Calibration of prompting LLMs

Presented by: Howard Yen, Vishvak Murahari

10/3/2022

Agenda

- 1. Introduction
- 2. Calibrate Before Using
- 3. Surface Form Competition
- 4. Conclusion

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

In-Context Learning

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Language Modeling

n = number of labels for close set classification tasks n = number of words in the vocabulary for open set tasks what are some possible flaws?

Surface Form Competition

A human wants to submerge himself in water, what should he use?

Humans select options

Calibration

Calibrate Before Use: Improving Few-Shot Performance of Language Models

Tony Z. Zhao^{*1} Eric Wallace^{*1} Shi Feng² Dan Klein¹ Sameer Singh³

ICML 2021

Some slides adapted from http://ericswallace.com/calibrate

Motivation

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

Input: Subpar acting.Sentiment: negativeInput: Beautiful film.Sentiment: positiveInput: Amazing.Sentiment:

Q: What's the sentiment of "Subpar acting<mark>"?</mark> A: negative

<mark>Q: What's the sentiment of "</mark>Beautiful film<mark>"?</mark> <mark>A: positive</mark>

Q: What's the sentiment of "Amazing"?

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

Input: Subpar acting.Sentiment: negativeInput: Beautiful film.Sentiment: positiveInput: Amazing.Sentiment:

Input: Good film. Sentiment: positive Input: Don't watch. Sentiment: negative Input: Amazing. Sentiment:

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

Input: Subpar acting. Sentiment: negative Input: Beautiful film. Sentiment: positive Input: Amazing. Sentiment: Input: Beautiful film. Sentiment: positive

Input: Subpar acting. Sentiment: negative

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

Let's try to ablate each component

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

In-context learning is highly sensitive to prompt format

#1

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

Accuracy Across Training Sets and Permutations

In-context learning is highly sensitive to example selection

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

Components of a prompt

- 1. Prompt format
- 2. Training example selection
- 3. Training example permutation

In-context learning is highly sensitive to example permutation

Three main reasons

- 1. Majority label bias
- 2. Common token bias
- 3. Recency bias

Three main reasons

- 1. Majority label bias
- 2. Common token bias
- 3. Recency bias

- 1. Model prefers to predict positive when the majority labels is "P/Positive"
- 2. Surprising because the validation dataset is balanced!

Three main reasons

- 1. Majority label bias
- 2. Common token bias
- 3. Recency bias

Model is biased towards predicting the incorrect frequent token "book" even when both "book" and "transportation" are equally likely labels in the dataset

Three main reasons

- 1. Majority label bias
- 2. Common token bias
- 3. Recency bias

- 1. Model is heavily biased towards the most recent label
- 2. Again, dataset is balanced!

What is the impact of all these factors?

Visualizing predictions of 25 randomly sampled instances from SST2

All the biases effectively shift the output distribution

Pre-Lecture Question 1

Zhao et al., 2021 argue that the sensitivity of in-context learning results may be attributed to several biases in the prompts. What are the biases?

- 1. **Recency Bias:** Model is more likely to predict a label that occurs the most recently (towards the end of the prompt).
- 2. **Majority label bias:** Model predicts label that occurs more in the prompt.
- 3. **Common token bias:** Model tends to predict the token that is occurs more in the pretraining distribution.

Methodology

How do we make in-context learning more robust?

Can we infer the shift in the output distribution caused by a given prompt?

Contextual calibration

Step 1: Estimate the bias

Insert "content-free" test input

Input: Subpar acting. Sentiment: negative Input: Beautiful film. Sentiment: positive Input: N/A Sentiment:

Get model's prediction

positive	0.65
negative	0.35

Contextual calibration

Step 1: Estimate the bias

Insert "content-free" test input

Input: Subpar acting.	Sentiment: negative
Input: Beautiful film.	Sentiment: positive
Input: <mark>N/A</mark>	Sentiment:

Get model's prediction

positive	0.65
negative	0.35

Classification tasks: normalized scores of label words **Generation tasks:** probabilities of the first token of the generation over the entire vocabulary

Step 2: Counter the bias

"Calibrate" predictions with affine transformation

Fit $\mathbf{W} \text{and} \, \mathbf{b} \, \text{to cause uniform prediction for "N/A"}$

$$\mathbf{W} = \begin{bmatrix} 1 \\ 0.65 \\ 0 \\ 0 \\ 0.35 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 W: diagonal matrix b: bias set to zeros

Slide from http://ericswallace.com/calibrate

Contextual calibration -- technical details

For generation tasks, why is only the first token calibrated?

