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Transfer Learning

* Pre-training!
* Start with unlabeled data (unlike computer vision)
* General-purpose “English” knowledge
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Transfer Learning

Unsupervised pre-training

/?he cabs ___ the same rates as thos;\
___ by horse-drawn cabs and were
quite popular, ___ the Prince of
Wales (the ___ King Edward VII)
travelled in ____. The cabs quickly
___ known as "hummingbirds" for __
noise made by their motors and their
distinctive black and ___ livery.
Passengers ____ __ the interior
fittings were ___ when compared to

_ cabs but there ___ some
complaints ___ the ___ lighting made

Supervised fine-tuning

is bad and I was bored the entire
time. There was no plot and
nothing interesting happened. I
was really surprised since I had
very high expectations. I want 103

\minutes of my life back!

e A
This movie is terrible! The acting

J

\fhem too ___ to those outside ___. Y

!

charged, used, initially, even,
future, became, the, yellow,
reported, that, luxurious,
horse-drawn, were that,
internal, conspicuous, cab

Slide adapted from Colin Raffel
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A Very Brief Context

*2017: Attention Is All You Need, Unsupervised sentiment neuron
*2018: ELMo, GPT-1, BERT ,

* Bidirectionality
* Transformers

*2019: RoBERTa, SpanBERT, ALBERT . =
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https://openai.com/blog/unsupervised-sentiment-neuron/



Transfer Learning: Comparisons?

Lots of research, so many...

* Pre-training objectives

* Unlabeled data sets

* Fine-tuning methods

* Model architectures/scales

... S0 how do we compare benchmarks?



Transfer Learning Comparisons

* Model A has 1B parameters and uses 100M pre-training tokens from
BooksCorpus
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Transfer Learning Comparisons

* Model A has 1B parameters and uses 100M pre-training tokens from
BooksCorpus
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Transfer Learning Comparisons

* Model A has 1B parameters and uses 100M pre-training tokens from
BooksCorpus

* Model B is made by Google and their deep pockets! It has 2B
parameters and uses 200M pre-training tokens from Wikipedia

* Model B has better performance on SuperGLUE than Model A

Is Wikipedia better for pre-training than
BooksCorpus?



T5: The Basic Idea

e Text-to-Text Transfer Transformer
* Every task, one format!

* Previous attempts included:
* Question answering
* Language modeling

* Span extraction

... but had limitations

* “[Task-specific prefix]: [Input text]” -> “[output text]”



T5: The Basic Idea

["translate English to German: That is good."

"cola sentence: The
course is jumping well."

“stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

“Das ist gut."]

"not acceptable"]

"six people hospitalized after
a storm in attala county."”

|
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T5: The Basic Idea

* GLUE and SuperGLUE classification; CNN/Daily Mail abstractive
summarization; SQUAD question answering; and WMT English to
German, French, and Romanian translation

* GLUE/SuperGLUE: Sentence acceptability judgment, sentiment analysis,
paraphrasing/sentence similarity, natural language inference, coreference
resolution, sentence completion, word sense disambiguation, question
answering

* French: high resource, Romanian: low resource

* Separate fine-tuning for each task



Some tasks

Recall: SQUAD, GLUE benchmarks

* CoLA (GLUE): Sentence acceptability
* Input: sentence, output: labels “acceptable” or “not acceptable”
* Ex: “The course is jumping well.” -> not acceptable

e STS-B (GLUE): Sentence similarity
* Input: pair of sentences, output: similarity score [1,5]
* Ex: “sentencel: The rhino grazed. sentence2: A rhino is grazing.” -> 3.8
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Some tasks

e COPA (SuperGLUE): Causal reasoning
* Input: premise and 2 alternatives, output: alternativel or alternative2

* Ex: “Premise: | tipped the bottle. What happened as a RESULT?
Alternative 1: The liquid in the bottle froze.
Alternative 2: The liquid in the bottle poured out.”
-> alternative2

e ReCoRD/MultiRC (SuperGLUE): Question answering/Reading
comprehension

16



Input/Output
[Task-specific prefix]: [Input text]

e EnDe (Translation):
“translate English to German: That is good” -> “Das ist gut”

* CNNDM (Summarization):
“summarize: state authorities dispatched...” -> “six people

hospitalized after storm”

17



Input/Output
[Task-specific prefix]: [Input text]

e ColLA (GLUE; Classification):
“cola sentence: The course is jumping well.” -> “not acceptable”

* STS-B (GLUE; Regression):
“stsb sentencel: The rhino grazed. sentence2: A rhino is grazing.” -> “3.8”

18



Input/Output

e ColLA (GLUE; Classification):
“cola sentence: The course is jumping well.” -> “hamburger”

“Hamburger” is not a valid CoLA output, so this is a fail!

