.pdf


Experiment 1 : Change D
Fix N = 1.5B

Fix B = 0.5M

Vary D = 21M ~ 22B (fixed subsets of WebText2)

Early stop whenever loss ceased to decrease

29



Experiment 2 : Change N
Fix D = 22B

Fix B = 0.5M

Fix S = 0.25M

Vary N = 0.7K ~ 1.5B

Train until convergence

30



Results of Experiment 1, 2

31[Figure Source: (Kaplan et al., 2020)]

https://arxiv.org/pdf/2001.08361.pdf


Experiment 3 : Change both D and N
Fix B = 0.5M

Vary N = 0.4M ~ 0.7B

Vary D = 21M ~ 22B

Early stop whenever loss ceased to decrease

32



Result of Experiment 3

33[Figure Source: (Kaplan et al., 2020)]

https://arxiv.org/pdf/2001.08361.pdf


Conclusion

D should increase by 1.7x when N increases by 2x

34



Conclusion

D should increase by 1.7x when N increases by 2x
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But what if we have a compute budget?
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https://arxiv.org/pdf/2001.08361.pdf


Compute-Optimal Batch Size
Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

37

https://arxiv.org/pdf/1812.06162.pdf


Compute-Optimal Batch Size
Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)
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https://arxiv.org/pdf/1812.06162.pdf


Compute-Optimal Batch Size
Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)

B << Critical Batch Size: FLOP minimized
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Compute-Optimal Batch Size
Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)

B << Critical Batch Size: FLOP minimized

B >> Critical Batch Size: Training Time (i.e., step size) minimized
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Compute-Optimal Batch Size
Critical Batch Size dependent on the loss (not N, D) (McCandlish et al., 2018)

(e.g., ~1M at the end of training for the best models in Experiments 1~3)

B << Critical Batch Size: FLOP minimized

B >> Critical Batch Size: Training Time (i.e., step size) minimized

B == Critical Batch Size: Trade-off

41

https://arxiv.org/pdf/1812.06162.pdf


Compute-Optimal Batch Size

42[Figure Source: (Kaplan et al., 2020)]

https://arxiv.org/pdf/2001.08361.pdf


Revisiting Experiment 3
Assuming we ran Experiment 3 again with B << Critical Batch Size,

It is possible to estimate the minimum FLOP (C_min) to reach the same loss

43



Revisiting Experiment 3
Assuming we ran Experiment 3 again with B << Critical Batch Size,

It is possible to estimate the minimum FLOP (C_min) to reach the same loss

And the optimal model size N for the target C_min

44



Conclusion
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Conclusion

D should increase by 1.3x when N increases by 2x
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https://arxiv.org/pdf/2001.08361.pdf


Limitations
1. Needs to adjust batch size during training

2. Results were based on early stop, while learning rate 
schedule was calculated for the full 250K steps

48



Learning Rate Schedule and Early Stop
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Learning Rate Schedule and Early Stop
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Learning Rate Schedule and Early Stop
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Given a particular FLOPs (Floating Point Operation) budget, 
how should one trade-off model size and training data?

54

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data



N, D should scale at same rate

55[Table Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Q2: How do the conclusions of 
(Kaplan et al.) and (Hoffman et al.) differ? 

What caused the differences?

56



Early Stopping leads to Underperformance 

57[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


(Kaplan et al.) vs (Hoffman et al.)

58

(Kaplan et al.)

Learning rate - based on 250K steps

Batch Size - based on B <= critical batch size

(Hoffman et al.)

Learning rate - based on actual step size

Batch Size - fixed 



Outline
3. Modified Scaling Law (Hoffman et al., 2022)

a. Approach 1

b. Approach 2

c. Approach 3

d. Results

59

https://arxiv.org/pdf/2203.15556.pdf


Approach 1: Fix N and vary D

60

For each N, train 4 different models with different D

Interpolate these curves to get a continuous mapping

For each FLOPs, pick the model with the lowest training loss

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data



61[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Approach 1: Fix N and Vary D

62

For each N, train 4 different models with different D

Interpolate these curves to get a continuous mapping

For each FLOPs, pick the model with the lowest training loss

Fit a power law relationship between C and N, D



63[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Results of Approach 1

64[Table Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Outline
3. Modified Scaling Law (Hoffman et al., 2022)

a. Approach 1

b. Approach 2

c. Approach 3

d. Results
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https://arxiv.org/pdf/2203.15556.pdf


Approach 2: IsoFLOP Profiles

66

For each FLOPs budget C, train models of different size N

For each model, choose the appropriate D such that C ~ 6ND

E.g., bigger models are trained on less data to meet FLOPs 
constraint

C = number of FLOPs (computations)
N = number of model parameters
D = amount of training data



67[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Approach 2: IsoFLOP Profiles

