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Roadmap

Main paper: Documenting Large Webtext Corpora

Motivation

Three levels of documentation

Recommendations and discussion

The Pile dataset

Deduplication

Summary and key takeaways
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Documenting Large Webtext Corpora: 
A Case Study on the Colossal Clean Crawled 

Corpus
Jesse Dodge Maarten Sap Ana Marasovic William Agnew

Gabriel Ilharco Dirk Groeneveld Margaret Mitchell Matt Gardner

[EMNLP 2021]

4Some slides adapted from Jesse Dodge’s talk @ EMNLP 2021

https://aclanthology.org/2021.emnlp-main.98.mp4
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6

1010
What data is used for 

pretraining?

BERT
2018

GPT-2
2019

GPT-3
2020

2.5 x 109



Web-scale text
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100 petabytes
Google search index

2.5 petabytes an hour
Data generated by Walmart

320 terabytes
April 2021 snapshot of Common Crawl



Web-scale text
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Colossal Clean Crawled Corpus (C4)

9

Created to train T5 (Raffel et al. 2019)

April 2019 snapshot of Common Crawl (1.4 trillion tokens) 

Remove lines without terminal punctuation mark, code (“{“), < 
3 words

Used langdetect to filter out non-English text

Result: 806 GB of text (156 billion tokens)

Remove docs with “lorem ipsum”, < 5 sentences, “bad words” 



Colossal Clean Crawled Corpus (C4)

10

Created to train T5 (Raffel et al. 2019)

April 2019 snapshot of Common Crawl (1.4 trillion tokens) 

Remove lines without terminal punctuation mark, code (“{“), 
< 3 words

Used langdetect to filter out non-English text

Result: 806 GB of text (156 billion tokens)

Remove docs with “lorem ipsum”, < 5 sentences, blocklist words

Answer for Q1 from pre-lecture questions!
1. Steps involved in collecting + pre-processing C4.EN

2. External programs + resources required
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Introduced by Raffel et. al., 2020



Need for documentation
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Task specific NLP datasets have best practices around documentation

Applying these practices to massive datasets of unlabelled text is a 
challenge

Required information not available in web-crawled text

Thorough documentation typically not done

Leaves consumers of pretrained LMs in the dark about the influences of 
pretraining data on their systems
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Documentation levels

Metadata

Included data

Excluded data
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Corpus level statistics: Metadata

Internet domains and websites

Utterance date

Geolocation
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Metadata:
Internet domains

Top-level domains by number of 
tokens

Tokens measured based on SpaCy 
tokenizer
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Metadata:
Internet domains

Top-level domains by number of 
tokens
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Metadata:
Internet domains

Top-level domains by number of 
tokens
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Metadata:
Internet domains

Top-level domains by number of 
tokens

.mil: ~34 million tokens

.mod.uk: ~1.2 million tokens
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Patents / law

Information / books

Journalism

Scientific articles

Travel / shopping

Metadata:
Websites
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Patents / law

Information / books

Journalism

Scientific articles

Travel / shopping

Metadata:
Websites
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Patents / law

Information / books

Journalism

Scientific articles

Travel / shopping

Metadata:
Websites
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distribution of websites not 
necessarily representative 
of the most frequently 
used websites on the 
internet

Low overlap with the top 
25 most visited websites 
as measured by Alexa

Metadata:
Websites
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Corpus level statistics: Metadata

Internet domains and websites

Utterance date

Geolocation
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Metadata:
Utterance date

Dates the Internet Archive first 
indexed 1,000,000 randomly 
sampled URLs from C4.EN

Findings:

● 92% written in the last 
decade 

● non-trivial amount of 
data written between 
10-20 years before 
data collection
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Metadata:
Utterance date

Dates the Internet Archive first 
indexed 1,000,000 randomly 
sampled URLs from C4.EN

Limitations of Internet 
Archive:

● sometimes indexes 
web pages many 
months after their 
creation

● only indexes 
approximately 65% of 
URLs in C4.EN
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Corpus level statistics: Metadata

Internet domains and websites

Utterance date

Geolocation
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Metadata: 
Geolocation

