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Background: Fine Tuning

● Pretrain a language model on 
task
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Background: Fine Tuning

● Pretrain a language model on 
task

● Attach a small task specific layer
● Fine-tune the weights of full 

NN by propagating gradients 
on a downstream task
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Background: In-context Learning

● Pretrain a language model on 
task (LM)

● Manually design a “prompt” that 
demonstrates how to formulate a 
task as a generation task. 

● No need to update the model 
weights at all!

fromage
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Background: Parameter-efficient Fine tuning

● With standard fine-tuning, we need to 
make a new copy of the model for 
each task.
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Background: Adapter Fine Tuning

● They add adapter layers in between 
the transformer layers of a large 
model.
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Background: Adapter Fine Tuning

● They add adapter layers in between 
the transformer layers of a large 
model.

● During fine-tuning, they fix the 
original model parameters and only 
tune the adapter layers. 

● No need to store a full model for each 
task, only the adapter params. 

● 3.6% of parameters needed!
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(Houlsby et al. 2019)
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Motivation

● For prompt design (Brown et al. 2020), 
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Motivation

● For prompt design (Brown et al. 2020), 
the discrete prompt is optimized 
manually.

● Optimization in discrete space is hard! 
(Gao et al. 2021)

● What if we can optimize the prompt in 
the continuous embedding space? 

● This would sacrifice interpretability but 
would be easier to optimize. 

21

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.15723.pdf


Methodology

● Rather than designing a 
prompt manually, we 
can learn an optimal 
prefix for each task.
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Methodology
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● Rather than designing a 
prompt manually, we 
can learn an optimal 
prefix for each task.

● Only ~0.1% of 
parameters need to be 
tuned! (adapter is 3.6%)

Discussion Q1: 
List the differences between the prompting tuning 

methods introduced in these two papers and the ones we 
learned in the previous lecture

Previously, prompts were designed using interpretable, 
discrete tokens, which are then transformed into 

continuous space using embeddings. In prefix and 
prompt tuning, they relax this constraint, and tune the 

prompt in continuous space via gradient descent. 



Methodology: Hidden State Tuning

● Can this be viewed as a continuous relaxation of discrete prompts? 
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Methodology: Hidden State Tuning

● Can this be viewed as a continuous relaxation of discrete prompts? 

Actually no!

 

We actually get to tune ALL of these →
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Methodology: Hidden State Tuning

● Can this be viewed as a continuous relaxation of discrete prompts? 
● It’s not just the prompts in the prefix that get tuned, it is also the 

hidden representations of later layer.
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Methodology: Encoder-decoder Models

● Encoder-decoder models get two trainable prefixes, one for encoder and 
one for decoder 
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Evaluation (Tasks)

● They chose to evaluate on generation tasks only.
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Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural 
language. 
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Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural 
language. 

● 3 Datasets
○ E2E: Restaurant Data 
○ (1 domain)
○ (Novikova et al. 2017)
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Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural 
language. 

● 3 Datasets
○ WebNLG: <subject, property, object> triplets to text (14 domains)
○ (Gardent et al. 2017)
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Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural 
language. 

● 3 Datasets
○ DART: Triplets similar to WebNLG, but bigger and on all Wikipedia tables. 

(Open domain)
○ (Nan et al. 2021)
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Evaluation (Summarization)

● Given a longer passage, generate a few 
summary sentences.

● XSUM dataset.
○ BBC News Articles 
○ Summarization requires pulling information 

from various parts of the document, not 
just one.

○ Designed to encourage abstraction of 
high level concepts.

○ (Narayan et al. 2018)

38

https://arxiv.org/pdf/1808.08745.pdf


Evaluation (Baselines)

● FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the 
rest. 
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Evaluation (Baselines)

● FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the 
rest. 

● Adapter: Add adapter layers between each layer.
○ From (Houlsby et al. 2019) 
○ Two versions: 3.6% / 0.1% of params. 

● State of the art on that task
● If there is ever a percent sign after a method, it represents a variant 

of the method that uses that percent of the model’s parameters.
○ Ex: (Adapter 0.1%)
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Results (Table to Text)

● Prefix tuning outperforms other 
lightweight tuning baselines. 
(with less params!)

● Comes close to fine tuning!
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Results (Summarization)

● Prefix tuning underperforms fine-tuning. (Performance gets better when 
you increase the number of parameters)
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Results (Low-data regimes)

● Prefix tuning outperforms 
fine-tuning when training data 
size is low.

● Trend seems unclear though. 

Summarization

Table to text
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Results (Generalization to Unseen Domains)

● Prefix tuning (and also Adapter) 
outperform fine-tuning on 
generalization to different 
domains!

● This holds for Table-to-Text and 
Summarization. 