68

For each FLOPs budget C, train models of different size N

For each model, choose the appropriate D such that C ~ 6ND

E.g., bigger models are trained on less data to meet FLOPs 
constraint

Fit a power law relationship between C and N, D



69[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Results of Approach 2

70[Table Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf
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https://arxiv.org/pdf/2203.15556.pdf


Approach 3: Parametric Loss Function

1. E: loss of ideal generative model (entropy of natural 
language)

2. N: larger model → better performance
3. D: larger dataset → better performance

72



Determining Coefficients 
1. Choose initial values of E, A, B, ɑ, β from a grid of values
2. Find the Huber loss based on the predicted log loss of the 

model on (N, D) and observed log loss (data from Approach 
1, 2)

3. Iteratively, run the L-BFGS algorithm (some variant of 
Gradient Descent)

73



Results of Approach 3

74[Table Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf
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https://arxiv.org/pdf/2203.15556.pdf


Results of Approach 1 ~ 3

76[Table Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Today’s models are overparameterized and undertrained

77[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf
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Chinchilla Gopher 

VS

Given Gopher’s compute budget, can we train a 
more computationally efficient model?

79[Image Source] [Image Source]

https://www.petco.com/shop/en/petcostore/product/chinchillas
https://diypestcontrol.com/gopher.htm


Chinchilla is small(er)

80[Image Source] [Table Source: (Hoffman et al., 2022)]

https://www.petco.com/shop/en/petcostore/product/chinchillas
https://arxiv.org/pdf/2203.15556.pdf


Comparison with Gopher

81

N smaller by 4x, D larger by 4x

Less compute for inference and fine-tuning

But also stronger performance



Performance of Chinchilla

VS

82[Image Source] [Image Source]

https://www.petco.com/shop/en/petcostore/product/chinchillas
https://diypestcontrol.com/gopher.htm


Evaluations Tasks for Chinchilla
● Language Modelling 
● MMLU
● Reading Comprehension
● BIG-bench
● Common Sense
● Closed Book QA
● Gender Bias and Toxicity
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Evaluations Tasks for Chinchilla
● Language Modelling 
● MMLU
● Reading Comprehension
● BIG-bench
● Common Sense
● Closed Book QA
● Gender Bias and Toxicity
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Language Modelling

85

Measure test perplexity (in bits-per-byte) of 20 datasets from 
the Pile (Gao et al., 2021)

Chinchilla outperforms Gopher on all 20 datasets

Note: because of large training data, there is an increased risk of 
train/test leak

https://arxiv.org/pdf/2101.00027.pdf


Analysis Per Dataset

86[Table Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Evaluations Tasks for Chinchilla
● Language Modelling 
● MMLU
● Reading Comprehension
● BIG-bench
● Common Sense
● Closed Book QA
● Gender Bias and Toxicity

87



MMLU — Massive Multitask Language Understanding 

88

Answer exam-like multiple choice questions on 57 subjects 
(Hendrycks et al., 2020)

E.g., college mathematics, high school physics, professional law

https://arxiv.org/pdf/2009.03300.pdf


Example Data from MMLU

89[Figure Source: (Hendrycks et al., 2020)]

https://arxiv.org/pdf/2009.03300.pdf


Chinchilla Outperforms Gopher on Average

90[Table Source: (Hoffman et al., 2022)]

175B
280B
70B

https://arxiv.org/pdf/2203.15556.pdf


Analysis Per Task

91

Chinchilla outperforms Gopher on 51 tasks

Achieves a similar performance on 2 tasks

Underperforms Gopher on 4 tasks (college mathematics, 
econometrics, moral scenarios, formal logic)



Analysis Per Task

92[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Analysis Per Task

93

Chinchilla achieves > 90% accuracy on 4 tasks 

High school government and politics, international law, 
sociology, US foreign policy

First model to achieve 90% accuracy on a particular subject



Evaluations Tasks for Chinchilla
● Language Modelling 
● MMLU
● Reading Comprehension
● BIG-bench
● Common Sense
● Closed Book QA
● Gender Bias and Toxicity

94



Reading Comprehension

95

Answer a fill-in-the-blank question on a passage

LAMBADA (Paperno et al., 2016): novel excerpt

RACE-M, RACE-H (Lai et al., 2017): middle-, high-school 
exam questions

https://arxiv.org/pdf/1606.06031v1.pdf
https://arxiv.org/pdf/1704.04683.pdf
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Example Data from LAMBADA

[Figure Source: (Paperno et al., 2016)]

https://arxiv.org/pdf/1606.06031v1.pdf
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Example Data from RACE-M, RACE-H

[Figure Source: (Lai et al., 2017)]

https://arxiv.org/pdf/1704.04683.pdf
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Chinchilla Outperforms Gopher

175B280B 530B70B

[Table Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Evaluations Tasks for Chinchilla
● Language Modelling 
● MMLU
● Reading Comprehension
● BIG-bench
● Common Sense
● Closed Book QA
● Gender Bias and Toxicity

