COS 597G: Understanding Large Language Models

Lecture 2: BERT (encoder-only models)

Fall 2022

PRINCETON UNIVERSITY

Some slides are adapted from Jacob Devlin

Announcements

- Make sure that you are added to Slack already
- Draft schedule (including presentation and providing feedback) is up
- Changes in lecture preparation meetings
 - Monday 3:30-4pm for Wednesday lectures (Danqi's appointment-based office hour is moved to 2:30-3:30)
 - Friday 4:45-5:15pm for Monday lectures
- This Wednesday
 - Presenters: Abhishek Panigrahi, Victoria Graf
 - Feedback providers: Edward Tian, Zihan Ding, Jiatong Yu, Anirudh Ajith

This lecture

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language {jacobdevlin,mingweichang,kentonl,kristout}@google.com

Released in 2018/10, NAACL 2019 best paper

Prior work: ELMo

ELMo (Peters et al., 2018; NAACL 2018 best paper)

- Train two separate unidirectional LMs (left-to-right and right-to-left) based on LSTMs
- Feature-based approach: pre-trained representations used as input to task-specific models
- Trained on **single sentences** from 1B word benchmark (Chelba et al., 2014)

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained **Embeddings**"

Prior work: OpenAl GPT

OpenAI GPT (Radford et al., 2018; released in 2018/6)

- Train one unidirectional LM (left-to-right) based on a deep **Transformer decoder**
- Fine-tuning approach: all pre-trained parameters are re-used & updated on downstream tasks
- Trained on 512-token segments on BooksCorpus much **longer** context!

Train Deep (12-layer) **Transformer LM**

- It is a **fine-tuning approach** based on a deep **Transformer encoder**
- The key: learn representations based on **bidirectional context**

to understand the meaning of words.

- **Pre-training objectives**: masked language modeling + next sentence prediction
- State-of-the-art performance on a large set of **sentence-level** and **token-level** tasks

BERT: key contributions

- Why? Because both left and right contexts are important
 - Example #1: we went to the river bank.
 - Example #2: I need to go to bank to make a deposit.

Masked Language Modeling (MLM)

• Q: Why we can't do language modeling with bidirectional models?

• Solution: Mask out k% of the input words, and then predict the masked words

store gallon the man went to [MASK] to buy a [MASK] of milk

MLM: masking rate and strategy

• Q: What is the value of k?

- They always use k = 15%.
- Too little masking: computationally expensive
- Too much masking: not enough context
- See (Wettig et al., 2022) for more discussion of masking rates
- Q: How are masked tokens selected?
 - 15% tokens are uniformly sampled
 - Is it optimal? See span masking (Joshi et al., 2020) and PMI masking (Levine et al., 2021)

- Example: He [MASK] from Kuala [MASK], Malaysia.
 - Note: We will see that span masking used in T5 models soon

MLM: 80-10-10 corruption

For the 15% predicted words,

- 80% of the time, they replace it with [MASK] token
- 10% of the time, they replace it with a random word in the vocabulary
- 10% of the time, they keep it unchanged

went to the store \longrightarrow went to the [MASK]

went to the store \longrightarrow went to the running

went to the store \longrightarrow went to the store

Why? Because [MASK] tokens are never seen during fine-tuning (See Table 8 for an ablation study)

Next Sentence Prediction (NSP)

- NSP is designed to reduce the gap between pre-training and fine-tuning

[CLS]: a special token always at the beginning Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP] Label = NotNext

• Motivation: many NLP downstream tasks require understanding the relationship between two sentences (natural language inference, paraphrase detection, QA)

[SEP]: a special token used to separate two segments

They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

BERT pre-training: putting together

• Vocabulary size: 30,000 workpieces (common sub-word units) (Wu et al., 2016)

• Input embeddings:

(Image: Stanford CS224N)

11

BERT pre-training: putting together

- BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters Same as OpenAI GPT
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters

- Max sequence size: 512 word pieces (roughly 256 and 256) for two non-contiguous sequences)
- Trained for 1M steps, batch size 128k

OpenAl GPT was trained on BooksCorpus only!

• Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)

BERT pre-training: putting together

Pre-training

- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token representations are trained for MLM

Fine-tuning BERT

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

- "Pretrain once, finetune many times."
 - sentence-level tasks

(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning BERT

Start/End Span

(c) Question Answering Tasks: SQuAD v1.1

- "Pretrain once, finetune many times."
 - token-level tasks

CoNLL-2003 NER

Sentence-level tasks

• Sentence pair classification tasks:

MNLI	Premise: A soccer game with mult
	Hypothesis: Some men are playing

Q1: Where can I learn to invest in stocks? QQP Q2: How can I learn more about stocks?

- Single sentence classification tasks:
- {<u>positive</u>, negative} SST2 rich veins of funny stuff in this movie

GLUE

Itiple males playing. {<u>entailment</u>, contradiction, neutral} ng a sport. {<u>duplicate</u>, not duplicate}

(Wang et al., 2019): 6 sentence pair and 2 single-sentence tasks

Token-level tasks

• Extractive question answering e.g., SQuAD (Rajpurkar et al., 2016)

SQuAD

at which stadium in NYC ? hosted Super Bowl XLVIII in 2014 .