Country-level URL frequencies from 175,000 
randomly sampled URLs

Location where web page hosted = proxy for 
location of creators (from IP address)

Caveat: Many websites are not hosted locally

● Hosted in data centers
● ISPs may store website in different locations
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Metadata: 
Geolocation

51.3% pages hosted in the US

Countries with the estimated 2nd, 3rd, 4th largest 
English speaking populations:

● India: 3.4%
● Pakistan: 0.06%
● Nigeria: 0.03%
● The Philippines:  0.1%



Documentation levels

Metadata

Included data

Excluded data
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What’s in the text: Included data

Machine-generated Text

Benchmark Contamination

Demographic Biases



Included data: Machine-generated text
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patents.google.com
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patents.google.com

Filing dates for patents about “gramophones”

Included data: Machine-generated text
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patents.google.com

Filing dates for patents about “gramophones”

Scanned used OCR

Included data: Machine-generated text
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patents.google.com

Included data: Machine-generated text
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patents.google.com

Machine translated

Included data: Machine-generated text
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PDF

Patent text
(not aligned with above)

“here is a kind of like this method, promptly by come the raise 
threshold voltage of marginal portion of semiconductor device of 
implant impurity ion from groove side surface”

“Along with further description other purpose of the present 
invention also can become cheer and bright”

Included data: Machine-generated text

Source: https://patentimages.storage.googleapis.com/0c/21/16/3b2ad21579ae2a/CN1199926A.pdf 

https://patentimages.storage.googleapis.com/0c/21/16/3b2ad21579ae2a/CN1199926A.pdf
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Pre-lecture Q2

How machine-generated text detected in C4?
Most represented domain = patents.google.com

Non-trivial number of patents not natively in english → machine translated
Old patents → not native digital documents → OCR to convert to digital format

Potential outcomes:
Poor quality machine translation and OCR ⇒ model trained on text that is a poor 
representation of natural language
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What’s in the text: Included data

Machine-generated Text

Benchmark Contamination

Demographic Biases
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Included data: Benchmark contamination

How can datasets end up in snapshots of the Common Crawl?

1. Dataset is built from text on the web, such as the IMDB 
dataset and the CNN/DailyMail summarization dataset

2. It is uploaded after creation (e.g., to a github repository, for 
easy access).
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Included data: Benchmark contamination

To what extent training or test datasets from downstream NLP tasks 
appear in the pretraining corpus? 

Types of contamination:

1. Input and output contamination: from 1.87% to 24.88% 

2. Input contamination: from 1.8% to 53.6%
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Included data: Benchmark contamination

To what extent training or test datasets from downstream NLP tasks 
appear in the pretraining corpus? 

Types of contamination:

1. Input and output contamination: from 1.87% to 24.88% 

2. Input contamination: from 1.8% to 53.6%
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Included data: Benchmark contamination

Brown et al.: 

● Measure contamination using n-gram overlap (n between 8 and 13) between 
pre-training data and benchmark examples

● Used a very conservative measurement because of the bug in their 
pre-training data preprocessing

This paper: measure exact matches, normalized for capitalization and punctuation



Benchmark contamination: 
Input and output contamination
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3 generative tasks analysed: 



Benchmark contamination: 
Input and output contamination
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3 generative tasks analysed: 

1. abstractive summarization 

TIFU (Kim et al., 2019)



Benchmark contamination: 
Input and output contamination
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3 generative tasks analysed: 

1. abstractive summarization 

XSum (Narayan et al., 2018)



Benchmark contamination: 
Input and output contamination
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3 generative tasks analysed: 

1. abstractive summarization 

2. table-to-text generation 

WikiBio (Lebret et al., 2016)



Benchmark contamination: 
Input and output contamination
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3 generative tasks analysed: 

1. abstractive summarization 

2. table-to-text generation 

3. graph-to-text generation 

The center will formally open in 2009

AMR-to-text (LDC2017T10)



Benchmark contamination: 
Input and output contamination
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3 generative tasks analysed: 

1. abstractive summarization 

2. table-to-text generation 

3. graph-to-text generation 

2 subsets of LAMA (Petroni et al. 2019) 



Benchmark contamination: 
Input and output contamination
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2 subsets of LAMA (Petroni et al. 2019) 

LAMA T-REx (Elsahar et al., 2018)



Benchmark contamination: 
Input and output contamination
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2 subsets of LAMA (Petroni et al. 2019) 

LAMA Google-RE

∼60K facts manually extracted 
from Wikipedia.