- a. Authors claim the first token has the most impact on future predictions
- b. Calibrating all generated tokens might be tricky as dimension of W is |V| x |V|

Contextual calibration -- technical details

Why is W diagonal? Why can't we learn some fancy non-linear function?

- a. The biases effectively cause a simple shift in the output distribution, we don't need a fancy function
- b. Diagonal W is easy to invert, low computational overhead
- c. If we added a non-linearity, how would we learn W with a few samples?
 - i. Potentially gradient descent, but tricky with few samples

All the biases effectively shift the output distribution

Contextual calibration -- technical details

Why do they calibrate probabilities instead of calibrating logits?

- a. OpenAI API only returns probabilities across the vocabulary
- b. Authors acknowledge that calibrating logits would have been more "natural"

Experimental Setup

Datasets: Text Classification

Task	Prompt		Label Names
SST-2	Review: This movie is amazing! Sentiment: Positive		Positive, Negative
AGNews		es bounced back a bit in July, and new claims for ernment said Thursday, indicating the economy is	World, Sports, Business, Technology

- SST-2 (Socher et al., 2013)
- AGNews (Zhang et al., 2015)
- DBPedia (Zhang et al., 2015)
- TREC (Voorhees & Tice, 2000)
- RTE (Dagan et al., 2005)
- CB (de Marneffe et al., 2019)

Check out details of the other datasets in the appendix

- 1. Label is just a single token
- 2. We calibrate probabilities of all the label words

Datasets: Fact Retrieval

Task	Prompt	
LAMA	Alexander Berntsson was born in Sweden	
	Khalid Karami was born in	

LAMA (Petroni et al., 2019)

- 1. Label is just a single token
- 2. We calibrate probabilities of all the words in the vocabulary

Datasets: Information Extraction

ATISSentence: what are the two american airlines flights that leave from dallas to san francisco in the evening(Airline)Airline name: american airlines

MIT MoviesSentence: last to a famous series of animated movies about a big green ogre and his donkey and cat friends(Genre)Genre: animated

- ATIS (Hemphill et al., 2019)
- MIT Movies (Liu et al., 2012)
 - 1. Label is multiple tokens
 - 2. We calibrate probabilities of all the words in the vocabulary

Model

GPT-3 - 175 billion

GPT-3 - 13 billion

GPT-3 - 2.7 billion

Results

Reduces variance across training sets and permutations

Accuracy Over Diff. Formats

format ID	Prompt	Label Names
1	Review: This movie is amazing! Answer: Positive	Positive, Negative
	Review: Horrific movie, don't see it. Answer:	
2	Review: This movie is amazing! Answer: good	good, bad
	Review: Horrific movie, don't see it. Answer:	
3	My review for last night's film: This movie is amazing! The critics agreed that this movie was good	good, bad
	My review for last night's film: Horrific movie, don't see it. The critics agreed that this movie was	
4	Here is what our critics think for this month's films.	positive, negative
	One of our critics wrote "This movie is amazing!". Her sentiment towards the film was positive.	
	One of our critics wrote "Horrific movie, don't see it". Her sentiment towards the film was	

Reduces variance across 15 different prompt formats

Surface Form Competition: Why the Highest Probability Answer Isn't Always Right

⁼Ari Holtzman¹ ⁼Peter West^{1,2} Vered Shwartz^{1,2} Yejin Choi^{1,2} Luke Zettlemoyer¹
¹Paul G. Allen School of Computer Science & Engineering, University of Washington
²Allen Institute for Artificial Intelligence
{ahai, pawest}@cs.washington.edu

EMNLP 2021

Motivation

Surface Form Competition

A human wants to submerge himself in water, what should he use?