19



T5 Model

* Encoder-decoder model
e Baseline size: two stacks of size BERTBASE
e Architecture from “Attention Is All You Need”

* Different position embedding scheme
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C4: The Data

* Colossal Clean Crawled Corpus
* Web-extracted text

* English language only (langdetect)
«750GB

20TB to 750GB? Where did everything go?



C4: The Data

* Retain:

* Sentences with terminal punctuation marks

* Pages with at least 5 sentences, sentences with at least 3 words
* Deduplicate three sentence spans
* Remove:

* References to Javascript

* Lorem ipsum text

* Code



C4: The Data

Menu
Lemon
Introduction

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for
culinary and non-culinary purposes
throughout the world, primarily for its juice,
which has both culinary and cleaning uses.
The juice of the lemon is about 5% to 6%
citric acid, with a ph of around 2.2, giving it
a sour taste.

Article

The origin of the lemon is unknown, though
lemons are thought to have first grown in
Assam (a region in northeast India),
northern Burma or China.

A genomic study of the lemon indicated it
was a hybrid between bitter orange (sour
orange) and citron.

Please enable JavaScript to use our site.

Home
Products
Shipping
Contact
FAQ

Dried Lemons, $3.59/pound

Organic dried lemons from our farm in
California.

Lemons are harvested and sun-dried for
maximum flavor.

Good in soups and on popcorn.

The lemon, Citrus Limon (l.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for
culinary and non-culinary purposes
throughout the world, primarily for its juice,
which has both culinary and cleaning uses.
The juice of the lemon is about 5% to 6%
citric acid, with a ph of around 2.2, giving it
a sour taste.

Lorem ipsum dolor sit amet, consectetur
adipiscing elit.

Curabitur in tempus quam. In mollis et ante
at consectetur.

Aliquam erat volutpat.

Donec at lacinia est.

Duis semper, magna tempor interdum
suscipit, ante elit molestie urna, eget
efficitur risus nunc ac elit.

Fusce quis blandit lectus.

Mauris at mauris a turpis tristique lacinia at
nec ante.

Aenean in scelerisque tellus, a efficitur
ipsum.

Integer justo enim, ornare vitae sem non,
mollis fermentum lectus.

Mauris ultrices nisl at libero porta sodales in
ac orci.

function Ball(r) {
this.radius = r;
this.area = pi * r ** 2;
this.show = function(){
drawCircle(r);
}
}

Slide adapted from Colin Raffel
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C4: The Data

The lemon, Citrus Limon (I.) Osbeck, is a
species of small evergreen tree in the
flowering plant family rutaceae.

The tree's ellipsoidal yellow fruit is used for

culinary and non-culinary purposes Organic dried lemons from our farm in
throughout the world, primarily for its juice, California.

which has both culinary and cleaning uses. Lemons are harvested and sun-dried for
The juice of the lemon is about 5% to 6% maximum flavor.

citric acid, with a ph of around 2.2, giving it Good in soups and on popcorn.

a sour taste.

The origin of the lemon is unknown, though
lemons are thought to have first grown in
Assam (a region in northeast India),
northern Burma or China.

A genomic study of the lemon indicated it
was a hybrid between bitter orange (sour
orange) and citron.

Slide adapted from Colin Raffel




C4: The Data

750GB? What does that mean?

Data set Size
* C4 745GB
C4, unfiltered 6.1TB
RealNews-like 35GB
WebText-like 17GB
Wikipedia 16GB

Wikipedia + TBC ~ 20GB




Vocabulary

* 32,000 wordpieces shared across input and output

* Pre-training is English, but fine-tuning includes German, French, and
Romanian

* Trained SentencePiece model 10:1:1:1 English : German : French :
Romanian

e Can handle fixed set of languages



mI5

*mC4: Common Crawl dataset covering 101 languages!
* Only line length filter, no punctuation filter

* How do you sample across languages?

» “Boosting” the probability of training on low-resource languages without overfitting
* Similar architecture to T5
* 6 tasks from the XTREME multilingual benchmark
* Entailment, reading comprehension, NER, paraphrase identification

* [llegal predictions (XQuAD)



Experiments

* Even Google has a budget...
* NOT combinatorial
 Standard deviation only found for baseline
* ~23° or 34B pre-training tokens (much less than BERT!)

