Prompting for Few-shot Learning

Edward Tian and Kaixuan Huang

What is a good prompt?

GPT3: "A good prompt is one that is general enough to be used for a variety of tasks, but specific enough to be helpful for a particular task"

What makes a good prompt? for an NLP task,

GPT3: "a good prompt is one that is specific and **provides enough context for the model** to be able to generate a response that is relevant to the task."

 $\bullet \bullet \bullet$

Large Language Models are Few-shot Learners (Brown, et al.)

- GPT-3 huge motivator for prompting
- Earliest work in prompts traces back to GPT-1/2 (Radford et al., 2018,2019)
- With good prompts, LMs can achieve decent zero-shot performance on tasks from sentiment classification to reading comprehension

 $\bullet \bullet \bullet$

Can we make "smaller" LMs also work with few examples?

GPT

Natural language prompts, gigantic model, few in-context examples, no-parameters updated

BERT

110M Parameters 1000x smaller than GPT3 Generic [CLS] Token Fine-tuned to 2.5 to 400k examples for GLUE tasks

How to adapt a pre-trained Language model?

Head-based fine-tuning

How to adapt a pre-trained Language model?

Prompt-based fine-tuning

Head-based v.s. Prompt-based Fine-tuning

	Head-based	Prompt-based
New parameters?	Yes. hidden_size * num_classes	No
Few-shot friendly?		

Prompt-based Fine-tuning (Classification task)

Input: x_1 = No reason to watch.

Step 1. Formulate the downstream task into a (Masked) LM problem using a *template:*

Prompt-based Fine-tuning (Classification task)

Input: x_1 = No reason to watch.

Step 1. Formulate the downstream task into a (Masked) LM problem using a template:

Step 2. Choose a *label word mapping* \mathcal{M} , which maps task labels to individual words.

great (label:positive) terrible (label:negative) 🗸 -Label mapping $\mathcal{M}(\mathcal{Y})$

Prompt-based Fine-tuning (Classification Task)

Step 3. Fine-tune the LM to fill in the correct label word.

p(

$$\begin{aligned} y \mid x_{\text{in}} &= p\left([\text{MASK}] = \mathcal{M}(y) \mid x_{\text{prompt}} \right) \\ &= \frac{\exp\left(\mathbf{w}_{\mathcal{M}(y)} \cdot \mathbf{h}_{[\text{MASK}]} \right)}{\sum_{y' \in \mathcal{Y}} \exp\left(\mathbf{w}_{\mathcal{M}(y')} \cdot \mathbf{h}_{[\text{MASK}]} \right)}, \end{aligned}$$

Image Source: Making Pre-trained Language Models Better Few-shot Learners, Gao, et al. 2021

Prompt-based Fine-tuning (Regression Task)

Regression: interpolating between two extremes

$$y = v_l \cdot p(y_l \mid x_{\rm in}) + v_u \cdot p(y_u \mid x_{\rm in})$$

13

Prompt-based Fine-tuning (Regression Task)

Regression: interpolating between two extremes

$$y = v_l \cdot p(y_l \mid x_{\rm in}) + v_u \cdot p(y_u \mid x_{\rm in})$$

The LM is fine-tuned to minimize the KL-divergence between the inferred $p(y_u \mid x_{in})$ and the observed mixture weight $(y-v_l)/(v_u-v_l)$

Image adapted from: Making Pre-trained Language Models Better Few-shot Learners, Gao, et al. 2021

Q1. How does prompt-based fine-tuning work and why does it outperform head-based fine-tuning (as the method described in BERT) in low-data regimes?

A1. Prompt-based fine-tuning involves:

- a **template** which turns the downstream task into a (masked) language modelling problem, and
- a set of **label words** that map the textual output of the LM to the classification labels.

In this way, we don't need to introduce any new parameters so all the pre-trained parameters can be fine-tuned more sample-efficiently.

It outperforms head-based fine-tuning in low-data regimes since BERT introduces new randomly-initialized parameters (often more than 1k), which are hard to learn well from only a few examples.