Covers 5 relations
1. Place of birth
2. Date of birth
3. Place of death
4. Education degree
5. Institution

https://code.google.com/archive/p/relation-extraction-corpus/downloads 

https://code.google.com/archive/p/relation-extraction-corpus/downloads


52

Benchmark contamination: 
Input and output contamination

 1.87–24.88%
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Benchmark contamination: 
Input and output contamination
rate higher for datasets that 
(mostly) contain single-sentence 
target texts 

than for those with 
multi-sentence outputs 
(TIFU-long, WikiBio).



Matching XSum Summaries
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Benchmark contamination: 
Input and output contamination
Diving into LAMA Google-RE… 



Benchmark contamination: Input and output
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LAMA (Google-RE subset)

Templated evaluation example:
“Max Coyer was born in [MASK]”

Original sentence from Wikipedia:
“Max Coyer (1954–1988 was an American artist, born in Hartford, Connecticut in 1954.”
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LAMA (Google-RE subset)

Templated evaluation example:
“Max Coyer was born in [MASK]”

Original sentence from Wikipedia:
“Max Coyer (1954–1988 was an American artist, born in Hartford, Connecticut in 1954.”

3.3% Memorisation

5.7% Summarisation

Included data: Benchmark contamination
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LAMA (Google-RE subset)

Templated evaluation example:
“Max Coyer was born in [MASK]”

Original sentence from Wikipedia:
“Max Coyer (1954–1988 was an American artist, born in Hartford, Connecticut in 1954.”

3.3% Memorisation

5.7% Summarisation

XSum (Summarisation): Built from BBC 15.5%

Included data: Benchmark contamination
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Benchmark contamination: 
Input contamination
From GLUE benchmark

2%-50%
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Pre-lecture Q2

How benchmark data contamination text detected in C4?
Input-and-label contamination: check how much target text appears verbatim in C4 
from common benchmark datasets

Input contamination: check for test examples from GLUE benchmark occurring 
verbatim in C4

Potential outcomes:
1. Test set is not suitable for evaluating performance
2. Model may learn to copy text instead of actually solving task
3. Misleading results in zero and few shot setting
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What’s in the text: Included data

Machine-generated Text

Benchmark Contamination

Demographic Biases
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Included data: Demographic biases

Recent work: bias in fine tuned models, assumed to derive from pre-trained data

This paper: Present evidence corroborating this

1. Reproduce ethnicity bias results from Li et al. 2020
2. Show this bias correlates with sentiment expressed in C4



63

How do biases in language embeddings affect downstream QA models?
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How to probe + quantify these biases?



How to probe + quantify these biases?
Underspecified questions
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Task: uncover ethnic/racial stereotypes
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Task: uncover ethnic/racial stereotypes

Classes of objects: {Asian, Caucasian, Black, 
…} 
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Task: uncover ethnic/racial stereotypes

Classes of objects: {Asian, Caucasian, Black, …} 

Goal: probe model’s bias towards certain 
attributes, e.g. ability to drive

68
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This paper

70

Use Li et al.’s method to generate questions to probe biases

~294,000 questions (MCQ format), 15 ethnicities

Use pre-trained UnifiedQA model (Khasabi et al., 2020)

Evaluation: proportion of times each ethnicity associated with positive sentiment
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Representational harms

Cooccurrences of specific 
geographic origins with 

negative sentiment
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Evidence that C4 is source of bias

1. Find all paragraphs containing either ethnicity

2. Estimate sentiment of paragraphs 
a. using sentiment lexicon from Hamilton et al. 2016
b. sentiment lexicon: map words to number representing sentiment
c. Positive word if above 1, negative if below -1, ignored otherwise (not sentiment bearing)

3. Count sentiment bearing words that occur in same paragraph either ethnicity
a. Jewish: 73.2% of 3.4M tokens
b. Arab: 65.7% of 1.2M tokens

