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Background: Fine Tuning

e Pretrain a language model on :Fm.yCOnneaedL»
task — Pretrained BERT

[ Transformer Block }

[ Transformer Block 1
1 ) 1 i i i 2 3 i

[ Transformer Block J

Sttt

|[CLS]| ‘ I ‘ am ‘ ’hungr}/ |[SEP]| }Resun \ | ‘ \ eat ‘ ‘Iunch‘ |[SEP]|
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Background: Fine Tuning

e Pretrain a language model on
task

e Attach a small task specific layer

e Fine-tune the weights of full
NN by propagating gradients
on a downstream task
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Background: In-context Learning

fromage

A
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e Pretrain a language model on 1
task (LM)

%Transformer-Deooder

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Brown et al. 2020
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Background: In-context Learning

Pretrain a language model on
task (LM)

Manually design a “prompt”
that demonstrates how to
formulate a task as a
generation task.

fromage
?

%Transformer-Deooder

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese =>

task description

examples

prompt

Brown et al.
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Background: In-context Learning

fromage

?

e Pretrain a language model on
task (LM)

e Manually design a “prompt” that
demonstrates how to formulate a
task as a generation task.

e No need to update the model e teer e tetre e e omes
weights at all! peppermint => menthe poivrée

plush girafe => girafe peluche

%Transformer-Deooder

Translate English to French: task description

cheese => prompt

Brown et al. 2020
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Background: Parameter-efficient Fine tuning

e With standard fine-tuning, we need to Fine-tuning
Transformer (Translation)
make a new copy of the model for E e
eaCh taSk Transformer (Table-to-text)
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Background: Parameter-efficient Fine tuning

With standard fine-tuning, we need to
make a new copy of the model for
each task.

In the extreme case of a different
model per user, we could never store
1000 different full models.

Fine-tuning
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Background: Parameter-efficient Fine tuning

With standard fine-tuning, we need to
make a new copy of the model for
each task.

In the extreme case of a different
model per user, we could never store
1000 different full models.

If we fine tuned a subset of the
parameters for each task, we could
alleviate storage costs. This is
parameter-efficiency.
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Background: Adapter Fine Tuning

They add adapter layers in between
the transformer layers of a large
model.
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Background: Adapter Fine Tuning

They add adapter layers in between
the transformer layers of a large
model.

During fine-tuning, they fix the
original model parameters and only
tune the adapter layers.
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Background: Adapter Fine Tuning

They add adapter layers in between
the transformer layers of a large
model.

During fine-tuning, they fix the
original model parameters and only
tune the adapter layers.

No need to store a full model for each
task, only the adapter params.
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Background: Adapter Fine Tuning

They add adapter layers in between
the transformer layers of a large
model.

During fine-tuning, they fix the
original model parameters and only
tune the adapter layers.

No need to store a full model for each
task, only the adapter params.

3.6% of parameters needed!
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Prefix-Tuning: Optimizing Continuous Prompts for Generation
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Motivation

For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.
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Motivation

For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.

Optimization in discrete space is hard!
(Gao et al. 2021)
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Motivation

For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.

Optimization in discrete space is hard!
(Gao et al. 2021)

What if we can optimize the prompt in
the continuous embedding space?

Prompt

Input

The

movie

was

great

<EOS>

Sentiment

Positive

Embedding Space

— | L. 000 |——
— (000 j—
— (| 000 | ——
— (000 j——
— (000
— | . 000 |——
— | 000 jJ——
— (00O
— (000 |
— |LOO0O

-

N

Big

Transformer

Model

\

4

20


https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.15723.pdf

Motivation

e For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.

e Optimization in discrete space is hard!
(Gao et al. 2021)

e \What if we can optimize the prompt in
the continuous embedding space?

e This would sacrifice interpretability but
would be easier to optimize.
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Methodology

Rather than designing a
prompt manually, we
can learn an optimal
prefix for each task.

Fine-tuning

Transformer (Translation)
[ 1 [ 1 | 1 1 1 1 1

Transformer (Summarization)
[ 1 [ 1 [ 1 1 [ 1 HE EE .

