
Prompt as Parameter-Efficient
Fine-Tuning

Chris Pan and Hongjie Wang

1

Agenda

Background (~5 minutes)

Prefix Tuning (~25 minutes)

● Motivation
● Methodology
● Results
● Additional Experiments
● Discussion

Prompt Tuning (~30 minutes)

● Introduction
● Prompt tuning
● Design Decisions
● Compare with previous methods
● Resilience
● Prompt ensembling
● Interpretability

2

Background: Fine Tuning

● Pretrain a language model on
task

3

Devlin et al. 2019

https://arxiv.org/pdf/1810.04805.pdf

Background: Fine Tuning

● Pretrain a language model on
task

● Attach a small task specific
layer

4

Devlin et al. 2019

https://arxiv.org/pdf/1810.04805.pdf

Background: Fine Tuning

● Pretrain a language model on
task

● Attach a small task specific layer
● Fine-tune the weights of full

NN by propagating gradients
on a downstream task

5

Devlin et al. 2019

https://arxiv.org/pdf/1810.04805.pdf

Background: In-context Learning

● Pretrain a language model on
task (LM)

fromage

6

Brown et al. 2020

https://arxiv.org/pdf/2005.14165.pdf

Background: In-context Learning

● Pretrain a language model on
task (LM)

● Manually design a “prompt”
that demonstrates how to
formulate a task as a
generation task.

fromage

7

Brown et al. 2020

https://arxiv.org/pdf/2005.14165.pdf

Background: In-context Learning

● Pretrain a language model on
task (LM)

● Manually design a “prompt” that
demonstrates how to formulate a
task as a generation task.

● No need to update the model
weights at all!

fromage

8

Brown et al. 2020

https://arxiv.org/pdf/2005.14165.pdf

Background: Parameter-efficient Fine tuning

● With standard fine-tuning, we need to
make a new copy of the model for
each task.

9

Background: Parameter-efficient Fine tuning

● With standard fine-tuning, we need to
make a new copy of the model for
each task.

● In the extreme case of a different
model per user, we could never store
1000 different full models.

10

Background: Parameter-efficient Fine tuning

● With standard fine-tuning, we need to
make a new copy of the model for
each task.

● In the extreme case of a different
model per user, we could never store
1000 different full models.

● If we fine tuned a subset of the
parameters for each task, we could
alleviate storage costs. This is
parameter-efficiency.

11

Image: (He et al. 2022)

https://arxiv.org/pdf/2110.04366.pdf

Background: Parameter-efficient Fine tuning

● With standard fine-tuning, we need to
make a new copy of the model for
each task.

● In the extreme case of a different
model per user, we could never store
1000 different full models.

● If we fine tuned a subset of the
parameters for each task, we could
alleviate storage costs. This is
parameter-efficiency.

12

Image: (He et al. 2022)

https://arxiv.org/pdf/2110.04366.pdf

Background: Adapter Fine Tuning

● They add adapter layers in between
the transformer layers of a large
model.

13

(Houlsby et al. 2019)

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

Background: Adapter Fine Tuning

● They add adapter layers in between
the transformer layers of a large
model.

● During fine-tuning, they fix the
original model parameters and only
tune the adapter layers.

14

(Houlsby et al. 2019)

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

Background: Adapter Fine Tuning

● They add adapter layers in between
the transformer layers of a large
model.

● During fine-tuning, they fix the
original model parameters and only
tune the adapter layers.

● No need to store a full model for each
task, only the adapter params.

15

(Houlsby et al. 2019)

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

Background: Adapter Fine Tuning

● They add adapter layers in between
the transformer layers of a large
model.

● During fine-tuning, they fix the
original model parameters and only
tune the adapter layers.

● No need to store a full model for each
task, only the adapter params.

● 3.6% of parameters needed!

16

(Houlsby et al. 2019)

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

17

Published in ACL 2021

Motivation

● For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.

18

https://arxiv.org/pdf/2005.14165.pdf

Motivation

● For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.

● Optimization in discrete space is hard!
(Gao et al. 2021)

19

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.15723.pdf

Motivation

● For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.

● Optimization in discrete space is hard!
(Gao et al. 2021)

● What if we can optimize the prompt in
the continuous embedding space?

20

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.15723.pdf

Motivation

● For prompt design (Brown et al. 2020),
the discrete prompt is optimized
manually.