- Named entity recognition (Tjong Kim Sang and De Meulder, 2003)
 - Smith lives in New York John
 - B-PER I-PER O O B-LOC I-LOC

CoNLL 2003 NER

```
Question: The New York Giants and the New York Jets play
Context: The city is represented in the National Football
League by the New York Giants and the New York Jets ,
although both teams play their home games at MetLife
Stadium in nearby East Rutherford , New Jersey , which
                                           (Training example 29,883)
```

MetLife Stadium

Fine-tuning BERT

For sentence pair tasks, use [SEP] to separate the two segments with segment embeddings • Add a linear classifier on top of [CLS] representation and introduce $C \times h$ new parameters C: # of classes, h: hidden size

Fine-tuning BERT

Start/End Span

 \bullet

For token-level prediction tasks, add linear classifier on top of hidden representations

Q: How many new parameters?

Experimental results: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avera
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

See Appendix A.4 for detailed differences between BERT and OpenAI GPT

Experimental results: SQuAD

System	D	ev	Te	st
	EM	F1	EM	F
Top Leaderboard Systems	s (Dec	10th,	2018)	
Human	-	-	82.3	9
#1 Ensemble - nlnet	-	-	86.0	9
#2 Ensemble - QANet	-	-	84.5	90
Publishe	d			
BiDAF+ELMo (Single)	-	85.6	-	8:
R.M. Reader (Ensemble)	81.2	87.9	82.3	88
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	
BERT _{LARGE} (Single)	84.1	90.9	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	9
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	9.

21

Ablation study: pre-training tasks

Effect of Pre-training Task

BERT-Base No Next Sent Left-to-Right & No Next Sent Left-to-Right & No Next Sent + BiLSTM

- MLM >> left-to-right LMs
- NSP improves on some tasks
- Note: later work (Joshi et al., 2020; Liu et al., 2019) argued that NSP is not useful

Ablation study: model sizes

# layers	hidde size		# of eads /			
Ну	perpar	ams		Dev Se	et Accura	ncy
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2
3	768	12	5.84	77.9	79.8	88.4
6	768	3	5.24	80.6	82.2	90.7
6	768	12	4.68	81.9	84.8	91.3
12	768	12	3.99	84.4	86.7	92.9
12	1024	16	3.54	85.7	86.9	93.3
24	1024	16	3.23	86.6	87.8	93.7

The bigger, the better!

Ablation study: training efficiency

MLM takes slightly longer to converge because it only predicts 15% of tokens

Conclusions (in early 2019)

From Jacob Devlin's talk in 2019/1:

- Is modeling "solved" in NLP? I.e., is there a reason to come up with novel model architectures?
 - But that's the most fun part of NLP research :(
- Personal belief: Near-term improvements in NLP will be mostly about making clever use of "free" data.
 - Unsupervised vs. semi-supervised vs. synthetic supervised is somewhat arbitrary.
 - "Data I can get a lot of without paying anyone" vs. "Data I have to pay people to create" is more pragmatic distinction.

Conclusions (in early 2019)

From Jacob Devlin's talk in 2019/1:

Empirical results from impact on the field is:
With pre-training, bigg limits (so far).

• Empirical results from BERT are great, but biggest

With pre-training, bigger == better, without clear

What happened after BERT?

Lots of people are trying to understand what BERT has learned and how it works

A Primer in BERTology: What We Know About How BERT Works

Anna Rogers

Center for Social Data Science University of Copenhagen arogers@sodas.ku.dk

Dept. of Computer Science Dept. of Computer Science University of Massachusetts Lowell University of Massachusetts Lowell okovalev@cs.uml.edu arum@cs.uml.edu

Olga Kovaleva

Anna Rumshisky

• Syntactic knowledge, semantic knowledge, world knowledge... How to mask, what to mask, where to mask, alternatives to masking.

What happened after BERT?

- RoBERTa (Liu et al., 2019)
 - Trained on 10x data & longer, no NSP

 - Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD) • Still one of the most popular models to date
- ALBERT (Lan et al., 2020)

 - Increasing model sizes by sharing model parameters across layers • Less storage, much stronger performance but runs slower.
- ELECTRA (Clark et al., 2020)
 - It provides a more efficient training method by predicting 100% of tokens instead of 15% of tokens

What happened after BERT?

- Models that handle long contexts ($\gg 512$ tokens)
 - Longformer, Big Bird, ...
- Multilingual BERT
 - Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary
- BERT extended to different domains
 - SciBERT, BioBERT, FinBERT, ClinicalBERT, ...
- Making BERT smaller to use
 - DistillBERT, TinyBERT, ...

Image from the original paper

Text generation using BERT

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

Alex Wang New York University alexwang@nyu.edu Kyunghyun Cho

New York University Facebook AI Research CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu

Exposing the Implicit Energy Networks behind Masked Language Models via Metropolis--Hastings

Kartik Goyal, Chris Dyer, Taylor Berg-Kirkpatrick

Leveraging Pre-trained Checkpoints for Sequence Generation Tasks

Sascha Rothe, Shashi Narayan, Aliaksei Severyn

Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Marjan Ghazvininejad*

Omer Levy* Yinhan Liu* Facebook AI Research Seattle, WA

src	Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlosse
	The departure of the French combat completed completed on 20 November.
t = 1	The <mark>departure</mark> of French combat troops was <mark>completed</mark> on <mark>20 November</mark> .
t=2	The withdrawal of French combat troops was completed on November 20th .

Q1. Feature-based vs fine-tuning approaches

- as features
- Fine-tuning: introduces minimal task-specific parameters and trains on downstream examples by simply fine-tuning all the parameters

Fine-tuning is more appealing 1) no task-specific engineering 2) re-using most pre-trained weights leads to stronger performance

• Feature-based: task-specific architectures that uses pre-trained representations

Q2. BERT's masking strategy

- 15% uniform masking Why?
- 80-10-10 strategy Why?

Q3: If we scale up BERT by 1000x, would it be still better than unidirectional models? Why do you think the largest models to date are always unidirectional?