Transformer (Table-to-text)

Frnrnnni

name Starbucks type coffee shop [SEP] Starbucks serves coffee

(Traprrselzf!it)i(on) Input (table-to-text) Output (table-to-text)
Prefix Prefix-tuning

(Summarization)

Prefix

(Tabloto-text) Transformer (Pretrained)

IO

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)
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Methodology

e Rather than designing a
prompt manually, we
can learn an optimal
prefix for each task.

e Only ~0.1% of
parameters need to be
tuned! (adapter is 3.6%)

Fine-tuning

Transformer (Translation)
[ 1 [ 1 | 1 1 1 1 1

Transformer (Summarization)
[ 1 [ 1 [ 1 1 [ 1 HE EE .

Transformer (Table-to-text)

Frnrnnni

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Output (table-to-text)

Prefix

X Input (table-to-text)
(Translation)

Prefix Prefix-tuning

(Summarization)

Prefix

(Tabloto-text) Transformer (Pretrained)

IO

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)
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Discussion Q1:
List the differences between the prompting tuning
methods introduced in these two papers and the ones we
learned in the previous lecture
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Discussion Q1:
List the differences between the prompting tuning
methods introduced in these two papers and the ones we
learned in the previous lecture

Previously, prompts were designed using interpretable,
discrete tokens, which are then transformed into
continuous space using embeddings. In prefix and
prompt tuning, they relax this constraint, and tune the
prompt in continuous space via gradient descent.
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Methodology: Hidden State Tuning

e Can this be viewed as a continuous relaxation of discrete prompts?

_ X Y Z <eos>
hy

Attention Layer

Yay! We just get to tune these now —
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Methodology: Hidden State Tuning

e Can this be viewed as a continuous relaxation of discrete prompts?

Actually no! ﬁ X ¥ Z <eos>
it

Attention Layer

We actually get to tune ALL of these —




Methodology: Hidden State Tuning

Can this be viewed as a continuous relaxation of discrete prompts?
It’s not just the prompts in the prefix that get tuned, it is also the

hidden representations of later layer.

Image: (He et al. 2022)
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Methodology: Encoder-decoder Models

e Encoder-decoder models get two trainable prefixes, one for encoder and

one for decoder

Autoregressive Model (e.g. GPT2)
PREFIX .’E (source table) y (target utterance)

l il i i

Harry Potter , Education , Hogwarts [SEP] Harry Potter is graduated from Hogwarts

Activation hy ha hs hs hs he hy hs  hg hig hii hia his  his his

Indexing ,1 2, ,3 4 5 6 7 8 ,,9 10 11 12 13 14 15
J)E JLU ]

L
= A Xiax = [3,4,5,6,7,8] Yiax = [9,10, 11,12, 13, 14, 15]
Encoder-Decoder Model (e.g. BART) PREFIX
PREFIX Z (source table) PREFIX’ y (target utterance)
Z r 1lHarry Potter , Education , Hogwar}s r llISEP] Harry Potter is graduated from Hogwarl}

Activation  p,  h, hy hy hs he hr hs hg hio  hix hia haz haa  his  his Pz

9 10, 11 12 13 14 15 16 17
2,93 4 5 6 7 8; ° 1 B

Pux = 1,2  Xiex = [3,4,5,6,7, 8] Pix +=[9,10]  Yiae = [11,12,13,14,15,16,17]

Indexing 1
L
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Evaluation (Tasks)

e They chose to evaluate on generation tasks only.
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Evaluation (Tasks)

e They chose to evaluate on generation tasks only.

e Lots of text-to-text metrics
o BLEU, NIST, METEOR, ROUGE-L, CIDEr, TER, Mover, BERT, BLEURT
o Every task uses some subset of these metrics.
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Evaluation (Tasks)

e They chose to evaluate on generation tasks only.

e Lots of text-to-text metrics
o BLEU, NIST, METEOR, ROUGE-L, CIDEr, TER, Mover, BERT, BLEURT
o Every task uses some subset of these metrics.
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Evaluation (Table-to-Text)

e Given a table, generate the information that the table contains in natural
language.