* Inverse square-root learning rate schedule with warm-up

* Results reported on validation sets



Baseline Objective

Original text

Thank you fef inviting me to your party last week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <Z>

30



Workflow

Pretrain

BERT, ASE—sized
encoder-decoder
Transformer

Denoising
objective

C4 dataset

21° steps
2% or ~34B tokens
Inverse square root learning
rate schedule

Slide adapted from Colin Raffel

Finetune

GLUE
CNN/DM
SQUAD
SuperGLUE
WMT14 EnDe
WMT15 EnFr

WMT16 EnRo

2'8 steps
234 or ~17B tokens
Constant learning rate

Evaluate on
validation

step 750000
step 760000
step 770000

step 780000

Evaluate all checkpoints,

choose the best

31



Baseline Performance

Bold scores are within two standard deviations of the
best score in a given experiment

GLUE CNNDM SQuAD SGLUE

EnDe EnFr EnRo

% Baseline average 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Baseline standard deviation  0.235 0.065 0.343 0.416 0.112 0.090 0.108
No pre-training 66.22 17.60 50.31 53.04 25.86 39.77 24.04
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Baseline Performance

* GLUE/SuperGLUE are sets of tasks including CoLA, STS-B, etc.

e CNNDM is a summarization task

* EnDe/EnFr/EnRo are translation tasks

GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Baseline average 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Baseline standard deviation  0.235 0.065 0.343 0.416 0.112  0.090 0.108
No pre-training 66.22 17.60 50.31 53.04 25.86 39.77 24.04
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Axis of Decisions for Pre-training and Fine-tuning

Architectures

Scale of the pre-training

Pre-training Objectives

Pre-training dataset

Multi-task training

E

Understand the first order effect of each aspect by altering it while keeping other aspects of

pre-training fixed.

1




Architectures



Different Attention Mask Patterns

Fully-visible

. anEen
L SEENS
N T

» 00
a 1]

1 X X X X

<~ |Input —

Causal

%.....

Causal with prefix

36



Different Attention Mask Patterns

|

5
o)
5
O

Fully-visible

q | 1]
a | ]
 HEEE0
» 00
a 1]

1 X X X X

~— Input ——

Causal

%.....

Causal with prefix

Fully visible mask allows the self attention mechanism to attend to the full input.
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Different Attention Mask

Fully-visible

. anEen
L SEENS
N T

» 00
a 1]

1 X X X X

~— Input ——

Causal

%.....

Patterns

Causal with prefix

A causal mask doesn’t allow output elements to look into the future.
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Different Attention Mask Patterns

Fully-visible

. anEen
L SEENS
N T

» 00
a 1]

1 X X X X

~— Input ——

Causal

%.....

Causal with prefix

Causal mask with prefix allows to fully-visible masking on a portion of input.




Transformer Architecture Variants

= _] Language model Prefix LM
8 X, X3 Yy Y, - X, X3 Yy Y, -
. s %J P
5 JUJOC JOJU
go) 7 =
S 1 ZZZ T
O — — s r 2 P e
X, o N % % %2 %y B Yo X %2 X Wy ¥
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Transformer Architecture Variants

= _] Language model Prefix LM
8 X, X3 Yy Y, - X, X3 Yy Y, -
3 P o T — s _Jr ™ " G
; 27 DR
S === ZEr R
c J
m . J 7\ J . J \ J J 7\ A" J
X %X X Mo Yo X %2 X Wy ¥

Translation: That is good -> Das ist gut.
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Transformer Architecture Variants

Language model

2 X3 y1 y2

2 x3 y1 y2

Prefix LM

% % R Y -
N\ \( N\ \(

SR ET
T

Translation: That is good -> Das ist gut.

Translate English to German: That is good. Target: Das is gut.
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Transformer Architecture Variants

Language model Prefix LM

> %3 Y7 Yo -~ X G Y Y -

-

BENN
1z ?_]7 ,
IZ%%? i

2 x3 y1 y2 X1 X2 X3 y1 y2

i
i

-
-
-
\

Translation: That is good -> Das ist gut.

e Translate English to German: That is good. Target: Das is gut.
o "Good” representation can only look at “Translate English to German: That is”.
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O

Transformer Architecture Variants

Prefix LM

%z ¥a A -

\(

Y: Yy -

= _] Language model

S X, X3 Yy Y, - X,

O - N\ N\ oYa N\ \

O

- L= | BT
- — — P F—
q;) — — — — —
L®)
3 L=z | T
0 - — (s
C
w \ J J Y @ J L J

X X X X x1 x2 x3 y'l y2 X'l

Translation: That is good -> Das ist gut.