Choice of Plausible Alternatives (COPA) (Roemmele et al., 2011)

Premise (X): The bar closed because

Hypothesis 1 (y_1):

it was crowded.

Hypothesis 2 (\mathbf{y}_2) :

it was 3am.

GPT-3

Methodology

Template

Premise (X): The bar closed because

Domain Premise (\mathbf{X}_{domain}): because

Hypothesis 1 (\mathbf{y}_1):

it was crowded.

Hypothesis 2 (y_2) :

it was 3am.

Task: choose between Hypothesis \mathbf{y}_1 and \mathbf{y}_2 given Premise \mathbf{x}

Template

Premise (X): The bar closed because

Domain Premise (\mathbf{X}_{domain}): because

Hypothesis 1 (\mathbf{y}_1):

it was crowded.

Hypothesis 2 (y_2) :

it was 3am.

Scoring Functions

Probability (LM) $\underset{i}{\operatorname{argmax}} P(\mathbf{y}_i | \mathbf{x})$

Template

Premise (X): The bar closed because

Domain Premise (\mathbf{X}_{domain}): because

Hypothesis 1 (y_1):

it was crowded.

Hypothesis 2 (y_2) :

it was 3am.

$\begin{array}{lll} & \text{Scoring Functions} \\ & & \text{Probability} \\ & & & \underset{i}{\operatorname{argmax}} P(\mathbf{y}_i | \mathbf{x}) \\ & & \text{Average Log-Likelihood} & & & & \underset{i}{\operatorname{arg max}} \frac{\sum_{j=1}^{\ell_i} P(y_i^j | \mathbf{x}, \mathbf{y}^{1 \cdots j-1})}{\ell_i} \end{array}$

Template

Premise (X): The bar closed because

Domain Premise (\mathbf{X}_{domain}): because

Hypothesis 1 (y_1):

it was crowded.

Hypothesis 2 (\mathbf{y}_2) :

it was 3am.

Scoring FunctionsProbability
(LM) $\underset{i}{\operatorname{argmax}} P(\mathbf{y}_i | \mathbf{x})$ Average Log-Likelihood
(Avg) $\underset{i}{\operatorname{arg}} \max_{i} \frac{\sum_{j=1}^{\ell_i} P(y_i^j | \mathbf{x}, \mathbf{y}^{1 \cdots j-1})}{\ell_i}$ Contextual Calibration
(CC) $\underset{i}{\operatorname{arg}} \max_{i} \mathbf{w} P(\mathbf{y}_i | \mathbf{x}) + \mathbf{b}$ Zhao et al., 2021

Template

Premise (X): The bar closed because

Domain Premise (\mathbf{X}_{domain}): because

Hypothesis 1 (\mathbf{y}_1):

it was crowded.

Hypothesis 2 (\mathbf{y}_2) :

it was 3am.

note: this paper does not introduce any new modeling approaches, just a new scoring function

Pointwise Mutual Information (PMI)

Template

Premise (X): The bar closed because

Domain Premise (\mathbf{X}_{domain}): because

Hypothesis 1 (\mathbf{y}_1):

it was crowded.

Hypothesis 2 (y_2): it was 3am.

Domain Conditional Pointwise Mutual Information (PMI)

Unconditional Baseline

 $\arg\max_{i} P(\mathbf{y}_i | \mathbf{x}_{\text{domain}}).$ i

ignore the premise completely!

Experimental Setup

Datasets

Туре	Dataset	Template
	COPA	[The man broke his toe] _P [because] _{DP} [he got a hole in his sock.] _{UH} [I tipped the bottle] _P [so] _{DP} [the liquid in the bottle froze.] _{UH}
Continuation	StoryCloze	pe Her leacher stated that the test is positioned for next week $p + 1$ ne story continues pp (tenniter tell nittersweet about it true
	HellaSwag	[A female chef in white uniform shows a stack of baking pans in a large kitchen presenting them. the pans] _P [contain egg yolks and baking soda.] _{UH}

Continuation: requires the model to select a continuation to previous text

- Choice of Plausible Alternatives (Roemmele et al., 2011)
- StoryCloze (Mostafazadeh et al., 2017)
- HellaSwag (Zellers et al., 2019)