Table-to-text Example

Table: name[Clowns] customer-
rating[1 out of 5] eatTypelcoffee
shop] food[Chinese] arealriverside]
near[Clare Hall]

Textual Description: Clowns is a
coffee shop in the riverside area
near Clare Hall that has a rating

1 out of 5 . They serve Chinese
food .
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Evaluation (Table-to-Text)

e Given a table, generate the information that the table contains in natural

language.
e 3 Datasets
o EZ2E: Restaurant Data Flat MR NL reference
. Loch Fyne is a family-friendly
© ( 1 domain ) name[Loch Fyne], restaurant providing wine and
i eatType[restaurant], cheese at a low cost.

o (Novikova et al. 2017) Focd|Erench],
priceRange[less than £20], Loch Fyne is a French family
familyFriendly[yes] friendly restaurant catering to

a budget of below £20.

Loch Fyne is a French
restaurant with a family setting
and perfect on the wallet.
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Evaluation (Table-to-Text)

e Given a table, generate the information that the table contains in natural
language.
e 3 Datasets
o WebNLG: <subject, property, object> triplets to text (14 domains)
o (Gardentet al. 2017)

a. (John_E_Blaha birthDate 1942 _08_26)
(John_E _Blaha birthPlace San_Antonio)
(John_E_Blaha occupation Fighter _pilot)

b. John E Blaha, born in San Antonio on 1942-08-26,
worked as a fighter pilot
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Evaluation (Table-to-Text)

e Given a table, generate the information that the table contains in natural
language.
e 3 Datasets
o DART: Triplets similar to WebNLG, but bigger and on all Wikipedia tables.
(Open domain)
o (Nan et al. 2021)

Parent-child [TITLE]: NFL Europe Stadiums

relations provided Team  Stadium  Stadium Team
by internal Team Stadium Capacity ~ Opened City
Ltator Amsterdam Admirals Amsterdam Arena 51,859 1996 Amsterdam, The Netherlands
Surface realization  Amsterdam Admirals Olympisch Stadion 31,600 1928  Amsterdam, The Netherlands
s rr:’l‘;ﬁe:d%rk Barcelona Dragons | Mini Estadi 15276 1982 Barcelona, Spain
annotator

¥ “The Amsterdam Admirals play in the Olympisch Stadion, which opened in 1928.”
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Evaluation (Summarization)

Given a longer passage, generate a few
summary sentences.
XSUM dataset.

©)

©)

©)

©)

BBC News Articles

Summarization requires pulling information
from various parts of the document, not
just one.

Designed to encourage abstraction of
high level concepts.

(Narayan et al. 2018)

SUMMARY: A man and a child have been killed
after a light aircraft made an emergency landing
on a beach in Portugal.

DOCUMENT: Authorities said the incident took
place on Sao Joao beach in Caparica, south-west
of Lisbon.

The National Maritime Authority said a middle-
aged man and a young girl died after they were un-
able to avoid the plane.

[6 sentences with 139 words are abbreviated from
here.]

Other reports said the victims had been sunbathing
when the plane made its emergency landing.
[Another 4 sentences with 67 words are abbreviated
from here.]

Video footage from the scene carried by local
broadcasters showed a small recreational plane
parked on the sand, apparently intact and sur-
rounded by beachgoers and emergency workers.
[Last 2 sentences with 19 words are abbreviated.]
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Evaluation (Baselines)

e FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.
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Evaluation (Baselines)

e FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.
e Adapter: Add adapter layers between each layer.
o From (Houlsby et al. 2019)
o Two versions: 3.6% / 0.1% of params. e —

Feed-forward layer

Multi-headed
attention

i [000000]
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Evaluation (Baselines)

e FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.
e Adapter: Add adapter layers between each layer.
o From (Houlsby et al. 2019)
o Two versions: 3.6% / 0.1% of params.
e State of the art on that task
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Evaluation (Baselines)

e FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.
e Adapter: Add adapter layers between each layer.
o From (Houlsby et al. 2019)
o Two versions: 3.6% / 0.1% of params.
e State of the art on that task
e If there is ever a percent sign after a method, it represents a variant
of the method that uses that percent of the model’s parameters.
o Ex: (Adapter 0.1%)
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Results (Table to Text)

e Prefix tuning outperforms other BLEU Score on Table-to-Text
H H H H 80 B Fine-Tune (100%)
lightweight tuning baselines. 7 A
(with less params!) W Adapter (35)
. ] 60 ’ B Adapter (0.1%)
e Comes close to fine tuning! B Prefix (0.1%)
@ @ soTA
40 /
20
0 = _
E2E WebNLG DART
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Results (Summarization)