● Does not seem unique to 
prefix-tuning though.   
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Ablations (Prefix-length)

● As the tunable prefix-length increases, performance increases, with 
diminishing returns. 

● Optimal length for table to text is 10 tokens, for summarization it seems closer 
to 200 tokens. 
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Ablations (Embedding-Only Tuning)

● Tuning only the embedding layer is 
not enough expressivity to match 
prefix-tuning performance.

● (Don’t get too attached to this 
finding)
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Ablations (Prefix vs Infix)

● Instead of tuning the prefix, tune a 
portion at the end of the input and 
before the output.

● In other words, now we do 
[Tunable, X_inp, Y_out], but we 
could instead do [X_inp, Tunable, 
Y_out]

● Infix tuning is worse than prefix 
tuning, since input embeddings 
cannot attend to infix. 
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Ablation (Initialization)

● Initializing randomly performs 
poorly and has high variance. 

● It’s better to initialize with words in 
the LM’s vocabulary. 

● It’s even better to initialize with task 
specific words (summarize / 
table-to-text)
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Key Findings

● Prefix-Tuning can come close to the performance of full model fine-tuning 
with much less parameters.

● Tuning less parameters leads to better generalization performance.
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Motivation

● Why do we need prompt-tuning if we already have prefix-tuning?
○ Prefix-tuning learns a sequence of prefixes that are prepended at every 

transformer layer
○ Prompt-tuning uses a single prompt representation that is prepended to the 

embedded input
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Motivation

● Why do we need prompt-tuning if we already have prefix-tuning?
○ Prefix-tuning learns a sequence of prefixes that are prepended at every 

transformer layer
○ Prompt-tuning uses a single prompt representation that is prepended to the 

embedded input

The “prefix-tuning” paper: Tuning only the embedding layer is not expressive enough

● Model scale?
● Prompt length?
● Prompt initialization?
● Pre-training settings?
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Methodology: Prompt-tuning

● Prepend virtual tokens to input
● Prompt and input representations flow 

through model like normal
● Learn embeddings of only these special  

tokens via backprop. Keep the rest fixed.
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Methodology: Prompt-tuning

● Prepend virtual tokens to input
● Prompt and input representations flow 

through model like normal
● Learn embeddings of only these special  

tokens via backprop. Keep the rest fixed.

fixed learnable, <<𝛳

pre-trained

fine-tuned
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Experiment Setup

● Model backbone: pre-trained T5 models (Small, Base, Large, XL, XXL)
● Design decisions to explore

○ Prompt initialization method
○ Prompt length
○ Pre-training method
○ LM adaptation steps (if use “LM adaptation” as the pre-training method)

● Benchmark: SuperGLUE (a collection of eight challenging English language 
understanding tasks)
○ Each prompt trains on a single task
○ Each dataset is translated into a text-to-text format
○ Task names prepended to inputs are omitted
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Design Decision: Prompt Initialization

1. Random initialization: train the prompt representations from scratch
2. Sampled vocabulary: initialize each prompt token to an embedding drawn 

from the model’s vocabulary
3. Class label: initialize the prompt with embeddings that enumerate the output 

classes
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Design Decision: Prompt Initialization

1. Random initialization: train the prompt representations from scratch
2. Sampled vocabulary: initialize each prompt token to an embedding drawn 

from the model’s vocabulary
3. Class label: initialize the prompt with embeddings that enumerate the output 

classes

Yelp dataset
(Zhang et al.,2015)

MNLI dataset
(Williams et al., 2018) 
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Design Decision: Prompt Initialization

● Class label based initialization 
performs best

● The gaps between different 
initializations disappear when the 
model is scaled to XXL size

61



Design Decision: Prompt Length

● The shorter the prompt, the fewer new parameters must be tuned
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● The shorter the prompt, the fewer new parameters must be tuned

Design Decision: Prompt Length

● Increasing prompt length is critical 
to achieve good performance

● The largest model still gives strong 
results with a single-token prompt

● Increasing beyond 20 tokens only 
yields marginal gains

Observations
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Design Decision: Pre-training Method

● Span Corruption: The model is tasked with “reconstructing” masked spans in 
the input text, which are marked with unique sentinel tokens.

Input: Thank you <X> me to your party <Y> week
Output: <X> for inviting <Y> last <Z>

Pre-training

sentinel
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Design Decision: Pre-training Method

● Span Corruption: The model is tasked with “reconstructing” masked spans in 
the input text, which are marked with unique sentinel tokens.