Translate English to German: That is good. Target: Das is gut.

‘Good’” representation can look at “Translate English to German: That is. Target:”.
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Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

Encoder

45




Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65

[
Input: Thank you for <X> me to your party <Y>.
Target: <X> inviting <Y> last week.

Encoder
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Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
/
Number of

parameters

Encoder

47




Performance of different Architectural Variants

Architecture

Objective  Params

Cost

GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Encoder-decoder

Denoising

2P

M

83.28

19.24

80.88

71.36

26.98 39.82 27.65

Number of flops

Encoder
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Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46

Encoder
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Performance of different Architectural Variants

Architecture

Objective

Params

Cost

GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46
Enc-dec, 6 layers Denoising P M/2  80.88 18.97 77.59 68.42 26.38 38.40 26.95

o

O

8 Yi Y,

O]

()

Encoder
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Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46
Enc-dec, 6 layers Denoising P M/2  80.88 18.97 77.59 68.42 26.38 38.40  26.95
Language model  Denoising /o M 74.70 17.93 61.14 55.02 25.09 35.28  25.86

Language model
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Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46
Enc-dec, 6 layers Denoising P M/2  80.88 18.97 77.59 68.42 26.38 38.40  26.95
Language model  Denoising /o M 74.70 17.93 61.14 55.02 25.09 35.28  25.86

Language model is decoder-only Language model
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Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46
Enc-dec, 6 layers Denoising ¢ o M/2  80.88 18.97 77.59 68.42 26.38 38.40  26.95
Language model  Denoising {5 /M 74.70 17.93 61.14 55.02 25.09 35.28  25.86

Language model

LM looks at both input and target, while
encoder only looks at input sequence and
decoder looks at output sequence.

53



Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
M/2  80.88 18.97 77.59 68.42 26.38 38.40 26.95

% Encoder-decoder  Denoising
Enc-dec, shared Denoising
Enc-dec, 6 layers Denoising

v YU YN

Language model  Denoising M 74.70 17.93 61.14 55.02 25.09 35.28  25.86
Prefix LM Denoising M 81.82 18.61 78.94 68.11 26.43 37.98 27.39
Prefix LM

X

2 X3 y1 y2

Ritl W
WY

-
—
= 4
s N\ ~N
' N7 N
J

2 3 y1 y2
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Performance of different Architectural Variants

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72  39.03 27.46
Enc-dec, 6 layers Denoising P M/2  80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model  Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28  25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 37.98 27.39

—

Sharing parameters in encoder and decoder models perform nearly as well as the baseline.
Halving the number of layers in encoder and decoder hurts the performance.

Performance of Encoder and Decoder with shared parameters is better than decoder only LM and
prefix LM.

S
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Objectives



Different Unsupervised Objectives

High-level
approaches
) - -
Language
modeling
) - |
BERT-style (¢ = = _

-~ - -

Deshuffling
— - -

Objective

Inputs

Targets

Prefix language modeling
BERT-style Devlin et al. (2018)
Deshuffling

Thank you for inviting
Thank you <M> <M> me to your party apple week .
party me for your to . last fun you inviting week Thank

me to your party last week .

(original text)
(original text)
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Different Unsupervised Objectives

High-level
approaches

. -
Language

modeling
M - |
BERT-style - 00~ M
~— - -
M

Deshuffling
“—— - _ -

Objective

Inputs Targets

Prefix language modeling

Thank you for inviting me to your party last week .

BERT-style Devlin et al. (2018)
Deshuffling

Thank you <M> <M> me to your party apple week . (original text)
party me for your to . last fun you inviting week Thank (original text)

e Thank you for inviting me to your party last week.
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Different Unsupervised Objectives

High-level
approaches

SR -
Language

modeling
) - n -
BERT-style (# = = &
— -
)
Deshuffling -
— - > -

Objective

Inputs Targets

Prefix language modeling Thank you for inviting me to your party last week .

| BERT-style Devlin et al. (2018) Thank you <M> <M> me to your party apple week . (original text)

Deshuffling party me for your to . last fun you inviting week Thank (original text)

Thank you <M> <M> me to your party apple week . Thank you for inviting me to your party last week.
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Different Unsupervised Objectives

High-level
approaches

SR -
Language

modeling
— - . N~
BERT-style (# = = &
- -
———
Deshuffling -
— ) - , -

Objective

Inputs Targets

Prefix language modeling

Thank you for inviting me to your party last week .