Datasets

Туре	Dataset	Template
	RACE	[There is not enough oil in the world now. As time goes by, it becomes less and less, so what are we going to do when it runs out $[]_P$ question: [According to the passage, which of the following statements is true] _P [?] _{DP} answer: [There is more petroleum than we can use now.] _{UH}
QA	ARC	[What carries oxygen throughout the body?] _P [the answer is:] _{DP} [red blood cells.] _{UH}
	OBQA	[Which of these would let the most heat travel through?] _P [the answer is:] _{DP} [a steel spoon in a cafeteria.] _{UH}
	CQA	[Where can I stand on a river to see water falling without getting wet?] _P [the answer is:] _{DP} [bridge.] _{UH}

Question Answering (QA):

- <u>RACE (Lai et al., 2017)</u>
- <u>ARC (Clark et al., 2018)</u>
- Open Book Question Answering (Mihaylov et al., 2018)
- CommonsenseQA (Talmor et al., 2019)

Datasets

Туре	Dataset	Template
Boolean QA	BoolQ	title: [The Sharks have advanced to the Stanley Cup finals once, losing to the Pittsburgh Penguins in 2016 []] _P question: [Have the San Jose Sharks won a Stanley Cup?] _P [answer:] _{DP} [No.] _{UH}

Boolean Question Answering:

- BoolQ (Clark et al., 2019)

Datasets

Туре	Dataset	Template
Entailment	RTE	[Time Warner is the world's largest media and Internet company.] _P question: [Time Warner is the world's largest company.] _P [true or false? answer:] _{DP} [true.] _{UH}
Entailment	СВ	question: Given that [What fun to hear Artemis laugh. She's such a serious child.] _P Is [I didn't know she had a sense of humor.] _P true, false, or neither? [the answer is:] _{DP} [true.] _{UH}

Entailment: if a premise sentence entails a hypothesis sentence

- Recognizing Textual Entailment (Dagan et al., 2015)
- Commitment Bank (De Marneffe et al. 2019)

Datasets

Туре	Dataset	Template
	SST-2	"[Illuminating if overly talky documentary] _P " [[The quote] has a tone that is] _{DP} [positive.] _{UH}
Text	SST-5	"[Illuminating if overly talky documentary] _P " [[The quote] has a tone that is] _{DP} [neutral.] _{UH}
		title: [Economic growth in Japan slows down as the country experiences a drop in domestic and corporate []] _P summary:
Classification		[Expansion slows in Japan] _P [topic:] _{DP} [Sports.] _{UH}
	TREC	[Who developed the vaccination against polio?] _P [The answer to this question will be] _{DP} [a person.] _{UH}

Text Classification: if a premise sentence entails a hypothesis sentence

- Stanford Sentence Treebank (Socher et al., 2013)
- AG's News (Zhang et al., 2015)
- <u>TREC (Li and Roth, 2002)</u>