R-1T R-21 R-L7
FINE-TUNE(Lewis et al., 2020) 45.14 22.27 37.25
PREFIX(2%) 43.80 20.93 36.05
PREFIX(0.1%) 4292 20.03 35.05

e Prefix tuning underperforms fine-tuning. (Performance gets better when

you increase the number of parameters)
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Results (Low-data regimes)

e Prefix tuning outperforms
fine-tuning when training data
size is low. %’34
e Trend seems unclear though.
3
060
050

Summarization
15 .
/l //
———— 14 o 1
~ ./ ./
5 013 //
()]
§ 3 .
/ method =2 / method
o —e— FT 11 | ¢ —e— FT
! —— PT —— PT
10
100 200 300 400 500 100 200 300 400 500
training_data_size training_data_size
method /. 0.66 /o
—— FT |
T | e
2 >
o @) /
/'/ o D62 method
-~ —— FT
0.60 e PT
100 200 300 400 500 200 300 400 500
training_data_size training_data_size
Table to text
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Results (Generalization to Unseen Domains)

Prefix tuning (and also Adapter)
outperform fine-tuning on
generalization to different
domains!

This holds for Table-to-Text and
Summarization.

Does not seem unique to
prefix-tuning though.

Performance on Unseen Domains (Table-to-Text)

60

40

BLEU

20

Fine-Tune FT-Top2 (8%) Adapter (3%) Adapter Prefix (0.1%) SOTA
(100%) (0.1%)
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Results (Generalization to Unseen Domains)

Prefix tuning (and also Adapter)
outperform fine-tuning on
generalization to different
domains!

This holds for Table-to-Text and
Summarization.

Does not seem unique to
prefix-tuning though.

Generalization Performance (Summarization)

B Fine-Tuning [ Prefix-Tuning
40

30

20

Rouge-1

10

News to sports Within news
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Ablations (Prefix-length)

e As the tunable prefix-length increases, performance increases, with
diminishing returns.

e Optimal length for table to text is 10 tokens, for summarization it seems closer
to 200 tokens.

: -9
Y
E 20.01 ¥ -35_03 _ 45.01 r0.475
S S O i
3 19.57 3455 0 gy 5 ) 10.470
« +— ROUGE-2 « ; —e— BLEU
19.0 1 I
+— ROUGE-L [34.0 —— TER L0.465
44.0 1
18.5 F33.5
1 0.460
0 100 200 300 0 10 20 30 40
Prefix Length (XSUM) Prefix Length (DART)
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Ablations (Embedding-Only Tuning)

e Tuning only the embedding layer is
not enough expressivity to match
prefix-tuning performance.

e (Don't get too attached to this

finding)

<eos>

:

Attention Layer

i

E2E

BLEU NIST MET ROUGE CIDEr

PREFIX

69.7 8.81 46.1 71.4 2.49

EMB-1
EMB-10
EMB-20

Embedding-only: EMB-{PrefixLength}
48.1 3.33 32.1 60.2 1.10
62.2 6.70  38.6 66.4 1.75
61.9 7.11 39.3 65.6 1.85
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Ablations (Prefix vs Infix)

Instead of tuning the prefix, tune a
portion at the end of the input and
before the output.

In other words, now we do
[Tunable, X inp, Y_out], but we
could instead do [X _inp, Tunable,
Y_out]

Infix tuning is worse than prefix
tuning, since input embeddings
cannot attend to infix.

E2E
BLEU NIST MET ROUGE CIDEr

PREFIX 69.7 8.81 46.1 714 2.49

Infix-tuning: INFIX-{PrefixLength}
INFIX-1 67.9 8.63 458 69.4 242
INFIX-10  67.2 848 458 69.9 240
INFIX-20  66.7 847 458 70.0 242
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Ablation (Initialization)

Initializing randomly performs
poorly and has high variance.

