COS 597G: Understanding Large Language Models

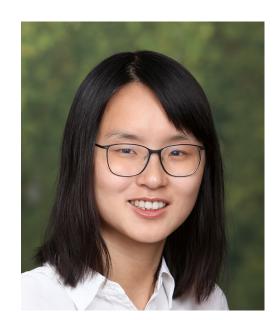
Fall 2022

PRINCETON UNIVERSITY

- Instructor: Danqi Chen
- **Teaching assistant**: Alexander Wettig
- Location: Sherrerd Hall 101
- Meetings: Monday/Wednesday 10:30-11:50am
- Office hours:

 - Alex's office hour: Wednesday 3-4pm (friend center student space)

Logistics



• Danqi's office hour: Monday 2:30-3:30pm (appointment-based, 15 minutes each)

Website: https://www.cs.princeton.edu/courses/archive/fall22/cos597G/

Instructor	Instructor Danqi Chen (danqic AT cs.princeton.edu)	
Teaching assistant Alexander Wettig (awettig AT cs.princeton.edu)		
Lectures	Monday/Wednesday 10:30-11:50am	
Location Sherrerd Hall 101		
Pre-lecture feedback meetings Wednesday/Friday, 4:45pm-5:15pm, COS 412		
Office hours Danqi's office hour: Monday 3-4pm, COS 412 (by appointment) Alex's office hour: Wednesday 3-4pm, Friend Center (student space lob		/)
Feedback form https://forms.gle/rkJVxY8fvn7pchv89		
ر مربح کی میں کی میں کی میں میں کی کی کی کی کی کی کی ک feedback form		

Logistics

Sched	ule
-------	-----

Date	Topic/papers	Recommended reading	Pre- lecture questions	Presenters	Fee pro
Sep 7 (Wed)	Introduction	 Human Language Understanding & Reasoning Attention Is All You Need (Transformers) Blog Post: The Illustrated Transformer HuggingFace's course on Transformers 	-	Danqi Chen	-
		What are LLMs?			
Sep 12 (Mon)	BERT/RoBERTa (encoder-only models) 1. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	 RoBERTa: A Robustly Optimized BERT Pretraining Approach ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators 		Danqi Chen	
Sep 14 Wed)	T5/BART (encoder-decoder models) 1. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (T5)	1. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension			

Note: We will maintain the website for schedule, lecture slides etc, not Canvas!

- We will use Slack as the primary mode of communication (**no Ed!**). For important announcements (e.g., deadlines), I will still write emails.
- We will send an invitation to all the enrolled students later today.
- Why Slack?
 - We prefer Slack messages over emails for all logistical questions. Please just DM me (@danqi) and/or Alex (@Alexander Wettig) instead of emails!
 - We will use Slack to provide feedback on your lectures (more on this later)
 - We will use Slack to clarify lecture-related questions and share more links and papers!
 - If you like, you can also use this Slack team for your project communications
 - More importantly, we strongly encourage you ask questions, share random musings, highlight interesting papers, brag about cool findings, even send stable diffusion pics or GPT-3 examples (use #random!).

Logistics

Course structure

- of-the-art papers about large language models
- expected to come to the class regularly and participate in discussion
- Prerequisites: COS484/584 or similar
 - Familiarity with neural networks and Transformer models (encoder, decoder, encoder-decoder)
 - Familiarity with basic NLP tasks, including understanding (text classification, textual entailment, question answering) and generation (translation, summarization) tasks

• This is an advanced graduate course and we will be teaching and discussing state-

• The course is mostly presentation- and discussion-based and all the students are

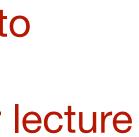
Recommended reading 1. Human Language Understanding & Reasoning Learn about 2. Attention Is All You Need Transformers (Transformers) yourself! 3. Blog Post: The Illustrated Transformer 4. HuggingFace's course on Iransformers