Datasets

Туре	Dataset	Template
	СОРА	[The man broke his toe] _P [because] _{DP} [he got a hole in his sock.] _{UH} [I tipped the bottle] _P [so] _{DP} [the liquid in the bottle froze.] _{UH}
Continuation	StoryCloze	[Jennifer has a big exam tomorrow. She got so stressed, she pulled an all-nighter. She went into class the next day, weary as can be. Her teacher stated that the test is postponed for next week.] _P [The story continues:] _{DP} [Jennifer felt bittersweet about it.] _{UH}
_	HellaSwag	[A female chef in white uniform shows a stack of baking pans in a large kitchen presenting them. the pans] _P [contain egg yolks and baking soda.] _{UH}
	RACE	[There is not enough oil in the world now. As time goes by, it becomes less and less, so what are we going to do when it runs out [].] _P question: [According to the passage, which of the following statements is true] _P [?] _{DP} answer: [There is more petroleum than we can use now.] _{UH}
QA	ARC	[What carries oxygen throughout the body?] _P [the answer is:] _{DP} [red blood cells.] _{UH}
	OBQA	[Which of these would let the most heat travel through?] _P [the answer is:] _{DP} [a steel spoon in a cafeteria.] _{UH}
	CQA	[Where can I stand on a river to see water falling without getting wet?] _P [the answer is:] _{DP} [bridge.] _{UH}
Boolean QA	BoolQ	title: [The Sharks have advanced to the Stanley Cup finals once, losing to the Pittsburgh Penguins in 2016 []] _P question: [Have the San Jose Sharks won a Stanley Cup?] _P [answer:] _{DP} [No.] _{UH}
Entailment	RTE	[Time Warner is the world's largest media and Internet company.] _P question: [Time Warner is the world's largest company.] _P [true or false? answer:] _{DP} [true.] _{UH}
	СВ	question: Given that [What fun to hear Artemis laugh. She's such a serious child.] _P Is [I didn't know she had a sense of humor.] _P true, false, or neither? [the answer is:] _{DP} [true.] _{UH}
	SST-2	"[Illuminating if overly talky documentary] _P " [[The quote] has a tone that is] _{DP} [positive.] _{UH}
Text	SST-5	"[Illuminating if overly talky documentary] _P " [[The quote] has a tone that is] _{DP} [neutral.] _{UH}
Classification		title: [Economic growth in Japan slows down as the country experiences a drop in domestic and corporate []] _P summary: [Expansion slows in Japan] _P [topic:] _{DP} [Sports.] _{UH}
	TREC	[Who developed the vaccination against polio?] _P [The answer to this question will be] _{DP} [a person.] _{UH}

Model

GPT-2

Zero-shot

GPT-3

Reported but won't be the focus of the results

Results

Zero-shot Multiple Choice Accuracy

								1							~			
Params.			2.7B				6	5.7B			1	13B				175I	3	
	Unc	LM	Avg	PMI _{DC}	CC	Unc	LM	Avg	PMI _{DC}	Unc	LM	Avg	PMI _{DC}	Unc	LM	Avg	PMI _{DC}	CC
COPA	54.8	68.4	68.4	74.4	-	56.4	75.8	73.6	77.0	56.6	79.2	77.8	84.2	56.0	85.2	82.8	89.2	-
SC	50.9	66.0	68.3	73.1	-	51.4	70.2	73.3	76.8	52.0	74.1	77.8	79.9	51.9	79.3	83.1	84.0	-
HS	31.1	34.5	41.4	34.2	-	34.7	40.8	53.5	40.0	38.8	48.8	66.2	45.8	43.5	57.6	77.2	53.5	-
R-M	22.4	37.8	42.4	42.6	-	21.2	43.3	45.9	48.5	22.9	49.6	50.6	51.3	22.5	55.7	56.4	55.7	-
R-H	21.4	30.3	32.7	36.0	-	22.0	34.8	36.8	39.8	22.9	38.2	39.2	42.1	22.2	42.4	43.3	43.7	-
ARC-E	31.6	50.4	44.7	44.7	-	33.5	58.2	52.3	51.5	33.8	66.2	59.7	57.7	36.2	73.5	67.0	63.3	-
ARC-C	21.1	21.6	25.5	30.5	-	21.8	26.8	29.8	33.0	22.3	32.1	34.3	38.5	22.6	40.2	43.2	45.5	-
OBQA	10.0	17.2	27.2	42.8	-	11.4	22.4	35.4	48.0	10.4	28.2	41.2	50.4	10.6	33.2	43.8	58.0	-
CQA	15.9	33.2	36.0	44.7	-	17.4	40.0	42.9	50.3	16.4	48.8	47.9	58.5	16.3	61.0	57.4	66.7	-
BQ	62.2	58.5	58.5	53.5	-	37.8	61.0	61.0	61.0	62.2	61.1	61.1	60.3	37.8	62.5	62.5	64.0	-
RTE	47.3	48.7	48.7	51.6	49.5	52.7	55.2	55.2	48.7	52.7	52.7	52.7	54.9	47.3	56.0	56.0	64.3	57.8
CB	08.9	51.8	51.8	57.1	50.0	08.9	33.9	33.9	39.3	08.9	51.8	51.8	50.0	08.9	48.2	48.2	50.0	48.2
SST-2	49.9	53.7	53.76	72.3	71.4	49.9	54.5	54.5	80.0	49.9	69.0	69.0	81.0	49.9	63.6	63.6	71.4	75.8
SST-5	18.1	20.0	20.4	23.5	-	18.1	27.8	22.7	32.0	18.1	18.6	29.6	19.1	17.6	27.0	27.3	29.6	-
AGN	25.0	69.0	69.0	67.9	63.2	25.0	64.2	64.2	57.4	25.0	69.8	69.8	70.3	25.0	75.4	75.4	74.7	73.9
TREC	13.0	29.4	19.2	57.2	38.8	22.6	30.2	22.8	61.6	22.6	34.0	21.4	32.4	22.6	47.2	25.4	58.4	57.4