● Span Corruption + Sentinel: prepend all downstream targets with a sentinel
● “LM Adaptation”: given a natural text prefix as input, the model must 

produce the natural text continuation as output

Raffel et al. (2020)
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Design Decision: Pre-training Method

● “Span corruption” objective is not 
well-suited for pre-training frozen 
models 

● Adding a sentinel to the downstream 
targets has little benefit

● “LM Adaptation” performs best for all 
sizes of models

● The largest model is the most 
forgiving one
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Design Decision: LM Adaptation Steps 

● Longer adaptation provides 
additional gains, up to 100K 
steps

● At the largest model size, the 
gains from adaptation are quite 
modest
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Closing the Gap

● Design configuration
○ Prompt initialization: class label
○ Prompt length: 100
○ Pre-training method: LM adaptation
○ LM adaptation steps: 100K
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Closing the Gap

● Design configuration
○ Prompt initialization: class label
○ Prompt length: 100
○ Pre-training method: LM adaptation
○ LM adaptation steps: 100K

● Prompt tuning becomes more 
competitive with model tuning as 
scale increases

● Prompt tuning beats GPT-3 prompt 
design by a large margin
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Closing the Gap
Q2. Comparing "model tuning", "prompt tuning" and "prompt design" in Lester et al., 2021, 
how do their task performances scale with model sizes? Why do you think it is the case?
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Closing the Gap
Q2. Comparing "model tuning", "prompt tuning" and "prompt design" in Lester et 
al., 2021, how do their task performances scale with model sizes? Why do you 
think it is the case?
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● Scalability
○ Model tuning: fairly good → poor
○ Prompt tuning: very good
○ Prompt design: poor

● Reason
○ Model tuning: possibly over-parameterized when model size is large
○ Prompt tuning: reserving general understanding and including tunable 

parameters
○ Prompt design: not fitting downstream tasks well



Closing the Gap
Q2. Comparing "model tuning", "prompt tuning" and "prompt design" in Lester et 
al., 2021, how do their task performances scale with model sizes? Why do you 
think it is the case?

73

When the model size is relatively small, “model tuning” outperforms “prompt tuning” by a 
small margin. However, “prompt tuning” becomes more competitive with “model tuning” 
as scale increases. “Prompt tuning” beats “prompt design” by a large margin with all 
sizes of models.
In “prompt design”, prompts are chosen manually and there is no tunable task-specific 
parameters. Thus, the model can’t fit the downstream task well. When the model size is 
large, “model tuning” may be over-parameterized and more prone to overfit the training 
task. “Prompt tuning” prevents the model from modifying its general understanding of 
language and also includes tunable task-specific prompt representations.



Comparison to Similar Approaches

● Compared with prefix-tuning
○ Tuning only the embedding layer 
○ No need for prefix 

reparameterization 

● Compared with WARP
○ Less extra parameters
○ WARP can only work on 

classification
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Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering

○ MRQA 2019 (Fisch et al., 2019) shared task on generalization
○ It collects extractive QA datasets in a unified format
○ Train on “in-domain” datasets and evaluate on “out-of-domain” datasets

75
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Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering
● Paraphrase detection

○ Transfer between two paraphrase tasks from GLUE (Wang et al., 2019b)
○ QQP (Iyer et al., 2017): ask if two questions from Quora are “duplicates”.
○ MRPC (Dolan and Brockett, 2005): asks if two sentences drawn from news articles 

are paraphrases
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Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering
● Paraphrase detection
● Conclusions

○ Prompt tuning prevents the model from modifying its general understanding of 
language

○ Model tuning may be over-parameterized and more prone to overfit the training 
task, to the detriment of similar tasks in different domains
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Prompt Ensembling

● Train N prompts on the same task → create N separate “models” 
● One example is replicated across the batch and is processed varying the 

prompt
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Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters
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representations
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Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters: learning “word-like” 
representations

○ The class labels persist through training: learning to store the expected output
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Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters: learning “word-like” 
representations

○ The class labels persist through training: learning to store the expected output
○ Several prompt tokens have the same nearest neighbors if the prompt is long: 

difficult to localize information to a specific position
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Interpretability

● discrete token → continuous embedding: difficult to interpret
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difficult to localize information to a specific position
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Don’t get too attached to the findings here!
A “wayward” behavior is observed:

https://arxiv.org/pdf/2112.08348.pdf

https://arxiv.org/pdf/2112.08348.pdf


Key Findings

● Prompt tuning is a competitive technique due to

○ Better performance scalability as model size increases

○ More forgiving for bad design decisions (when model is large)

○ Improved generalization ability

○ Enabling efficient high-performing prompt ensembling
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Discussion

Q3: You have collected a dataset for a downstream task of your 
interest and you are asked to design a prompting tuning method to 
solve it, which design choices do you need to consider? Can you 
think of other parameter-efficient methods besides what we have 

seen in these two papers?
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