Making Pre-trained Language Models Better Few-shot Learners

Tianyu Gao, Adam Fisch, Danqi Chen

Datasets

Category	Dataset	$ \mathcal{Y} $	Туре	Labels (classification tasks)	Most tasks:
24	SST-2	2	sentiment	positive, negative	# Labels <= 3
	SST-5	5	sentiment	v. pos., positive, neutral, negative, v. neg.	
	MR	2	sentiment	positive, negative	
single-	CR	2	sentiment	positive, negative	
sentence	MPQA	2	opinion polarity	positive, negative	
	Subj	2	subjectivity	subjective, objective	
	TREC	6	question cls.	abbr., entity, description, human, loc., num.	
	CoLA	2	acceptability	grammatical, not_grammatical	
	MNLI	3	NLI	entailment, neutral, contradiction	
	SNLI	3	NLI	entailment, neutral, contradiction	
sentence-	QNLI	2	NLI	entailment, not_entailment	
pair	RTE	2	NLI	entailment, not_entailment	
	MRPC	2	paraphrase	equivalent, not_equivalent	
	QQP	2	paraphrase	equivalent, not_equivalent	
	STS-B	\mathcal{R}	sent. similarity	-	

Source: Making Pre-trained Language Models Better Few-shot Learners, Gao, et al. 2021

Datasets

Category	Dataset	$ \mathcal{Y} $	Туре	Labels (classification tasks)	 Most tasks:
	SST-2	2	sentiment	positive, negative	# Labels <= 3
→	SST-5	5	sentiment	v. pos., positive, neutral, negative, v. neg.	 SST-5,
	MR	2	sentiment	positive, negative	TREC
single-	CR	2	sentiment	positive, negative	
sentence	MPQA	2	opinion polarity	positive, negative	have 5 or 6
	Subj	2	subjectivity	subjective, objective	labels
	TREC	6	question cls.	abbr., entity, description, human, loc., num.	
	CoLA	2	acceptability	grammatical, not_grammatical	
	MNLI	3	NLI	entailment, neutral, contradiction	
	SNLI	3	NLI	entailment, neutral, contradiction	
sentence-	QNLI	2	NLI	entailment, not_entailment	
pair	RTE	2	NLI	entailment, not_entailment	
	MRPC	2	paraphrase	equivalent, not_equivalent	
	QQP	2	paraphrase	equivalent, not_equivalent	
	STS-B	${\cal R}$	sent. similarity	-	

Source: Making Pre-trained Language Models Better Few-shot Learners, Gao, et al. 2021

Datasets

Category	Dataset	$ \mathcal{Y} $	Туре	Labels (classification tasks)	 Most tasks:
о.	SST-2	2	sentiment	positive, negative	# Labels <= 3
	SST-5	5	sentiment	v. pos., positive, neutral, negative, v. neg.	 SST-5,
	MR	2	sentiment	positive, negative	TREC
single-	CR	2	sentiment	positive, negative	
sentence	MPQA	2	opinion polarity	positive, negative	have 5 or 6
	Subj	2	subjectivity	subjective, objective	labels
	TREC	6	question cls.	abbr., entity, description, human, loc., num.	• STS-B is a
	CoLA	2	acceptability	grammatical, not_grammatical	
	MNLI	3	NLI	entailment, neutral, contradiction	took
	SNLI	3	NLI	entailment, neutral, contradiction	lask
sentence-	QNLI	2	NLI	entailment, not_entailment	
pair	RTE	2	NLI	entailment, not_entailment	
	MRPC	2	paraphrase	equivalent, not_equivalent	
	QQP	2	paraphrase	equivalent, not_equivalent	
→	STS-B	${\mathcal R}$	sent. similarity	-	

Source: Making Pre-trained Language Models Better Few-shot Learners, Gao, et al. 2021

Examples

SST-2: sentiment analysis.

- E.g. **S1** = "The movie is ridiculous". **Label**: negative.
- Manual prompt:

Template	Label words
$<\!S_1\!>$ It was [MASK] .	great/terrible

Examples

SNLI: Natural Language Inference

- **S1** = "A soccer game with multiple males playing". **S2** = "Some men are playing sport". **Label**: Entailment.
- Manual prompt:

Template	Label words
$<\!S_1\!>?$ [MASK] , $<\!S_2\!>$	Yes/Maybe/No

Few-shot Learning & Evaluation Protocol

Q2. How does (Gao et al., 2021) conduct evaluations in few-shot settings?