Consistently beat or tie other methods across model sizes and datasets

Summarized Results

Percent of Ties or Wins by Method

	Method	Unc	LM	Avg	PMI _{DC}	CC
	125M	12.50	6.25	12.50	68.75	-
	350M	6.25	18.75	12.50	68.75	-
GPT-2	760M	6.25	6.25	12.50	75.00	-
	1.6B	6.25	12.50	12.50	80.00	20.00
	2.7B	6.25	6.25	6.25	86.66	0.00
റന്ന ഉ	6.7B	6.25	25.00	25.00	75.00	-
GPT-3	13B	6.25	18.75	18.75	68.75	=
	175B	6.25	12.50	18.75	62.50	6.25

consistently beat or tie for best results when compared to other methods

Zero-shot Multiple Choice Accuracy

Params.	Ĩ		2.7E	3			6	5.7B]	13B				1751	В	
	Unc	LM	Avg	PMI_{DC}	CC	Unc	LM	Avg	PMI _{DC}	Unc	LM	Avg	$PMI_{DC} \\$	Unc	LM	Avg	$PMI_{DC} \\$	CC
HS	31.1	34.5	41.4	34.2	-	34.7	40.8	53.5	40.0	38.8	48.8	66.2	45.8	43.5	57.6	77.2	53.5	-
ARC-E	31.6	50.4	44.7	44.7	-	33.5	58.2	52.3	51.5	33.8	66.2	59.7	57.7	36.2	73.5	67.0	63.3	-
ARC-C	21.1	21.6	25.5	30.5	-	21.8	26.8	29.8	33.0	22.3	32.1	34.3	38.5	22.6	40.2	43.2	45.5	9 <u>40</u> 9
BQ	62.2	58.5	58.5	53.5	-	37.8	61.0	61.0	61.0	62.2	61.1	61.1	60.3	37.8	62.5	62.5	64.0	-

HellaSwag (HS): generated by GPT-2

ARC Easy (ARC-E): too simple, harder questions are in ARC Challenge (ARC-C)

BoolQ (BQ): complex questions requiring high level reasoning \rightarrow random guess

Prompt Robustness

Prompt Robustness on SST-2

	Method	Unc	LM	PMI _{DC}	
	125M	49.9 ₀	56.8 _{7.3}	58.8 7.6	
	350M	49.9 ₀	58.0 11.3	60.3 _{11.4}	maintai
GPT-2	760M	49.9 ₀	57.0 _{9.2}	67.7 13.4	using 15 d
	1.6B	49.9 ₀	57.3 _{8.2}	69.8 13.3	SST-2 i
	2.7B	49.9 ₀	56.1 _{9.0}	66.2 _{15.7}	but s
GPT-3	6.7B	49.9 ₀	59.5 10.7	67.9 _{13.6}	
	13B	49.9 ₀	63.0 _{14.9}	71.7 16.1	
	175B	49.9 ₀	$72.5_{15.7}$	74.8 $_{14.0}$	

maintain the highest mean using 15 different templates for SST-2 in Zhao et al. (2021)

but still high variance

Ablations

COPA because

The bar closed because it was 3 AM I tipped the bottle so the liquid in the bottle poured out