BERT-style Devlin et al. (2018) Thank you <M> <M> me to your party apple week . (original text)

| Deshuffling

party me for your to . last fun you inviting week Thank (original text)

e party me for your to . last fun you inviting week Thank . Thank you for inviting me to your party last week.
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Performance of the three disparate pre-training objectives

High-level

approaches
) -
Language
modeling
)
BERT-style .
) .
Deshuffling

N—— -~

1. BERT-style objective performs best.
2. Prefix LM works well on translation tasks.
3. Deshuffling objective is significantly worse.

Objective

GLUE CNNDM

SQuAD SGLUE EnDe EnFr EnRo

Prefix language modeling
BERT-style (Devlin et al., 2018)
Deshuffling

80.69 18.94
82.96 19.17
73.17 18.59

77.99 65.27 26.86 39.73 27.49
80.65 69.85 26.78 40.03 27.41
67.61 08.47 26.11 39.30 25.62
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Different BERT-style Unsupervised Objectives

High-level Corruption
approaches strategies
e 3 \ s N -
anguage Mask
modeling
\ J L J
4 N\ 4 N\ -
BERT-style [{—»| Replace (g
. J\\ spans
.~
e D e )
Deshuffling Drop
. J \. J -
Objective Inputs Targets

MASS-style Song et al. (2019) Thank you <M> <M> me to your party <M> week .
I.i.d. noise, replace spans
I.i.d. noise, drop tokens

Thank you <X> me to your party <Y> week .
Thank you me to your party week .

(original text)
<X> for inviting <Y> last <Z>
for inviting last

62



Different BERT-style Unsupervised Objectives

High-level Corruption

approaches strategies
r N s N - -
Language Mask
| modeling ) L )
r N r el N - -
BERT-style »| DERECCEHE
. J\\ spans |

- -

e ) e A

Deshuffling Drop
\. J . J - -

e Thank you <M> <M> me to your party <M> week . Thank you for inviting me to your party last week

MASS-style Song et al. (2019) Thank you <M> <M> me to your party <M> week . (original text)

<X> for inviting <Y> last <Z>
for inviting last

Thank you <X> me to your party <Y> week .
Thank you me to your party week .

I.i.d. noise, replace spans
I.i.d. noise, drop tokens




Different BERT-style Unsupervised Objectives

High-level Corruption

approaches strategies
r N s N - -
Language Mask
| modeling ) L )
f N r = N - -
BERT-style |[&—»| "oPace iy
. J\\ spans |

.~ -

e ) e A

Deshuffling Drop
. J . J - -

e Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>

MASS-style Song et al. (2019) Thank you <M> <M> me to your party <M> week . (original text)

| L.i.d. noise, replace spans Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last




Different BERT-style Unsupervised Objectives

High-level Corruption
approaches strategies
r N s N - -
Language Mask
| modeling ) L )
f N r = N - -
BERT-style |[&—»| "oPace iy
. J\\ spans
.~ -
e R e A
Deshuffling Drop
. J \. J - -
e Thank you me to your party week . for inviting last

MASS-style Song et al. (2019)
I.i.d. noise, replace spans

(original text)
<X> for inviting <Y> last <Z>

Thank you <M> <M> me to your party <M> week .
Thank you <X> me to your party <Y> week .

I.i.d. noise, drop tokens Thank you me to your party week . for inviting last




Comparison of variants of the BERT-style pre-training objective

High-level Corruption
approaches strategies
u \ - N * 1. All the variants perform similarly.
anguage Mask “ ” “
| modeling | t ) 2 Replace corrupted spans” and “Drop
- S - - - corrupted tokens” are more appealing
BERT-style [<—» R:F?;f]‘;e - because target sequences are shorter,
> :\; L - . speeding up training.
Deshuffling Drop
\ J \. J . -
Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
BERT-style (Devlin et al., 2018)  82.96 19.17 80.65 69.85 26.78 40.03 27.41
MASS-style (Song et al., 2019) 82.32 19.16 80.10 69.28 26.79 39.89 27.55
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82
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Different Corruption Rates

Corruption
High-level Corruption rate
approaches strategies
= < - N 10% .
Langugge Mask —
! modeling ) L ) ( )
pr o - — . 15% -
BERT-style [&—»| MoP.ace e
L ) [ spans | o
b “ - . 25%
Deshuffling Drop B
\. J \_ J 50% -
~——
Objective Inputs Targets

Thank <X> for inviting me to <Y> party last week. <X> you <Y> your <Z>.

e Thank <X> for <Y> me to your party <Z>. <X> you <Y> inviting <Z> last week.