Course structure

	Required reading: everyone needs to read them before the			Each lecture has 2 pres		presenter
Date	class and answe Topic/papers	er pre-lecture questions Recommended reading	Pre- lecture questions	and 3-4 f	Feedback Feedback providers	broviders
Oct 24 (Mon)	Scaling 1. Training Compute-Optimal Large Language Models	 Scaling Laws for Neural Language Models Emergent Abilities of Large Language Models 	Recomm	nended if y	ou are inte	prested in
Oct 26 (Wed)	Privacy 1. Extracting Training Data from Large Language Models	 Quantifying Memorization Across Neural Language Models Deduplicating Training Data Mitigates Privacy Risks in Language Models 	rese We als consid	arching mo so encourag ler incorpor nmended re	re on the t ge the pres ating som	topic! senter to e
Oct 31 (Mon)	Bias & Toxity 1. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models 2. OPT paper, Section 4	 On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? Whose Language Counts as High Quality? Measuring Language Ideologies in Text Data Selection 				

• 20 lectures in total + 2 guest lectures + 1 in-class presentation (see a draft schedule on the website)

in



6

Components and grading

- 25% class participation

 - Come to the class and participate in discussion
- 30% presentation
 - 1-2 times throughout the semester
- 5% lecture feedback
 - 2-3 times throughout the semester
- 40% final project

• Read paper(s) before the class and answer 2+1 pre-lecture questions

Class presentation

- **Two students** work together and deliver a 60-minute presentation
- class about the **topic** of the class
 - Add background and context!
- Lecture preparation meetings (COS 412):
 - Monday 3:30-4 for lectures on Wednesday
 - Friday 4:45-5:15 for lectures next Monday
 - Send me your draft slides on Slack before 11:59pm the night before

 - Hint: add slide numbers for comments and feedback!

• You should cover at least the required paper(s) and your goal is to educate others in the

• Add more discussion and related work ("recommended reading") when you see a fit • It is your job to decide how to best cover the material and how to divide the work

• Google slides are encouraged (easier for comments); Keynote/Powerpoint are fine too

• We are always happy to provide comments and give suggestions on Slack (just DM us!)

What is a good presentation?

- The oldest paper we are going to read is 4 years old \odot Most papers were published in the past 1-2 years (if not a few months).
- They represent the state-of-the-art of the field and our *current understanding* of LLMs
- All research builds on previous research: putting things in context when you read and present a paper!! You are expected to read more if you want to fully understand papers
- When you present a paper:
 - Highlight the biggest take-aways
 - Think about why this paper is important
 - Pay attention to technical details too
 - Choose and present experimental results properly
 - (Bonus) what can be done in the future?

Pre-lecture questions

- Questions posted on the website (a Google form link)
- Due at 11:59pm the night before the lecture

- Q1. What is the biggest improvement of BERT compared to GPT?
- Q2. Why does BERT keep the masked tokens unchanged for 10%?

• Q3. If we scale up BERT by 1000x, would it be still better than unidirectional models? Why do you think the largest models to date are always unidirectional?

You should be able to answer these questions after you read the paper(s)

A more open-ended question: we want to collect your thoughts before the class too and leave time for discussion

For each lecture, we will have 3-4 students to provide feedback on the lectures

- Send the feedback (again, Slack!) to me within a day of the presentation
- Comments on clarity, structure, completeness, slides ...
- Offer constructive criticism but also suggestions
- No need for complete sentences, bullet points are fine

Peer feedback

11

Meeting format

- 60-minute lecture

 - Be prepared for lots of questions (and we encourage questions in the class) • Please control your time (rehearsal is very helpful)!
- 20-minute reviewing and discussing pre-lecture questions
 - Divide the class into groups of 4-5 students (depending on seating and enrollment)
 - 10 minutes: Discuss the open-ended question
 - 10 minutes: Decide on a leader in each group and present a 1-minute summary

Final project

- Students complete a research project in teams of 2-3
- Proposal deadline: Oct 14 11:59pm
- In-class presentation: Dec 5th we are likely to extend the class
- Final paper deadline: Dec 16th (dean's date)
- Two typical types of projects:
 - #1: Train or fine-tune a medium-sized language model (e.g., BERT/RoBERTa, T5) yourself for any problem of your interest. Check out HuggingFace's model hub!