4. Different domains have different sentiment spread between both ethnicities
a. Overall C4: 7.5%
b. NYT: 4.5%
c. Al Jazeera: 0% 
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Pre-lecture Q2

How demographic biases detected in C4?
Use underspecified questions to probe model for biases
Find proportion for which each ethinic group is associated with positive sentiment
Determine correlation between occurrence of ethnicity token with positive/negative 
sentiment tokens in C4

Potential outcomes:
Representational harm in downstream tasks



Documentation levels

Metadata

Included data

Excluded data
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What is excluded from the C4.EN corpus?
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 blocklist of bad words: 
● Hateful: n*gga
● obscene: f*ck
● sexual: porn
● etc.

Scraping the 
web

Cleaning the 
data

Deduplication

Remove 
offensive 
language

Full list of bad words:https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en

Blocklist Filter

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en


What is excluded from the C4.EN corpus?

78

 blocklist of bad words: 
● Hateful: n*gga
● obscene: f*ck
● sexual: porn
● etc.

Scraping the 
web

Cleaning the 
data

Deduplication

Remove 
offensive 
language

Full list of bad words:https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en

Remove 
offensive 
language

Blocklist Filter

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/blob/master/en


What is excluded from the corpus?
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Evaluation

Identities excluded

Voices excluded

Blocklist Filter
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What is excluded from the corpus?

Characterizing the excluded documents

Which demographic identities are excluded?

Whose English is included?



Characterizing the excluded documents
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Evaluated 100K excluded documents

Categorized them using K-means:
● TF-IDF embeddings
● K=50 (50 clusters)



Characterizing the excluded documents
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Evaluated 100K excluded documents

Categorized them using K-means:
● TF-IDF embeddings
● K=50 (50 clusters)
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Only 31% true 
positives (16 

clusters)



84

Documents related to 
● Education 
● Business 
● Medecine 
● Health
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What is excluded from the corpus?

Characterizing the excluded documents

Which demographic identities are excluded?

Whose English is included?



Which demographic identities are excluded?

86

Extracted the frequencies of a set of 22 
regular expressions

Gender identity 
Sexual orientatixon 

Race
Religion

Computed PMI (Church and Hanks, 1990)
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Extracted the frequencies of a set of 22 
regular expressions

Computed PMI (Church and Hanks, 
1990)

Which demographic identities are excluded?

87

Gender identity 
Sexual orientatixon 

Race
Religion

https://aclanthology.org/J90-1003/
https://aclanthology.org/J90-1003/
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Which demographic identities are excluded?
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What is excluded from the corpus?

Characterizing the excluded documents

Which demographic identities are excluded?

Whose English is included?



Whose English is included?
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Dialect-aware topic model (Blodgett el al.,2016)

Trained on 60M geolocated tweets

Relies on US census race/ethnicity data 
as topics

https://aclanthology.org/D16-1120/


Whose English is included?

91
Blodgett el al.,2016: https://aclanthology.org/D16-1120/

The model yields posterior probabilities of a 
given document

● African-American-English (AAE)
● Hispanic-aligned English (Hisp)
● White-aligned English (WAE)
● Other English dialects (other)

https://aclanthology.org/D16-1120/


6-7x

92
More likely to be removed Less likely to be removed
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Whose English is included?

0.07% 0.09%



0.07% 0.09%
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Allocational 
Harms

Models aren’t trained 
on text from and about 

minority identities

Whose English is included?
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Documenting Webtext Corpora: Recommendations

Report metadata

Examine benchmark contamination

Social biases and representational harms

Excluded voices and identities

Other recommendations
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Documenting Webtext Corpora: Recommendations

Report website metadata

Examine benchmark contamination

Social biases and representational harms

Excluded voices and identities

Other recommendations



Reporting website metadata
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Report the domains the text is scraped from

Data collection process can lead to a different 
distribution of internet domains than one would expect
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Documenting Webtext Corpora: Recommendations

Report website metadata

Examine benchmark contamination

Social biases and representational harms

Excluded voices and identities

Other recommendations



Examine benchmark contamination
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Support collecting data with the human-in-the-loop