I.i.d. noise, replace spans

Thank you <X> me to yourﬁ part&r <Y> week . <X> for invitihg <Y> last <Z>
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Performance of the i.i.d. corruption objective with different
corruption rates

Corruption

High-level Corruption rate
rapproaches\ ) strategies . o J
| fQﬁSﬁ?ge oM/ 1. Larger corruption rate leads to

w/rf | Tl wm downstream performance degradation.

| BERTSYle IS spans N\ () 2. Larger corruption rate also leads to longer
r ﬂ\r \ e v targets, slowing down training.

Deshuffling Drop ,:\J
\ J U ) 50% v

Corruption rate GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

10% 82.82 19.00 80.38 69.55 26.87 39.28 27.44
* 15% 83.28 19.24 80.88 71.36 2698 39.82 27.65
25% 83.00 19.54 80.96 70.48 27.04 39.83 27.47

50% 81.27 19.32 79.80 70.33 27.01 3990 27.49

68



Different Corruption Rates

Corruption Corrupted
High-level Corruption rate span length
approaches strategies
- = - = 10% 2
Language — —
i modeling | L Mask ) ( ) ( \
p & - . 15% > 3
— -
BERT-style [<— R:;’;ige
——\ N ;
. -~
Deshuffling Drop r— by
) e ’ 50% 10
—— \—
Objective Inputs Targets

e Thank <X> for inviting me to <Y> party last <Z>. <X> you <Y> your <Z> week.
e Thank <X> me to your party week. <X> you for inviting <Z>.

Random spans Thank you <X> to <Y> week . <X> for inviting me <Y> your party last <Z>
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Performance of the span-corruption objective for different
average span lengths

Corruption Corrupted
High-level Corruption rate span length
approaches strategies
4 10% ] 2
Language Haskc
L modellng
( 3
BERT-styl fioplace
L spans
4 25% 5
Deshufflmg Drop
) 10

Average span length of 3 works well on

most non-translation tasks.

Span corruption produces shorter target

sequences and leads to speedup in

training.

Span length GLUE OCNNDM SQuAD SGLUE EnDe EnFr EnRo
* Baseline (i.i.d.) 83.28  19.24 80.88 71.36  26.98 39.82 27.65
2 83.54  19.39 82.09 7220 26.76 39.99 27.63
3 83.49  19.62 81.84 7253 26.86 39.65 27.62
5 83.40  19.24 82.05 72.23 26.88 39.40 27.53
10 82.85 19.33 81.84 7044 26.79 39.49 27.69

Z0




Pre-training dataset
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Performance from pre-training on different data sets.

Data set Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB  83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB  81.46 19.14 78.78 68.04  26.55 39.34 27.21
RealNews-like 35GB  83.83 19.23 80.39 (272.38 26.75 39.90 27.48
WebText-like 17GB  84.03 19.31 81.42 71.40 26.80 39.74 27.59
Wikipedia 16GB ( 181.85 19.31 81.29 68.01 26.94 39.69 27.67

Wikipedia + TBC 20GB  83.65 19.28 82.08 (373.24 26.77 39.63 27.57

Pre-training on in-domain data tends to help downstream task.

Question answering

(1) Much worse on COLA (2 Much better on ReCoRD ~  on News dataset
Check whethorarsarfons (3 Much beteron MiRG - Question answering o
Novel dataset 72

is linguistically correct?



Effect of repeating data during pre-training

Number of tokens Repeats GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Full data set 0 83.28 19.24 80.88 71.36 26.98 39.82 27.65

229 64 82.87 19.19 80.97 72.03 26.83 39.74 27.63

927 256 82.62 19.20 79.78 69.97 27.02 39.71 27.33

§es 1,024 79.55 18.57 76.27 64.76 26.38 39.56  26.80

923 4,096 76.34 18.33 70.92 59.29 26.37 38.84 25.81

Training loss
1.0
0.8 E Dataset size

0.6

0.4

0.2

0.0

100

200 300
Step x 1,000

400

500

—— Full dataset
— 979
227
— 1925
— 223

—_—

Performance degrades as dataset size shrinks.
Model memorizes the pre-training data, with
smaller dataset size.
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Scaling

Scaling strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline 83.28 19.24 80.88 71.36 26.98 39.82 27.65
1x size, 4x training steps 85.33 19.33 82.45 74.72 27.08 40.66 27.93
1x size, 4x batch size 84.60 19.42 82.52 74.64 27.07 40.60 27.84
2X size, 2X training steps 86.18 19.66 84.18 77.18 27.52 41.03 28.19
4x size, 1X training steps 85.91 19.73 83.86 78.04 2747 40.71  28.10
4x ensembled 84.77 20.10 83.09 71.74 28.05 40.53 28.57

4x ensembled, fine-tune only  84.05 19.57 82.36 71.55 27.55 40.22  28.09

1. Advantage in increasing model size compared to simply increasing batch size or number of training
steps.
2. Not much of a difference between increasing size + training and increasing size only
a. Improving training time and model size are complementary means of improving performance.
3. Ensembling helps, except in SuperGLUE.