● Optimization in discrete space is hard!
(Gao et al. 2021)

● What if we can optimize the prompt in
the continuous embedding space?

● This would sacrifice interpretability but
would be easier to optimize.

21

https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2012.15723.pdf

Methodology

● Rather than designing a
prompt manually, we
can learn an optimal
prefix for each task.

22

Methodology

● Rather than designing a
prompt manually, we
can learn an optimal
prefix for each task.

● Only ~0.1% of
parameters need to be
tuned! (adapter is 3.6%)

23

Methodology

● Rather than designing a
prompt manually, we
can learn an optimal
prefix for each task.

● Only ~0.1% of
parameters need to be
tuned! (adapter is 3.6%)

24

Discussion Q1:
List the differences between the prompting tuning

methods introduced in these two papers and the ones we
learned in the previous lecture

Methodology

25

● Rather than designing a
prompt manually, we
can learn an optimal
prefix for each task.

● Only ~0.1% of
parameters need to be
tuned! (adapter is 3.6%)

Discussion Q1:
List the differences between the prompting tuning

methods introduced in these two papers and the ones we
learned in the previous lecture

Previously, prompts were designed using interpretable,
discrete tokens, which are then transformed into

continuous space using embeddings. In prefix and
prompt tuning, they relax this constraint, and tune the

prompt in continuous space via gradient descent.

Methodology: Hidden State Tuning

● Can this be viewed as a continuous relaxation of discrete prompts?

Yay! We just get to tune these now →
26

Methodology: Hidden State Tuning

● Can this be viewed as a continuous relaxation of discrete prompts?

Actually no!

Yay! We just get to tune these now →
27

Methodology: Hidden State Tuning

● Can this be viewed as a continuous relaxation of discrete prompts?

Actually no!

We actually get to tune ALL of these →

28

Methodology: Hidden State Tuning

● Can this be viewed as a continuous relaxation of discrete prompts?
● It’s not just the prompts in the prefix that get tuned, it is also the

hidden representations of later layer.

29

Image: (He et al. 2022)

https://arxiv.org/pdf/2110.04366.pdf

Methodology: Encoder-decoder Models

● Encoder-decoder models get two trainable prefixes, one for encoder and
one for decoder

30

Evaluation (Tasks)

● They chose to evaluate on generation tasks only.

31

Evaluation (Tasks)

● They chose to evaluate on generation tasks only.
● Lots of text-to-text metrics

○ BLEU, NIST, METEOR, ROUGE-L, CIDEr, TER, Mover, BERT, BLEURT
○ Every task uses some subset of these metrics.

32

Evaluation (Tasks)

● They chose to evaluate on generation tasks only.
● Lots of text-to-text metrics

○ BLEU, NIST, METEOR, ROUGE-L, CIDEr, TER, Mover, BERT, BLEURT
○ Every task uses some subset of these metrics.

33

Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural
language.

34

Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural
language.

● 3 Datasets
○ E2E: Restaurant Data
○ (1 domain)
○ (Novikova et al. 2017)

35

https://arxiv.org/pdf/1706.09254.pdf

Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural
language.

● 3 Datasets
○ WebNLG: <subject, property, object> triplets to text (14 domains)
○ (Gardent et al. 2017)

36

https://arxiv.org/pdf/1706.09254.pdf

Evaluation (Table-to-Text)

● Given a table, generate the information that the table contains in natural
language.

● 3 Datasets
○ DART: Triplets similar to WebNLG, but bigger and on all Wikipedia tables.

(Open domain)
○ (Nan et al. 2021)

37

https://arxiv.org/pdf/2007.02871v2.pdf

Evaluation (Summarization)

● Given a longer passage, generate a few
summary sentences.

● XSUM dataset.
○ BBC News Articles
○ Summarization requires pulling information

from various parts of the document, not
just one.

○ Designed to encourage abstraction of
high level concepts.

○ (Narayan et al. 2018)

38

https://arxiv.org/pdf/1808.08745.pdf

Evaluation (Baselines)

● FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.

39

Evaluation (Baselines)

● FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.

● Adapter: Add adapter layers between each layer.
○ From (Houlsby et al. 2019)
○ Two versions: 3.6% / 0.1% of params.

40

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

Evaluation (Baselines)

● FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.