- Training dataset: **K=16** examples per class.
- Dev dataset: **same** size as training dataset.

Performance measured across 5 random splits of {train, dev} set.

What is a "True" Few-shot Learning setting?

- Perez et al. (2021): "Tuned few-shot learning algorithms should be compared against data-rich supervised learning algorithms that use the same amount of total data |D train| + |D val|"
- Larger dev set leads to better performance.

Fine-tuning	SST-2	SNLI	TREC	MRPC	
No \mathcal{D}_{dev} $ \mathcal{D}_{dev} = \mathcal{D}_{train} $ $ \mathcal{D}_{dev} = 10 \mathcal{D}_{train} $	79.5 81.4 83.5	49.2 48.4 52.0	83.9 88.8 89.4	77.8 — 76.6 79.6	 Same setting as PET (Schick and Schütze, 2021a,b)
Prompt-based FT	SST-2	SNLI	TREC	MRPC	
No \mathcal{D}_{dev}	92.1	75.3	84.8	70.2	
$ \mathcal{D}_{ ext{dev}} = \mathcal{D}_{ ext{train}} $	92.7	77.2	84.8	74.5	
$ \mathcal{D}_{\text{dev}} = 10 \mathcal{D}_{\text{train}} $	93.0	79.7	89.3	80.9	

Q2: Is it still true few-shot learning if we manually tune the prompt?

A2: It is still "true" few-shot learning, because the whole training process, including hyper-parameter/prompt tuning, still only involves a few examples, which is the training dataset plus the development dataset.

How important is a good prompt for few-shot learning?

Label words match the semantic classes \rightarrow good final accuracy

Template	Label words	Accuracy
SST-2 (positive/negative)		mean (std)
$<\!\!S_1\!\!> \operatorname{It}$ was [MASK] .	great/terrible	92.7 (0.9)
${<}S_1{>}$ It was [MASK] .	good/bad	92.5 (1.0)
${<}S_1{>}$ It was [MASK] .	cat/dog	91.5 (1.4)
$<\!S_1\!> \operatorname{It}$ was [MASK] .	dog/cat	86.2 (5.4)
${<}S_1{>}$ It was [MASK] .	terrible/great	83.2 (6.9)
Fine-tuning	-	81.4 (3.8)

Experiments are done with **K=16** examples per class.

How important is a good prompt for few-shot learning?

A small change in the template can make a huge difference (>10% performance drop)

TemplateLabel wordsA		Accuracy	
SNLI (entailment/neutral/contradiction)		mean (std)	
$<\!S_1\!>$? [MASK] , $<\!S_2\!>$	Yes/Maybe/No	77.2 (3.7)	
${<}S_1{>}$. [MASK] , ${<}S_2{>}$	Yes/Maybe/No	76.2 (3.3)	
$<\!S_1\!>$? [MASK] $<\!S_2\!>$	Yes/Maybe/No	74.9 (3.0)	
$<\!S_1\!><\!S_2\!>$ [MASK]	Yes/Maybe/No	65.8 (2.4)-	Put the <mask> to the end</mask>
$<\!S_2\!\!>?$ [MASK] , $<\!S_1\!\!>$	Yes/Maybe/No	62.9 (4.1)_	→ Swap <s1> and <s2></s2></s1>
${<}S_1{>}\ ?$ [MASK] , ${<}S_2{>}$	Maybe/No/Yes	60.6 (4.8)	
Fine-tuning	-	48.4 (4.8)	

Experiments are done with **K=16** examples per class.

LM-BFF

GPT-3 🤖

Very very large language Unchanged Model Parameters Usually human-designed **prompts** and **demonstrations**

Small language model Fine-tuning model parameters Manually-designed prompts

LM-BFF 👯

Small language model Fine-tuning model parameters Automatically-searched prompts and demonstrations

Several slides on LMBFF adapted from Tianyu Gao's conference presentation.

How do we design a good prompt?

BoolQ: given a passage q and question p, design a prompt for question answering For **BoolQ**, given a passage *p* and question *q*:

p. Question: q? Answer: <MASK>.

p. Based on the previous passage, q?<MASK>.

Based on the following passage, q? <MASK>. p

with "yes" or "no" as verbalizers for True and False.

How do we design a good prompt?