Multi-task training
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Multi-task

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo

% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65

@ D
g I Task A
- J
/ )
Unsupervised Task Task B

P
K j Task C




Multi-task

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76

= (-

Unsupervised Task

K Task C /




Multi-task

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07

(

Task A ] [ Task B }

o

Unsupervised Task

Task C /

Task A

Task B

Task C
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Multi-task

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 2693 39.79 27.87

(

Task A ]

Unsupervised Task Task B

K Task C /

)




Multi-task

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 2693 39.79 27.87
Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04
@
/= O\ Task A
Task A Task B <
P
Task B

Task C

Task C
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Multi-task

Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21 36.30 27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 2693 39.79 27.87
Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04

1.  Multi-task pre-training + fine-tuning works as well as unsupervised pre-training + fine-tuning.
2. Practical benefit of Multi-task pre-training + fine-tuning is to monitor downstream performance
during pre-training.




Putting it all together

Architectures

Scale of the pretraining

Pre-training Objectives

Pre-training dataset

Multi-task training
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Encoder-decoder architecture

Span prediction objective

C4 dataset

Multi-task pre-training

Bigger model trained longer

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder  Denoising 2P M 83.28 19.24 80.88 71.36 26.98 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising p M/2  80.88 18.97 77.59 68.42 26.38 3840 26.95
Language model  Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28  25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 26.43 3798 27.39
Span length GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline (i.i.d.) 83.28 19.24 80.88 71.36 26.98 39.82 27.65
2 83.54 19.39 82.09 72.20 26.76 39.99 27.63
3 83.49 19.62 81.84 72.53 26.86 39.65 27.62
5 83.40 19.24 82.05 72.23 26.88 39.40 27.53
10 82.85 19.33 81.84 70.44 26.79 3949 27.69
Data set Size GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
* C4 745GB  83.28 19.24 80.88 71.36 26.98 39.82 27.65
C4, unfiltered 6.1TB 81.46 19.14 78.78 68.04 26.55 39.3¢ 27.21
RealNews-like 35GB 83.83 19.23 80.39 72.38 26.75 39.90 27.48
WebText-like 17GB 84.03 19.31 81.42 71.40 26.80 39.74 27.59
Wikipedia 16GB 81.85 19.31 81.29 68.01 26.94 39.69 27.67
Wikipedia + TBC  20GB 83.65 19.28 82.08 73.24 26.77 39.63 27.57
Training strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Unsupervised pre-training + fine-tuning  83.28 19.24 80.88 71.36 26.98 39.82 27.65
Multi-task training 81.42 19.24 79.78 67.30 25.21  36.30 27.76
Multi-task pre-training + fine-tuning 83.11 19.12 80.26 71.03 27.08 39.80 28.07
Leave-one-out multi-task training 81.98 19.05 79.97 71.68 2693 39.79 27.87
Supervised multi-task pre-training 79.93 18.96 77.38 65.36 26.81 40.13 28.04
Scaling strategy GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Baseline 83.28 19.24 80.88 71.36 26.98 39.82 27.65
1X size, 4x training steps 85.33 19.33 82.45 74.72 27.08 40.66 27.93
1x size, 4x batch size 84.60 19.42 82.52 74.64 27.07 40.60 27.84
2X size, 2x training steps 86.18 19.66 84.18 77.18 2752 41.03 28.19
4x size, 1x training steps 85.91 19.73 83.86 78.04 2747  40.71  28.10
4% ensembled 84.77 20.10 83.09 71.74 28.05 40.53 28.57 83
4% ensembled, fine-tune only  84.05 19.57 82.36 71.55 27.55  40.22  28.09