To reduce contamination of future benchmarks
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Documenting Webtext Corpora: Recommendations

Report metadata

Examine benchmark contamination

Social biases and representational harms

Excluded voices and identities

Other recommendations

Report website metadata



Social Biases & Representational harms
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Control the distributional biases

Select subdomains to use for training

Measurement of bias in each subdomain
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Documenting Webtext Corpora: Recommendations

Report metadata

Examine benchmark contamination

Social biases and representational harms

Excluded voices and identities

Other recommendations

Report website metadata



Excluded voices and identities
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Avoid blockilst filtering when constructing 
datasets from web-crawled data

Some voices and identities might be excluded

Meaning of “bad” words heavily depends on the social context
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Documenting Webtext Corpora: Recommendations

Report metadata

Examine benchmark contamination

Social biases and representational harms

Excluded voices and identities

Other recommendations

Report website metadata



Other Recommendations
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Datasheets for datasets (Gebru 
et al., 2018)

https://arxiv.org/pdf/1803.09010.pdf
https://arxiv.org/pdf/1803.09010.pdf


Other Recommendations

106

Datasheets for datasets (Gebru 
et al., 2018)

Data statements (Bender & 
Friedman, 2018)

https://arxiv.org/pdf/1803.09010.pdf
https://arxiv.org/pdf/1803.09010.pdf
https://aclanthology.org/Q18-1041.pdf
https://aclanthology.org/Q18-1041.pdf


Other Recommendations
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Datasheets for datasets (Gebru 
et al., 2018)

Data statements (Bender & 
Friedman, 2018)

Model cards (Mitchell et al., 
2018)

Dataset life cycle: https://stanford-cs324.github.io/winter2022/lectures/data/

https://arxiv.org/pdf/1803.09010.pdf
https://arxiv.org/pdf/1803.09010.pdf
https://aclanthology.org/Q18-1041.pdf
https://aclanthology.org/Q18-1041.pdf
https://arxiv.org/pdf/1810.03993.pdf
https://arxiv.org/pdf/1810.03993.pdf
https://stanford-cs324.github.io/winter2022/lectures/data/


Limitations of the paper’s analysis

108

Only examined some issues: location to report other issues 

Tools used work disproportionately well for English: 
generalization to other languages?



Limitations of the paper’s analysis
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Only examined some issues: location to report other issues 

Tools used work disproportionately well for English: 
generalization to other languages?



Search it for yourself!
https://c4-search.apps.allenai.org/ 
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https://c4-search.apps.allenai.org/
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T5 (Raffel et al., 
2019)

Switch Transformer 
(Fedus et al., 2021)
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Motivation

Report metadata

LLMs shown to acquire knowledge in new domain 
with relatively small training data

⇒ large number of smaller high quality datasets 
may improve cross domain knowledge + 

generalization

Dataset diversity leads to better downstream 
generalization (Rosset, 2019)
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Motivation

Report metadata

LLMs shown to acquire knowledge in new 
domain with relatively small training data

⇒ large number of smaller high quality datasets 
may improve cross domain knowledge + 

generalization

Dataset diversity leads to better downstream 
generalization (Rosset, 2019)
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Motivation

Report metadata

LLMs shown to acquire knowledge in new domain 
with relatively small training data

⇒ large number of smaller high quality 
datasets may improve cross domain 

knowledge + generalization

Dataset diversity leads to better downstream 
generalization (Rosset, 2019)
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825 GB
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Relative component-wise GPT-3 Pile Performance

Components GPT-3 underperforms on 

≈ Pile components most dissimilar to GPT-3 pre-training corpus

= Good candidates for supplementing GPT-3 pre-training data



How to compare? A proxy measure

GPT-2 trained from scratch on Pile vs original GPT-3

1. measure improvement from GPT2-Pile to GPT-3 on each component
2. normalize by setting change on OpenWebText2 to be zero.

117
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difference in the intrinsic difficulty of set and owt2

How much harder set was for GPT-3 than owt2
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majority of Pile components are not redundant

GPT-2 Pile wins Original GPT-3 
wins
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Key takeaways: The Pile paper

Analysis of pejorative content, gender/religion 
biases: qualitatively similar to previous work.