It's better to initialize with words in
the LM’s vocabulary.

It's even better to initialize with task
specific words (summarize /
table-to-text)

BLEU

0.60

0.55

0.50

0.45

J,T*?*%

o e e U L\ Y. (RN o)
@00 o \ep“asum“‘aﬂ X0 ‘eba“a et naWiET ke
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Key Findings

e Prefix-Tuning can come close to the performance of full model fine-tuning
with much less parameters.
e Tuning less parameters leads to better generalization performance.
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The Power of Scale for Parameter-Efficient Prompt Tuning

Brian Lester* Rami Al-Rfou Noah Constant
Google Research
{brianlester, rmyeid, nconstant}dgoogle.com

Published in EMNLP 2021
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Motivation

e \Why do we need prompt-tuning if we already have prefix-tuning?
o Prefix-tuning learns a sequence of prefixes that are prepended at every
transformer layer
o Prompt-tuning uses a single prompt representation that is prepended to the
embedded input
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Motivation

e \Why do we need prompt-tuning if we already have prefix-tuning?
o Prefix-tuning learns a sequence of prefixes that are prepended at every
transformer layer
o Prompt-tuning uses a single prompt representation that is prepended to the
embedded input

4 N

The “prefix-tuning” paper: Tuning only the embedding layer is not expressive enough
E2E
e Model scale? BLEU NIST MET ROUGE CIDEr
e Promptlength? PREFIX 697 881  46.1 71.4 2.49
e Prompt initialization? Embedding-only: EMB-{PrefixLength}
° Pre_training Settings? EMB-1 48.1 3.33 32.1 60.2 1.10
EMB-10 622 670 386 664 1.75

K EMB-20 61.9 7.11 393 65.6 1.85 )5




Methodology: Prompt-tuning

e Prepend virtual tokens to input

e Prompt and input representations flow
through model like normal

e Learn embeddings of only these special

tokens via backprop. Keep the rest fixed.

/
Pre-trained Model
# Frozen #*
\ \ A
A A A
S =
Y

Tunable Soft Prompt  Input Text

Image Credit: Brian Lester
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Methodology: Prompt-tuning

e Prepend virtual tokens to input

e Prompt and input representations flow
through model like normal

e Learn embeddings of only these special

tokens via backprop. Keep the rest fixed.

/pre-trained Pre (Y|X) \

|

fine-tuned PI‘Q;QP (Yl[P, X])
SN

\ fixed learnable, <<6 /

/
Pre-trained Model
# Frozen #*
\ A A
A A A
S 5/
Yo

Tunable Soft Prompt  Input Text

Image Credit: Brian Lester

57



Experiment Setup

e Model backbone: pre-trained TS5 models (Small, Base, Large, XL, XXL)

e Design decisions to explore
o Prompt initialization method
o Prompt length
o Pre-training method
o LM adaptation steps (if use “LM adaptation” as the pre-training method)
e Benchmark: SuperGLUE (a collection of eight challenging English language

understanding tasks)
o Each prompt trains on a single task
o [Each dataset is translated into a text-to-text format
o Task names prepended to inputs are omitted
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Design Decision: Prompt Initialization

1. Random initialization: train the prompt representations from scratch
2. Sampled vocabulary: initialize each prompt token to an embedding drawn

from the model’s vocabulary
3. Class label: initialize the prompt with embeddings that enumerate the output

classes
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Design Decision: Prompt Initialization

1. Random initialization: train the prompt representations from scratch
2. Sampled vocabulary: initialize each prompt token to an embedding drawn

from the model’s vocabulary
3. Class label: initialize the prompt with embeddings that enumerate the output

classes
v(1) = terrible v(2) =bad  v(3) = okay v1(0) = Wrong v;(1) = Right v(2) = Maybe
v(4) = good 9(5) = great ’UQ(O) = No 1)2(1) = Yes 1)2(2) = Maybe

Yelp dataset MNLI dataset
(Zhang et al.,2015) (Williams et al., 2018)
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Design Decision: Prompt Initialization

e Class label based initialization 100 .
=M= Random Uniform
performS best —~e~ Sampled Vocab
. 90 —x— Class Label
e The gaps between different

initializations disappear when the 80 /3
&
\.