● Adapter: Add adapter layers between each layer.
○ From (Houlsby et al. 2019)
○ Two versions: 3.6% / 0.1% of params.

● State of the art on that task

41

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

Evaluation (Baselines)

● FT-Top 2: Only fine-tune the top 2 layers of the neural network, freeze the
rest.

● Adapter: Add adapter layers between each layer.
○ From (Houlsby et al. 2019)
○ Two versions: 3.6% / 0.1% of params.

● State of the art on that task
● If there is ever a percent sign after a method, it represents a variant

of the method that uses that percent of the model’s parameters.
○ Ex: (Adapter 0.1%)

42

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf

Results (Table to Text)

● Prefix tuning outperforms other
lightweight tuning baselines.
(with less params!)

● Comes close to fine tuning!

43

Results (Summarization)

● Prefix tuning underperforms fine-tuning. (Performance gets better when
you increase the number of parameters)

44

Results (Low-data regimes)

● Prefix tuning outperforms
fine-tuning when training data
size is low.

● Trend seems unclear though.

Summarization

Table to text

45

Results (Generalization to Unseen Domains)

● Prefix tuning (and also Adapter)
outperform fine-tuning on
generalization to different
domains!

● This holds for Table-to-Text and
Summarization.

● Does not seem unique to
prefix-tuning though.

46

Results (Generalization to Unseen Domains)

● Prefix tuning (and also Adapter)
outperform fine-tuning on
generalization to different
domains!

● This holds for Table-to-Text and
Summarization.

● Does not seem unique to
prefix-tuning though.

47

Ablations (Prefix-length)

● As the tunable prefix-length increases, performance increases, with
diminishing returns.

● Optimal length for table to text is 10 tokens, for summarization it seems closer
to 200 tokens.

48

Ablations (Embedding-Only Tuning)

● Tuning only the embedding layer is
not enough expressivity to match
prefix-tuning performance.

● (Don’t get too attached to this
finding)

49

Ablations (Prefix vs Infix)

● Instead of tuning the prefix, tune a
portion at the end of the input and
before the output.

● In other words, now we do
[Tunable, X_inp, Y_out], but we
could instead do [X_inp, Tunable,
Y_out]

● Infix tuning is worse than prefix
tuning, since input embeddings
cannot attend to infix.

50

Ablation (Initialization)

● Initializing randomly performs
poorly and has high variance.

● It’s better to initialize with words in
the LM’s vocabulary.

● It’s even better to initialize with task
specific words (summarize /
table-to-text)

51

Key Findings

● Prefix-Tuning can come close to the performance of full model fine-tuning
with much less parameters.

● Tuning less parameters leads to better generalization performance.

52

53

Published in EMNLP 2021

Motivation

● Why do we need prompt-tuning if we already have prefix-tuning?
○ Prefix-tuning learns a sequence of prefixes that are prepended at every

transformer layer
○ Prompt-tuning uses a single prompt representation that is prepended to the

embedded input

54

Motivation

● Why do we need prompt-tuning if we already have prefix-tuning?
○ Prefix-tuning learns a sequence of prefixes that are prepended at every

transformer layer
○ Prompt-tuning uses a single prompt representation that is prepended to the

embedded input

The “prefix-tuning” paper: Tuning only the embedding layer is not expressive enough

● Model scale?
● Prompt length?
● Prompt initialization?
● Pre-training settings?

55

Methodology: Prompt-tuning

● Prepend virtual tokens to input
● Prompt and input representations flow

through model like normal
● Learn embeddings of only these special

tokens via backprop. Keep the rest fixed.

56

Image Credit: Brian Lester

Methodology: Prompt-tuning

● Prepend virtual tokens to input
● Prompt and input representations flow

through model like normal
● Learn embeddings of only these special

tokens via backprop. Keep the rest fixed.

fixed learnable, <<𝛳

pre-trained

fine-tuned

57

Image Credit: Brian Lester

Experiment Setup

● Model backbone: pre-trained T5 models (Small, Base, Large, XL, XXL)
● Design decisions to explore

○ Prompt initialization method
○ Prompt length
○ Pre-training method
○ LM adaptation steps (if use “LM adaptation” as the pre-training method)

● Benchmark: SuperGLUE (a collection of eight challenging English language
understanding tasks)
○ Each prompt trains on a single task
○ Each dataset is translated into a text-to-text format
○ Task names prepended to inputs are omitted