Training on dataset sourced from smaller, higher 
quality sources outperforms training on 

web-crawled data
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Motivation

Existing language modeling datasets contain many near-duplicate 
examples

Long repetitive substrings (%3 of C4       10M documents)

This encourages memorization and discourages generalization
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Example of near-duplicates in C4 dataset

near-duplicates

Table is from Lee et al, 2022

https://arxiv.org/pdf/2107.06499.pdf
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Deduplication Approaches

EXACTSUBSTR: Exact Substring

NEARDUP: Near Duplicates
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EXACTSUBSTR

If two examples a and b share a substring of at least 50 tokens

Then remove that substring from either a or b 
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NEARDUP

Given two documents xi and xj 

Let di and dj be the set of n-grams of xi and xj, respectively
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NEARDUP

Jaccard Index 
(Jaccard, 1912)

If above 0.8, 
xi and xj are a 
potential match. 
b=20, r=450

If above 0.8, xi and 
xj are duplicates

https://www.jstor.org/stable/2427226#metadata_info_tab_contents
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Results

Train-test overlap, a 61-word sequence that is repeated 61,036 
times in C4 training and 61 times in validation sets 
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Results

Train-test overlap, a 61-word sequence that is repeated 61,036 
times in training set and 61 times in validation set 
Deduplicating the training set reduces the rate of emitting 
memorized training data by a factor of 10 times

Found that training models on deduplicated datasets is more 
efficient

Found that deduplicating training data does not hurt perplexity
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Deduplication does not harm, and sometimes 
improves model perplexity

Duplicates between the training and testing 
sets encourage the model to memorize the 

training data

Deduplication makes the training faster

Key takeaways: Deduplicating paper
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Deduplication does not harm, and sometimes 
improves model perplexity

Duplicates between the training and testing sets 
encourage the model to memorize the training data

Deduplication makes the training faster

Key takeaways: Deduplicating paper
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Deduplication does not harm, and sometimes 
improves model perplexity

Duplicates between the training and testing sets 
encourage the model to memorize the training data

Deduplication makes the training faster

Key takeaways: Deduplicating paper

More detailed summary: https://twitter.com/katherine1ee/status/1415496898241339400

https://twitter.com/katherine1ee/status/1415496898241339400
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Dodge et al., 2021 (main paper)
Propose three levels of documentation for web-crawled datasets
Recommendations for future documentation efforts

Gao et al., 2020 (The Pile paper)
New dataset combining 22 high quality, diverse sources

Lee et al., 2022 (The Deduplication paper)
Deduplication does not harm the perplexity and makes the training faster

Summary



High-level discussion points
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So far only focussed on existing datasets and documentation… other angles?

What should the ecosystem where data is created and used look like?

Best practices for creating data to maintain quality and security?

Idea - data belongs to groups rather than individuals
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“Data Helpers”

Lawyers
⚖

Rights 
Advocates
✊

“Data Custodians”

“Data 
Modelers”

“Data 
Steward”

Big 
Science
🤖🌸

Data 
stewardship 

Organization:
Committee of
🤖🌸, 

🌎🌍🌏, 📚, 
⚖✊

Data Host 
🌏

Data Host 
🌍

Data Host 
🌎

Data 
Provider 
📚

Data 
Provider 
📚

Data 
Provider 
Library
📚

Data 
Provider 

Commercial 
Company
📚🏢

Scraped 
data
🧍

“Data Rights 
Holders”
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A lot of data available on Web – Training on “all of it” not most efficient 

Curating non-web high quality datasets is promising (The Pile)

When creating new dataset from the Web, remember that pretrained 
models may already have seen this data

Key Takeaways

Filtering/curation needed, but results in biases

Transparent documentation needed:
Data creators: reflect on decisions, potential harms

Data consumers: know when dataset can/can’t be used
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Thank you!
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Pre-lecture Q3

Dodge et al. remark that “Documenting massive, unlabeled datasets is a 
challenging enterprise” and they mainly consider simple corpus statistics and 

metadata. 

Can you think of other properties/aspects that we should document and 
examine in the data? 

What (NLP) techniques can we use to document and query data in more detail?