() ]

model is scaled to XXL size /
70

g

60
|

N

108 10° 1010
Model Parameters

SuperGLUE Score

%
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Design Decision: Prompt Length

The shorter the prompt, the fewer new parameters must be tuned

SuperGLUE Score

100

90

80

70

60

50

-.- 1
—-4= 5

-o— 20 X
—x= 100 %’
-6~ 150 e =
2 4
%0

/. /

108 10° 1010
Model Parameters
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Design Decision: Prompt Length

e The shorter the prompt, the fewer new parameters must be tuned

-

Observations \

Increasing prompt length is critical
to achieve good performance

The largest model still gives strong
results with a single-token prompt
Increasing beyond 20 tokens only

yields marginal gains J

SuperGLUE Score

100

—-E-
e

90 —o-

80

70

60

50

1
)

._______..--\.

108

10°
Model Parameters

1010
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Design Decision: Pre-training Method

Span Corruption: The model is tasked with “reconstructing” masked spans in

the input text, which are marked with unique sentinel tokens.

sentinel

o

Pre-training

Input: Thank you <X> me to your party
Output: <X> for inviting <Y> last <Z>

<Y>

week

~
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Design Decision: Pre-training Method

e Span Corruption: The model is tasked with “reconstructing” masked spans in
the input text, which are marked with unique sentinel tokens.
e Span Corruption + Sentinel: prepend all downstream targets with a sentinel

sentinel

~

Pre-training

Input: Thank you <X> me to your party |[<Y>week
Output: <X> for inviting <Y> last <Z>
- J




Design Decision: Pre-training Method

e Span Corruption: The model is tasked with “reconstructing” masked spans in
the input text, which are marked with unique sentinel tokens.

e Span Corruption + Sentinel: prepend all downstream targets with a sentinel

e “LM Adaptation”: given a natural text prefix as input, the model must
produce the natural text continuation as output

["translate English to German: That is good."

[ "cola sentence: The "Das ist gut."]

course is jumping well."

"not acceptable"]

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

Raffel et al. (2020)

"six people hospitalized after
a storm in attala county."

"summarize: state authorities
dispatched emergency crews tuesday to

survey the damage after an onslaught
of severe weather in mississippi.."
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Design Decision: Pre-training Method

e “Span corruption” objective is not 100
. L. —m~- Span Corruption
well-suited for pre-training frozen % _,_ Span Corruption /x
entine m
models 8k ol (Lll"é)ég;’:iptation /x/x A
e Adding a sentinel to the downstream s 7° —
. . N 60
targets has little benefit s R
. )
e “LM Adaptation” performs best for all % .0
@

forgiving one 10

sizes of models 20 °\
e The largest model is the most 20 J
@ | |

108

10° 1010
Model Parameters
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Design Decision: LM Adaptation Steps

Longer adaptation provides
additional gains, up to 100K
steps

At the largest model size, the
gains from adaptation are quite
modest

JSuperuLurc SLoie

100

90

80

70

60

50

40

30

20

10

-m- 0K
=o— 10K /z
-~ 50K . / 'o‘
A ——

x— 100K %

/w\‘
%

%‘

v/
C

€

IS

108 10° 1010
Model Parameters
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Closing the Gap

) DeS|gn Conflguratlon —®= Model Tuning —m- Prompt Design
—®- Model Tuning (Multi-task)  =%= Prompt Tuning
o Prompt initialization: class label 100
o Prompt length: 100
o  Pre-training method: LM adaptation 90 —"
o LM adaptation steps: 100K o o/./
§ 0 %’
L
= =
(O]
3 " // ./
@ E |
60 / /-
50 /
10° 1010 101!

Model Parameters



Closing the Gap

PY DeSign Conﬁguration —®- Model Tuning —ml- Prompt Design
—®- Model Tuning (Multi-task)  =%= Prompt Tuning
o Prompt initialization: class label 100
o Prompt length: 100
o  Pre-training method: LM adaptation 90 —"
o LM adaptation steps: 100K o o/./
e Prompt tuning becomes more 3 80 %’
L
competitive with model tuning as = @
p. g % 70 /
scale increases o P
. v ——n
e Prompt tuning beats GPT-3 prompt 60 / /./
design by a large margin /
50
10° 1010 101!