Model Variants

Model | Parameters | No. of layers | diodel dgs diy | No. of heads
Small 60M 6 512 2048 64 8
Base 220M 12 768 3072 | 64 12
Large 770M 24 1024 | 4096 | 64 16
3B 3B 24 1024 | 16384 | 128 32
11B 11B 24 1024 | 65536 | 128 128
Model GLUE | CNNDM | SQuAD | SGLUE | EnDe | EnFr | EnRo
Previous best | 89.4 20.30 95.5 84.6 338 | 43.8 | 385
T5-Small 77.4 19.56 87.24 63.3 26.7 | 36.0 | 26.8
T5-Base 82.7 20.34 92.08 76.2 309 | 412 | 28.0
T5-Large 86.4 20.68 93.79 82.3 32.0 | 41.5 28.1
T5-3B 88.5 21.02 94.95 86.4 31.8 | 42.6 | 282
T5-11B 89.7 21.55 95.64 88.9 32.1 434 | 28.1
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Let’s review!

* Unified text-to-text framework
* Supports both discriminative and generative tasks
 Classification, summarization, translation, etc.

* Better on GLUE/SuperGLUE, SQUAD, and summarization; less on
translation

["translate English to German: That is good."

"cola sentence: The
course is jumping well."

"Das ist gut."

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"six people hospitalized after ]

dispatched emergency crews tuesday to a storm in attala county.”

survey the damage after an onslaught
of severe weather in mississippi.."

[: "summarize: state authorities
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Let’s review!

* “Empirical comparison of existing techniques”

* Evidence for encoder-decoder models, span masking, multi-task

pre-training

* Still no limit on large model improvements?

*C4 as a large, clean corpus

High-level
approaches

f Language )
L modeling J

BERT-style

Deshuffling
)

Corruption Corrupted
Corruption rate span length
strategies ) ( A
r 10% 2
Mask ] L / >
- 15% = 3
Replace ) |
| spans
- 25% 5
Drop ]
) 50% 10
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Other Variants

BART (Lewis et al. 2020)

Similar Architecture as T5.

Performs competitive to ROBERTa and XLNet on discriminative tasks.
Outperformed existing methods on question answering, and summarization tasks.
Improved results on machine translation with fine-tuning on target language.

mTS (Xue et al. 2021)

o Discussed earlier!

@)
@)
(@)
@)

ABCDE

ERER!
Pre-trained |:> Pre-trained
Encoder Decoder -

EEEX) BEEE
Randomly <ss>SABCD

Initialized Encoder

EEEE
a By o e




e AlexaTM 20B (Soltan et al. 2022)

o Larger architecture on multilingual C4 dataset.

Other Variants

o  Can outperform much larger autoregressive models (GPT-3 175B) in zero shot tasks.

BoolQ

CB

RTE

ReCoRD

WSC

WiC

CoPA  MultiRC

Model (acc) (acc) (acc) (acc) (acc) (acc) (acc) (fla) TR
PaLM 540B 88.0 51.8 72.9 92.9 89.1 59.1 93.0 83.5 78.8
GPT3 175B 60.5 46.4  63.5 90.2 65.4 0.0 91.0 72.9 61.2
BLOOM 175B 63.5 33.9 52.0 NA 51.9 50.6 56.0 57.1 NA
GPT3 13B 66.2 19.6 62.8 89.0 64.4 0.0 84.0 71.4 57.2
UL 20B 63.1 41.1 60.7 88.1 79.9 49.8 85.0 36.2 63.0
AlexaTM 20B  69.44 67.9 68.59 88.4 68.27 53.29 78.0 59.57 69.16




Q1. Describe how T5 is adapted to sentence classification
tasks

[Task-specific prefix]: [Input text]

e ColLA (GLUE; Classification):
“cola sentence: The course is jumping well.” -> “not acceptable”

» STS-B (GLUE; Regression):
“stsb sentencel: The rhino grazed. sentence2: A rhino is grazing.” -> “3.8”

III

“cola sentence: The course is jumping well.” -> “hamburger”
“Hamburger” is not a valid CoLA output, so this is a fail!
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Q2. Can you think of a reason why generating the entire
output performs worse than only generating the masked
spans?

Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
BERT-style (Devlin et al., 2018) 82.96 19.17 80.65 69.85 26.78 40.03 27.41
MASS-style (Song et al., 2019) 82.32 19.16 80.10 69.28 26.79 39.89 27.55
% Replace corrupted spans 83.28 19.24 80.88 71.36 2698 39.82 27.65

Drop corrupted tokens 84.44 19.31 80.52 68.67 27.07 39.76 27.82




Q3. Would you expect a BERT encoder ora T5
encoder to learn richer linquistic features, assuming
both were the same size and trained for the same
number of steps? How would it change if the
average masked span length was increased?
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