58

Design Decision: Prompt Initialization

1. Random initialization: train the prompt representations from scratch
2. Sampled vocabulary: initialize each prompt token to an embedding drawn

from the model’s vocabulary
3. Class label: initialize the prompt with embeddings that enumerate the output

classes

59

Design Decision: Prompt Initialization

1. Random initialization: train the prompt representations from scratch
2. Sampled vocabulary: initialize each prompt token to an embedding drawn

from the model’s vocabulary
3. Class label: initialize the prompt with embeddings that enumerate the output

classes

Yelp dataset
(Zhang et al.,2015)

MNLI dataset
(Williams et al., 2018)

60

http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://aclweb.org/anthology/N18-1101

Design Decision: Prompt Initialization

● Class label based initialization
performs best

● The gaps between different
initializations disappear when the
model is scaled to XXL size

61

Design Decision: Prompt Length

● The shorter the prompt, the fewer new parameters must be tuned

62

● The shorter the prompt, the fewer new parameters must be tuned

Design Decision: Prompt Length

● Increasing prompt length is critical
to achieve good performance

● The largest model still gives strong
results with a single-token prompt

● Increasing beyond 20 tokens only
yields marginal gains

Observations

63

Design Decision: Pre-training Method

● Span Corruption: The model is tasked with “reconstructing” masked spans in
the input text, which are marked with unique sentinel tokens.

Input: Thank you <X> me to your party <Y> week
Output: <X> for inviting <Y> last <Z>

Pre-training

sentinel

64

Design Decision: Pre-training Method

● Span Corruption: The model is tasked with “reconstructing” masked spans in
the input text, which are marked with unique sentinel tokens.

● Span Corruption + Sentinel: prepend all downstream targets with a sentinel

Input: Thank you <X> me to your party <Y> week
Output: <X> for inviting <Y> last <Z>

Pre-training

sentinel

65

Design Decision: Pre-training Method

● Span Corruption: The model is tasked with “reconstructing” masked spans in
the input text, which are marked with unique sentinel tokens.

● Span Corruption + Sentinel: prepend all downstream targets with a sentinel
● “LM Adaptation”: given a natural text prefix as input, the model must

produce the natural text continuation as output

Raffel et al. (2020)

66

https://jmlr.org/papers/volume21/20-074/20-074.pdf

Design Decision: Pre-training Method

● “Span corruption” objective is not
well-suited for pre-training frozen
models

● Adding a sentinel to the downstream
targets has little benefit

● “LM Adaptation” performs best for all
sizes of models

● The largest model is the most
forgiving one

67

Design Decision: LM Adaptation Steps

● Longer adaptation provides
additional gains, up to 100K
steps

● At the largest model size, the
gains from adaptation are quite
modest

68

Closing the Gap

● Design configuration
○ Prompt initialization: class label
○ Prompt length: 100
○ Pre-training method: LM adaptation
○ LM adaptation steps: 100K

69

Closing the Gap

● Design configuration
○ Prompt initialization: class label
○ Prompt length: 100
○ Pre-training method: LM adaptation
○ LM adaptation steps: 100K

● Prompt tuning becomes more
competitive with model tuning as
scale increases

● Prompt tuning beats GPT-3 prompt
design by a large margin

70

Closing the Gap
Q2. Comparing "model tuning", "prompt tuning" and "prompt design" in Lester et al., 2021,
how do their task performances scale with model sizes? Why do you think it is the case?

71Image Credit: Brian Lester

Closing the Gap
Q2. Comparing "model tuning", "prompt tuning" and "prompt design" in Lester et
al., 2021, how do their task performances scale with model sizes? Why do you
think it is the case?

72

● Scalability
○ Model tuning: fairly good → poor
○ Prompt tuning: very good
○ Prompt design: poor

● Reason
○ Model tuning: possibly over-parameterized when model size is large
○ Prompt tuning: reserving general understanding and including tunable

parameters
○ Prompt design: not fitting downstream tasks well

Closing the Gap
Q2. Comparing "model tuning", "prompt tuning" and "prompt design" in Lester et
al., 2021, how do their task performances scale with model sizes? Why do you
think it is the case?