Model Parameters



Closing the Gap

Q2. Comparing "model tuning", "prompt tuning" and "prompt design" in Lester et al., 2021,
how do their task performances scale with model sizes? Why do you think it is the case?

Efficient Multitask Serving
Strong Task Performance e
e p
A
Model Tuning Prompt Tuning Prompt Design
(a.k.a. “Fine-Tuning”) (Ours) (e.qg. GPT-3)
Pre-trained Model Pre-trained Model Pre-trained Model
¢y Tunable & % Frozen % % Frozen %
A A
LITTTTTIT] HEEpEEEEENR LIT I LT TTT]
\ e —— —¥V —— —
Input Text Tunable Soft  Input Text Engineered  Input Text

) ) Prompt Prompt
Image Credit: Brian Lester 71



Closing the Gap

Q2. Comparing "model tuning”, "prompt tuning"” and "prompt design"” in Lester et
al., 2021, how do their task performances scale with model sizes? Why do you
think it is the case?

e Scalability
o Model tuning: fairly good — poor
o Prompt tuning: very good
o Prompt design: poor
e Reason
o Model tuning: possibly over-parameterized when model size is large
o Prompt tuning: reserving general understanding and including tunable
parameters
o Prompt design: not fitting downstream tasks well
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Closing the Gap

Q2. Comparing "model tuning”, "prompt tuning"” and "prompt design"” in Lester et
al., 2021, how do their task performances scale with model sizes? Why do you
think it is the case?

When the model size is relatively small, “model tuning” outperforms “prompt tuning” by a
small margin. However, “prompt tuning” becomes more competitive with “model tuning”
as scale increases. “Prompt tuning” beats “prompt design” by a large margin with all
sizes of models.

In “prompt design”, prompts are chosen manually and there is no tunable task-specific
parameters. Thus, the model can't fit the downstream task well. When the model size is
large, “model tuning” may be over-parameterized and more prone to overfit the training
task. “Prompt tuning” prevents the model from modifying its general understanding of
language and also includes tunable task-specific prompt representations.
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Comparison to Similar Approaches

e Compared with prefix-tuning e =SETTEE

=®= Prefix Tuning (Train) =%=— Prompt Tuning
=+=Prefix Tuning (Infer) —e~— Prompt Design

o Tuning only the embedding layer
o No need for prefix
reparameterization

100%

109 -10%
" -1%
% 107 i - 0.1%
e Compared with WARP 5 L.
= . 0
(a8
o Less extra parameters 310 In—
o  WARP can only work on 3 |
classification 10° | | ‘
a— ° @ ® S I
108 10° 1g*e

Model Parameters

(%) sio1oweled jse|

74



Resilience to Domain Shift

e Tasks: question answering (QA) and paraphrase detection

e (Question answering
o MRQA 2019 (Fisch et al., 2019) shared task on generalization
o It collects extractive QA datasets in a unified format
o Train on “in-domain” datasets and evaluate on “out-of-domain” datasets
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Resilience to Domain Shift

e Tasks: question answering (QA) and paraphrase detection
e (Question answering
o MRQA 2019 (Fisch et al., 2019) shared task on generalization
o It collects extractive QA datasets in a unified format
o Train on “in-domain” datasets and evaluate on “out-of-domain” datasets

Dataset Domain | Model Prompt A

in-domain SQuAD Wiki | 949 4+0.2 94.8 +0.1 —0.1
TextbookQA | Book 543 +3.7 668 29| +12.5

BioASQ Bio 779 04 79.1 +0.3 +1.2

out-of- RACE Exam 59.8 £0.6 60.7 +0.5 +0.9

domain RE Wiki 88.4 +0.1 88.8 +0.2 +0.4
DuoRC Movie 68.9 +0.7 67.7 +1.1 —1.2

DROP Wiki 689 +1.7 67.1 1.9 —1.8
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Resilience to Domain Shift

e Tasks: question answering (QA) and paraphrase detection
e (Question answering
e Paraphrase detection
o Transfer between two paraphrase tasks from GLUE (Wang et al., 2019b)
o QQP (lyer et al., 2017): ask if two questions from Quora are “duplicates”.
o MRPC (Dolan and Brockett, 2005): asks if two sentences drawn from news articles
are paraphrases
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Resilience to Domain Shift