WiC: given two sentences S1 and S2, and a word W, design a prompt to determine whether W was used in the same sense in both sentences. For WiC, given two sentences s_1 and s_2 and a word w, we classify whether w was used in the same sense.

" s_1 " / " s_2 ". Similar sense of "w"? <MASK>.

 $s_1 s_2$ Does w have the same meaning in both sentences? <MASK>.

How do we design good prompts?

- Difficult problem, manually designed in previous works (Schick and Schutze, 2021 a.b)
- Requires domain expertise and trial and error
- Challenge to construct prompt P find a template T and label words *M*(*y*) that work in conjunction
- Low number of examples -> overfitting

Recall ...

* Slight variations in prompts between terrible/great leads to sizable differences!

* In experiments assume access to a few-shot training and development set with 16 samples per class.

Automatic Label Search

For a classification task, for each **label**, **construct** a set of top-k words with highest MLM **probabilities** conditioned on all training examples

Given the manual template: <S> It was [MASK].

label:positive	2
good	
great	
perfect	

label:negative awful bad terrible ...

Automatic Label Search

Finetune all top n assignments and re-rank to find the best ones using development dataset.

Given the manual template: <S> It was [MASK].

Intuition Mask the prompts and ask T5 🚀 to ____ in the blanks

Automatic Template Search

Heuristic

- 1. Use T5 to generate candidates.
- 2. Re-rank them based on performance on development set after fine-tuning.

Autoregressive Decoding

Repeat until Stopword

Beam Search

A fun ride. <X> great <Y>

A pleasure to watch. <X> great <Y>

No reason to watch. <X> terrible <Y>

This junk. <X> terrible <Y>

...

— Training examples for label:negative –

positive: great, negative: terrible Label mapping $\mathcal{M}(\mathcal{Y})$

Automatic Template Search

s?

Autoregressive Decoding

Repeat until Stopword

Beam Search

 $\sum \log P_{\text{T5}}(t_j \mid t_1, ..., t_{j-1}, \mathcal{T}_{\text{g}}(x_{\text{in}}, y))$

 $(x_{\mathrm{in}},y){\in}\mathcal{D}_{\mathrm{train}}$

Apply **beam search** with large width ~100 to generate many templates to evaluate

Demonstrations

Prompt-based fine-tuning

Demonstrations

 \vdash Demonstration for label:positive \dashv

Prompt-based fine-tuning with demonstrations

Demonstrations

Prompt-based fine-tuning with demonstrations

Intuition Selective apply **demonstrations** that are semantically close to the input for optimal results

Demonstrations Sampling

Heuristic

- 1. Measure cosine similarity between all training examples and input.
- 2. Use pre-trained sentence encoder BERT to measure similarities
- 3. Only use top 50% of examples as demonstration candidates

Demonstrations Example

Recall: Experiment Setup

16 Experiments,

8 Single-Sentence and 7 Sentence-pair tasks

For each experiment, paper used **16 samples per class** for training and development sets

Sample 5 fewshot sets for each dataset and averaged the results to address variance

```
python run.py \
    --task_name_SST-2 ∖
    --data_dir data/k-shot/SST-2/16-42 \
    --overwrite_output_dir \
    --do train ∖
    --do_eval \
    --do predict \
    --evaluate during training \
    --model name or path roberta-large \
    --few shot type prompt-demo \
    --num k 16 ∖
    --max steps 1000 \
    --eval steps 100 \
    --per device train batch size 2 \
    --learning_rate 1e-5 \
    −−num train epochs 0 \
    --output_dir result/tmp \
    --seed 42 \
    --template "*cls**sent 0* It was*mask*.*sep+*" \
    --mapping "{'0':'terrible','1':'great'}" \
    --num sample 16 \
```

Figure: Example of running an output example source from github.com/princeton-nlp/LM-BFF

Results (ensemble)

Results (ensemble)

Ablation Study: Automatic Prompt Search

Manual Auto label word search SST-2 SNLI TREC MRPC 70 80 90 100 Accuracy (%)

SST-2	(positive/negative)
	$\mathcal{T}(x_{\mathrm{in}}) = \langle S_1 \rangle$ It was [MASK].
	#1. irresistible/pathetic
	#2. wonderful/bad
	#3. delicious/bad