73

When the model size is relatively small, “model tuning” outperforms “prompt tuning” by a
small margin. However, “prompt tuning” becomes more competitive with “model tuning”
as scale increases. “Prompt tuning” beats “prompt design” by a large margin with all
sizes of models.
In “prompt design”, prompts are chosen manually and there is no tunable task-specific
parameters. Thus, the model can’t fit the downstream task well. When the model size is
large, “model tuning” may be over-parameterized and more prone to overfit the training
task. “Prompt tuning” prevents the model from modifying its general understanding of
language and also includes tunable task-specific prompt representations.

Comparison to Similar Approaches

● Compared with prefix-tuning
○ Tuning only the embedding layer
○ No need for prefix

reparameterization

● Compared with WARP
○ Less extra parameters
○ WARP can only work on

classification

74

Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering

○ MRQA 2019 (Fisch et al., 2019) shared task on generalization
○ It collects extractive QA datasets in a unified format
○ Train on “in-domain” datasets and evaluate on “out-of-domain” datasets

75

https://arxiv.org/pdf/1910.09753.pdf

Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering

○ MRQA 2019 (Fisch et al., 2019) shared task on generalization
○ It collects extractive QA datasets in a unified format
○ Train on “in-domain” datasets and evaluate on “out-of-domain” datasets

76

in-domain

out-of-
domain

https://arxiv.org/pdf/1910.09753.pdf

Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering
● Paraphrase detection

○ Transfer between two paraphrase tasks from GLUE (Wang et al., 2019b)
○ QQP (Iyer et al., 2017): ask if two questions from Quora are “duplicates”.
○ MRPC (Dolan and Brockett, 2005): asks if two sentences drawn from news articles

are paraphrases

77

https://arxiv.org/abs/1804.07461
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/I05-50025B15D.pdf

Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering
● Paraphrase detection

○ Transfer between two paraphrase tasks from GLUE (Wang et al., 2019b)
○ QQP (Iyer et al., 2017): ask if two questions from Quora are “duplicates”.
○ MRPC (Dolan and Brockett, 2005): asks if two sentences drawn from news articles

are paraphrases

78

https://arxiv.org/abs/1804.07461
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/I05-50025B15D.pdf

Resilience to Domain Shift

● Tasks: question answering (QA) and paraphrase detection
● Question answering
● Paraphrase detection
● Conclusions

○ Prompt tuning prevents the model from modifying its general understanding of
language

○ Model tuning may be over-parameterized and more prone to overfit the training
task, to the detriment of similar tasks in different domains

79

Prompt Ensembling

● Train N prompts on the same task → create N separate “models”
● One example is replicated across the batch and is processed varying the

prompt

80

Prompt Ensembling

● Train N prompts on the same task → create N separate “models”
● One example is replicated across the batch and is processed varying the

prompt

81

Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters

82

Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations

83

{Technology / technology / Technologies / technological / technologies}
{entirely / completely / totally / altogether / 100% }

Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations

○ The class labels persist through training: learning to store the expected output

84

{Technology / technology / Technologies / technological / technologies}
{entirely / completely / totally / altogether / 100% }

Initialized with “technology”

Initialized with “completely”

Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations

○ The class labels persist through training: learning to store the expected output
○ Several prompt tokens have the same nearest neighbors if the prompt is long:

difficult to localize information to a specific position

85

Interpretability

● discrete token → continuous embedding: difficult to interpret
● Find the nearest neighbors to the learned prompts from the vocabulary

○ The top-5 nearest neighbors form tight semantic clusters: learning “word-like”
representations

○ The class labels persist through training: learning to store the expected output
○ Several prompt tokens have the same nearest neighbors if the prompt is long:

difficult to localize information to a specific position

86

Don’t get too attached to the findings here!
A “wayward” behavior is observed:

https://arxiv.org/pdf/2112.08348.pdf

https://arxiv.org/pdf/2112.08348.pdf

Key Findings

● Prompt tuning is a competitive technique due to

○ Better performance scalability as model size increases

○ More forgiving for bad design decisions (when model is large)

○ Improved generalization ability

○ Enabling efficient high-performing prompt ensembling

87

Discussion

Q3: You have collected a dataset for a downstream task of your
interest and you are asked to design a prompting tuning method to
solve it, which design choices do you need to consider? Can you
think of other parameter-efficient methods besides what we have

seen in these two papers?

88