• #2: Evaluate one of the largest language models (e.g., GPT-3, Codex) and understand their capabilities, limitations and risks.

https://openai.com/api/ https://opt.alpa.ai

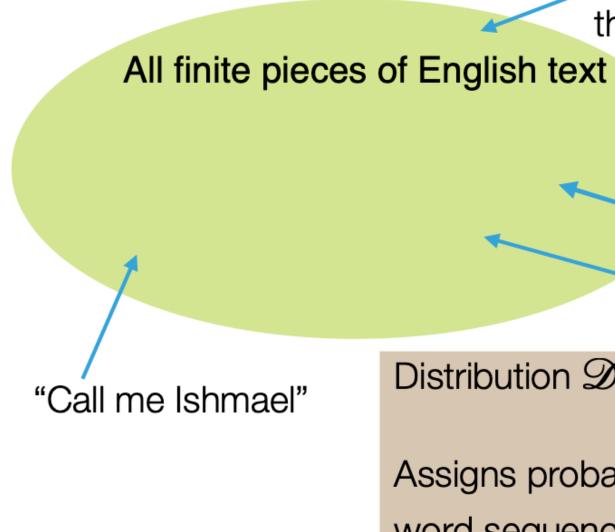
https://huggingface.co/models

Note: we will provide certain budget for compute needs or access to LLMs. More coming soon!

What are large language models (LLMs)?

Language models: narrow sense

sequence w_1, \ldots, w_n (grammatical or not)




```
• A probabilistic model that assigns a probability P[w_1, w_2, ..., w_n] to every finite
```

```
"It was the best of times, it was
              the worst of times"
                      "Hey 'sup."
                     "green sentences, loaded with vitamins"
                 "911 how can I help you"
Distribution \mathcal{D} over all conceivable pieces of English text.
Assigns probability \Pr[w_1 w_2 w_2 \dots w_n] to every finite
word sequence w_1 w_2 w_2 \dots w_n (grammatical or not).
```

Source: COS 324

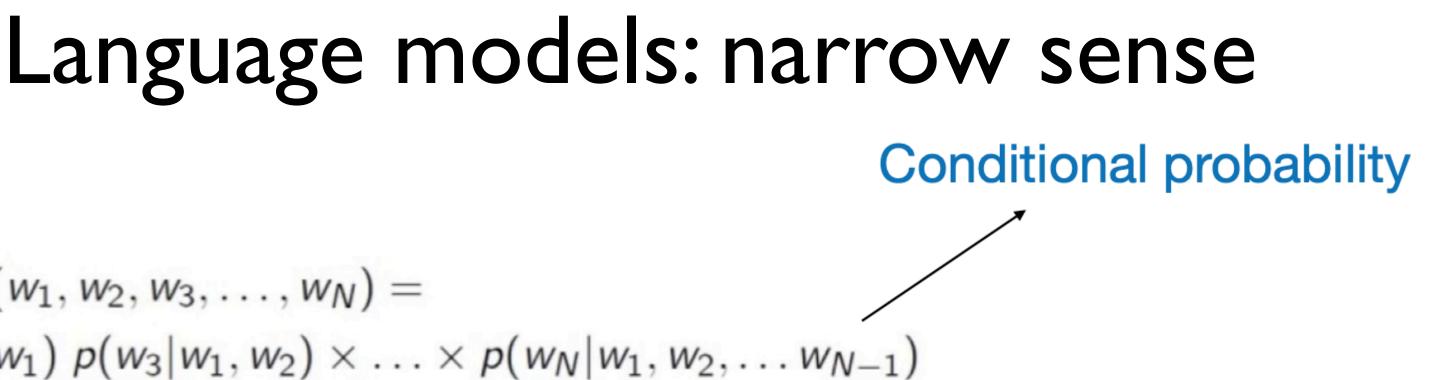
 $p(w_1, w_2, w_3, \ldots, w_N) =$ $p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) \times \ldots \times p(w_N|w_1, w_2, \ldots w_{N-1})$