SNLI	(entailment/neutral/contradiction)
	$\mathcal{T}(x_{\mathrm{in}})$ = < S_1 > ? [MASK] , < S_2 >
	#1. Alright/Watch/Except
	#2. Hi/Watch/Worse
	#3. Regardless/Fortunately/Unless

Ablation Study: Demonstrations

Prompt-based fine-tuning

demo w/ uniform sampling

Ablation Study: Demonstrations

Key Findings

- LMBFF Introduced automatic search prompt based fine tuning and a selective way for incorporating demonstrations
- Provided few-shot evaluations on 15 tasks.
 LMBFF dramatically outperforms standard fine tuning
- Limitations include large variance and automatic search reliance on manual label words

Comment

The benefits of prompts are prominent when K is small.

How Many Data Points is a Prompt Worth? Teven Le Scao, Alexander M. Rush

Setting

- Compare head-based v.s. Prompt-based fine-tuning
- Model: RoBERTa-large
- Manually-designed prompts

Datasets

7 datasets from SuperGLUE + MNLI.

- Entailment tasks: **CB**, **MNLI**, **RTE**
- Multiple-Choice Question Answering: **BoolQ**, **MultiRC**
- Common-sense Reasoning: WSC, COPA, WiC

Prompt-based vs head-based

Prompt-based vs head-based

Source: How Many Data Points is a Prompt Worth?, Le Scao & Rush, 2021

Prompt-based vs head-based

Averaged data advantage over different accuracy levels:

Average Advantage (# Training Points)												
MNLI	BoolQ	CB	COPA	MultiRC*	RTE	WiC	WSC					
3506 ± 536	752 ± 46	90 ± 2	288 ± 242	384 ± 378	282 ± 34	-424 ± 74	281 ± 137					

How important is a good prompt?

	Average Advantage (# Training Points)											
	MNLI	BoolQ	CB	COPA	MultiRC*	RTE	WiC	WSC				
P vs H	3506 ± 536	752 ± 46	90 ± 2	288 ± 242	384 ± 378	282 ± 34	-424 ± 74	281 ± 137				
P vs N	150 ± 252	299 ± 81	78 ± 2	-	74 ± 56	404 ± 68	-354 ± 166	-				
N vs H	3355 ± 612	453 ± 90	12 ± 1	-	309 ± 320	-122 ± 62	-70 ± 160	-				

P = good template + good label words N = good template + non-sensical label words. [e.g. Mike -> "Positive", John -> "Negative"]

H = head-based

How important is a good prompt in few-shot setting?

N catches up with **P** when training points are more than ~300

Additional Method for Making Prompts

Ethical Considerations

"LMs appear to follow yet do not actually follow users' instructions has important implications, especially considering the increasing commercial use of LMs. While traditional fine-tuned models also pose challenges in interpretability, with prompt-based models, an illusion of instruction following can be more pernicious than having no instructions at all"

Professor Chen Alexander Wettig Tianyu Gao *Q3*: We already know that finding a good prompt is so important. Sometimes, it is also **challenging to find prompts that are natural and fit in pre-trained distributions.** For example, <S1> ? [MASK] , <S2>, the chance that "Maybe" can fill in [MASK] is very low (this is the prompt used for NLI tasks in Gao et al., 2021). **Do you have any ideas about how to improve this and find better prompts?**

Additional Prompt Engineering Methods (discrete / hard prompts)

Prompt Mining

Jiang et al. (2020) uses a mining-based method to automatically find templates given a set of training inputs x and y. Scrapes a large text corpus (e.g. Wikipedia) for strings containing x and y, and finds middle words or dependency paths between the inputs and outputs.

Prompt Paraphrasing

Takes an existing prompt, paraphrases into other prompts, and uses the prompt that achieves the best result. Prompt paraphrasing can be done with multiple methods including round-trip translation (Jiang et al., 2020); replacement of phrases from thesaurus (Yuan et al, 2021) and a neural prompt re-writer (Haviv et al, 2021)

Prompt Generation:

Gao et al. (2021) introduces pre-trained T5 seq to seq to fill in missing spans and generate template tokens. Ben-David et al. (2021) builds upon this method in introducing a domain adaptation algorithm that trains T5 to generate unique domain relevant features.