99



BIG-bench

100

Collection of ‘difficult’ tasks for current models (Srivastava et 
al., 2022)

Currently has 204 tasks and is growing with Github pull requests

(Hoffman et al., 2022) used 62 tasks

https://arxiv.org/pdf/2206.04615.pdf
https://arxiv.org/pdf/2206.04615.pdf


Example Data from BIG-bench

101[Figure Source: (Srivastava et al., 2022)]

https://arxiv.org/pdf/2206.04615.pdf


Analysis Per Task

102

Chinchilla outperforms Gopher on 58 tasks

Underperforms Gopher on 4 tasks
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Analysis Per Task

[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Evaluations Tasks for Chinchilla
● Language Modelling 
● MMLU
● Reading Comprehension
● BIG-bench
● Common Sense
● Closed Book QA
● Gender Bias and Toxicity
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Common Sense

105

Answer various common sense questions

E.g., reasoning about the physical world, pronoun resolution, 
emotion inferrance



Example Data from PIQA

106[Figure Source: (Bisk et al., 2019)]

https://arxiv.org/pdf/1911.11641.pdf


Example Data from SIQA

107[Figure Source: (Sap et al., 2019)]

https://arxiv.org/pdf/1904.09728.pdf
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175B280B 530B70B

[Table Source: (Hoffman et al., 2022)]

Chinchilla Outperforms Gopher

https://arxiv.org/pdf/2203.15556.pdf


Evaluations Tasks for Chinchilla
● Language Modelling 
● MMLU
● Reading Comprehension
● BIG-bench
● Common Sense
● Closed Book QA
● Gender Bias and Toxicity

109



Closed Book QA

110

Answer short-answer questions without external sources

[Source: (Kwiatkowski et al., 2019)]

https://research.google/pubs/pub47761/


Chinchilla Outperforms Gopher

111[Table Source: (Hoffman et al., 2022)]

175B280B70B

https://arxiv.org/pdf/2203.15556.pdf
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Generalization of the Scaling Law 
Other architecture — (Kaplan et al., 2020) tests the scaling law on 

LSTM and Universal Transformers (encoder-decoder model)

Other dataset — (Hoffman et al., 2022) tests the scaling law on 

different datasets (e.g., C4, Github)

Other domain — (Henighan et al., 2020) test the scaling law on 

different domains (e.g., image, video)

113

https://arxiv.org/pdf/1807.03819.pdf
https://arxiv.org/pdf/2010.14701.pdf


Generalization to LSTM

114[Figure Source: (Kaplan et al., 2020)]

https://arxiv.org/pdf/2001.08361.pdf


Generalization to Universal Transformers

115[Figure Source: (Kaplan et al., 2020)]

https://arxiv.org/pdf/2001.08361.pdf


Generalization to C4 and Github code

116[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Generalization to C4 and Github code

117[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Generalization to Image, Video, etc.

118[Figure Source: (Henighan et al., 2020)]

https://arxiv.org/pdf/2010.14701.pdf


Is Power-Law 
the best fit?
(Hoffman et al.) observe concavity in 
their model at high compute 
budgets

The importance of dataset might 
increase for high compute budgets. 

119[Figure Source: (Hoffman et al., 2022)]

https://arxiv.org/pdf/2203.15556.pdf


Scaling Law For Fine-Tuning (Tay et al., 2021)

120

Downstream performance after fine-tuning does not scale with 

model size

Downstream performance does scale with depth, but not 

necessarily with dimension

https://arxiv.org/pdf/2109.10686.pdf


Downstream Performance Does Not Depend on N

121[Figure Source: (Tay et al., 2021)]

https://arxiv.org/pdf/2109.10686.pdf


Train Large, Then Compress (Li et al., 2020)

122[Figure Source: (Li et al., 2020)]

http://proceedings.mlr.press/v119/li20m/li20m.pdf
http://proceedings.mlr.press/v119/li20m/li20m.pdf


Deeper and Wider Models Converge in Fewer Steps

123[Figure Source: Slides by (Li et al., 2020)]

https://www.ericswallace.com/slides_and_posters/train_large.pdf


Data Pruning (Sorcher et al., 2022)

124

Develop a metric to measure the quality of data

Prune the data to include only high quality data

Importance of dataset size decreases significantly

https://arxiv.org/pdf/2206.14486.pdf


The More Data We Prune, The Less Data Matters

125[Figure Source: (Sorcher et al., 2022)]

https://arxiv.org/pdf/2206.14486.pdf


Q3: (a) Do you think we can extend this study of 
LLMs to other types such as encoder-decoder models? 

Can you make your guess of the scaling law?
 

(b) These studies simply consider # of tokens as a 
proxy for training corpus. Do you think it is possible to 

take the quality/redundancy of the training data into 
account?

126