Tasks: question answering (QA) and paraphrase detection

Question answering
Paraphrase detection

©)

©)

©)

Transfer between two paraphrase tasks from GLUE (Wang et al., 2019b)
QQP (lyer et al., 2017): ask if two questions from Quora are “duplicates”.
MRPC (Dolan and Brockett, 2005): asks if two sentences drawn from news articles

are paraphrases

Train  Eval Tuning | Accuracy F1

QQP MRPC Model | 73.1 £0.9 81.2 £2.1
Prompt || 76.3 £0.1 84.3 0.3

MRPC QQP Model || 749 £1.3 709 *+1.2
Prompt || 75.4 +£0.8 69.7 0.3
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Resilience to Domain Shift

Tasks: question answering (QA) and paraphrase detection
Question answering
Paraphrase detection
Conclusions
o Prompt tuning prevents the model from modifying its general understanding of
language
o Model tuning may be over-parameterized and more prone to overfit the training
task, to the detriment of similar tasks in different domains
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Prompt Ensembling

e Train N prompts on the same task — create N separate “models”
e One example is replicated across the batch and is processed varying the
prompt
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Prompt Ensembling

e Train N prompts on the same task — create N separate “models”
e One example is replicated across the batch and is processed varying the
prompt

Dataset Metric | Average Best Ensemble
BoolQ acc. 91.1 91.3 91.7

CB acc./F1 | 99.3/99.0 100.00/100.00 | 100.0/100.0
COPA acc. 08.8 100.0 100.0

MultiRC  EM/F1, | 65.7/88.7 66.3/89.0 67.1/89.4
ReCoRD EM/F1 | 92.7/93.4 0929/93.5 93.2/93.9

RTE acc. 92.6 93.5 93.5
WiC acc. 76.2 76.6 77.4
WSC acce. 05.8 96.2 96.2

SuperGLUE (dev) 90.5 91.0 91.3




Interpretability

e discrete token — continuous embedding: difficult to interpret

e Find the nearest neighbors to the learned prompts from the vocabulary
o The top-5 nearest neighbors form tight semantic clusters
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Interpretability

e discrete token — continuous embedding: difficult to interpret

e Find the nearest neighbors to the learned prompts from the vocabulary
o The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations

{Technology / technology / Technologies / technological / technologies}
{entirely / completely / totally / altogether / 100% }

83



Interpretability

discrete token — continuous embedding: difficult to interpret
Find the nearest neighbors to the learned prompts from the vocabulary
o The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations
o The class labels persist through training: learning to store the expected output

Initialized with “technology” \

{Technology / technology / Technologies / technological / technologies)
{lentirely / completely / totally / altogether / 100% }

Initialized with “completely” /

84



Interpretability

e discrete token — continuous embedding: difficult to interpret
e Find the nearest neighbors to the learned prompts from the vocabulary

(@)

The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations

The class labels persist through training: learning to store the expected output
Several prompt tokens have the same nearest neighbors if the prompt is long:
difficult to localize information to a specific position
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Interpretability

discrete token — continuous embedding: difficult to interpret
Find the nearest neighbors to the learned prompts from the vocabulary

(@)

The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations

The class labels persist through training: learning to store the expected output
Several prompt tokens have the same nearest neighbors if the prompt is long:
difficult to localize information to a specific position

Don'’t get too attached to the findings here!

A “wayward” behavior is observed:
https://arxiv.org/pdf/2112.08348.pdf
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Key Findings

e Prompt tuning is a competitive technique due to
o Better performance scalability as model size increases
o More forgiving for bad design decisions (when model is large)
o Improved generalization ability

o Enabling efficient high-performing prompt ensembling
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Discussion

Q3: You have collected a dataset for a downstream task of your
interest and you are asked to design a prompting tuning method to
solve it, which design choices do you need to consider? Can you
think of other parameter-efficient methods besides what we have
seen in these two papers?
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