50.0 because the outputs are now the same for the two different inputs

		(COPA	COPA Flipped								
Method	Unc	LM	Avg	PMI _{DC}	Unc	LM	Avg	PMI _{DC}				
125M	56.4	61.0	63.2	62.8	50.0	63.2	63.2	63.2				
350M	55.8	67.0	66.0	70.0	50.0	66.4	66.4	66.4				
760M	55.6	69.8	67.6	69.4	50.0	70.8	70.8	70.8				
1.6B	56.0	69.0	68.4	71.6	50.0	73.0	73.0	73.0				
2.7B	54.8	68.4	68.4	74.4	50.0	68.4	68.4	68.4				
6.7B	56.4	75.8	73.6	77.0	50.0	76.8	76.8	76.8				
13B	56.6	79.2	77.8	84.2	50.0	79.0	79.0	79.0				
175B	56.0	85.2	82.8	89.2	50.0	83.6	83.6	83.6				
better on CO												

Flipped since "because" and "so" are not perfectly invertible and the original phrases sound more natural

LM, Avg, and PMI_{DC} are the same without surface form competition

Premise (X): The bar closed because

Domain Premise (\mathbf{X}_{domain} **):** because

Hypothesis 1 (y_1): it was crowded.

Hypothesis 2 (y_2): it was 3 AM.

Hypothesis 2'(y_2'): it was 3:30AM.

Premise 1 ($\hat{\mathbf{X}}_1$ **):** It was crowded so

Premise 2 ($\hat{\mathbf{X}}_2$ **) :** It was 3 AM so

Hypothesis ($\hat{\mathbf{y}}$ **):** the bar closed.

Premise 2'($\hat{\mathbf{x}}_2'$): It was 3:30AM so

$$\begin{split} P(\mathbf{y}_1 | \mathbf{x}) &> P(\mathbf{y}_2' | \mathbf{x}) \\ P(\hat{\mathbf{y}} | \hat{\mathbf{x}}_2') &> P(\hat{\mathbf{y}} | \hat{\mathbf{x}}_1) \\ \frac{P(\mathbf{y}_2' | \mathbf{x})}{P(\mathbf{y}_2' | \mathbf{x}_{\text{domain}})} &> \frac{P(\mathbf{y}_1 | \mathbf{x})}{P(\mathbf{y}_1 | \mathbf{x}_{\text{domain}})} \end{split}$$

 $\log P(\mathbf{y}_2 | \mathbf{x}) \approx -16 \qquad \log P(\hat{\mathbf{y}} | \hat{\mathbf{x}}_2) \approx -12 \\ \log P(\mathbf{y}_2' | \mathbf{x}) \approx -20 \qquad \log P(\hat{\mathbf{y}} | \hat{\mathbf{x}}_2') \approx -12$

both probabilities low due to surface form competition! no competition → similarly high probabilities

Conclusion

Summary

Contextual Calibration
(CC)arg max
i $\mathbf{w}P(\mathbf{y}_i|\mathbf{x}) + \mathbf{b}$ Domain Conditional PMI
(PMI_{DC})arg max
i $\frac{P(\mathbf{y}_i|\mathbf{x})}{P(\mathbf{y}_i|\mathbf{x}_{domain})}$

both papers focuses on novel ways to calculate the probabilities for language modeling \rightarrow improve performance with minimal changes

Pre-Lecture Question 2

Explain the two calibration methods proposed in these two papers (Zhao et al., 2021) and (Hoffman et al., 2021). Can you think of any pros and cons comparison the two methods?

Zhao et al. (2021) proposes first calculating the output probabilities using content-free strings, and then use a linear classifier to calibrate the final probability. This method is computationally efficient and effective for single token outputs but not suited for multi-token generation.

Hoffman et al. (2021) proposes using a domain specific string to calculate the PMI of output strings. This calculates how much more likely an output becomes given the input, which removes surface form competition and generic output bias. However, domain specific string is subjective and difficult to choose the best one to use.

Related Work: Noisy Channel (Min et al., 2022)

(x, y)=("A three-hour cinema master class.", "It was great.")

Figure 1: An illustration of the direct model and the channel model for language model prompting in the sentiment analysis task.

another alternative to calibrate the probability of final output

Pre-Lecture Question 3

Can you brainstorm other calibration ideas for improving prompting performance (and reducing the variance)? This can be either zero-shot or few-shot in-context learning.

Thank you!

Questions?