Sentence: "the cat sat on the mat"

P(the cat sat on the mat) = P(the) * P(cat|the) * P(sat|the cat)

Implicit order

Source: COS 484

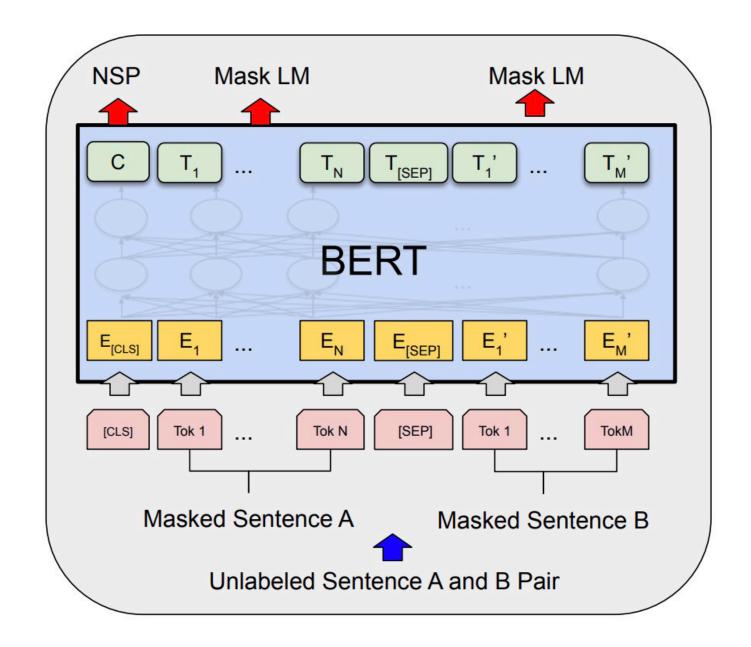


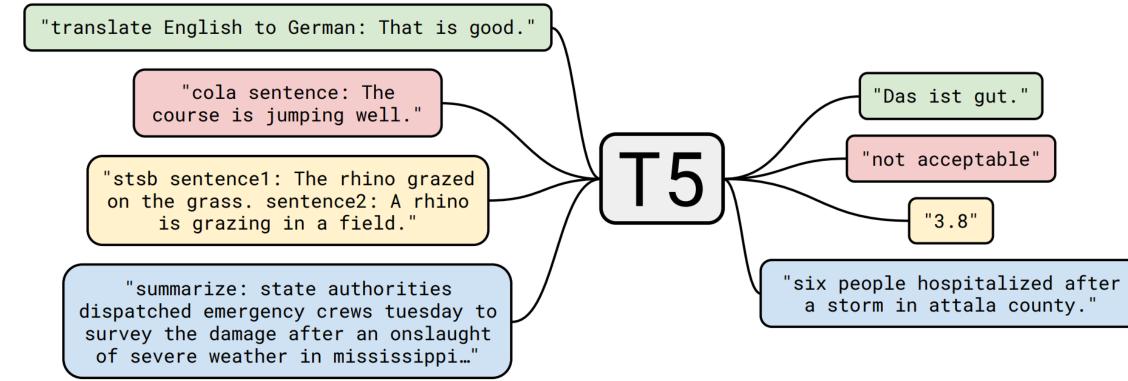
*P(on|the cat sat) * P(the|the cat sat on)*P(mat|the cat sat on the)

> GPT-3 still acts in this way but the model is implemented as a very large neural network of 175-billion parameters!

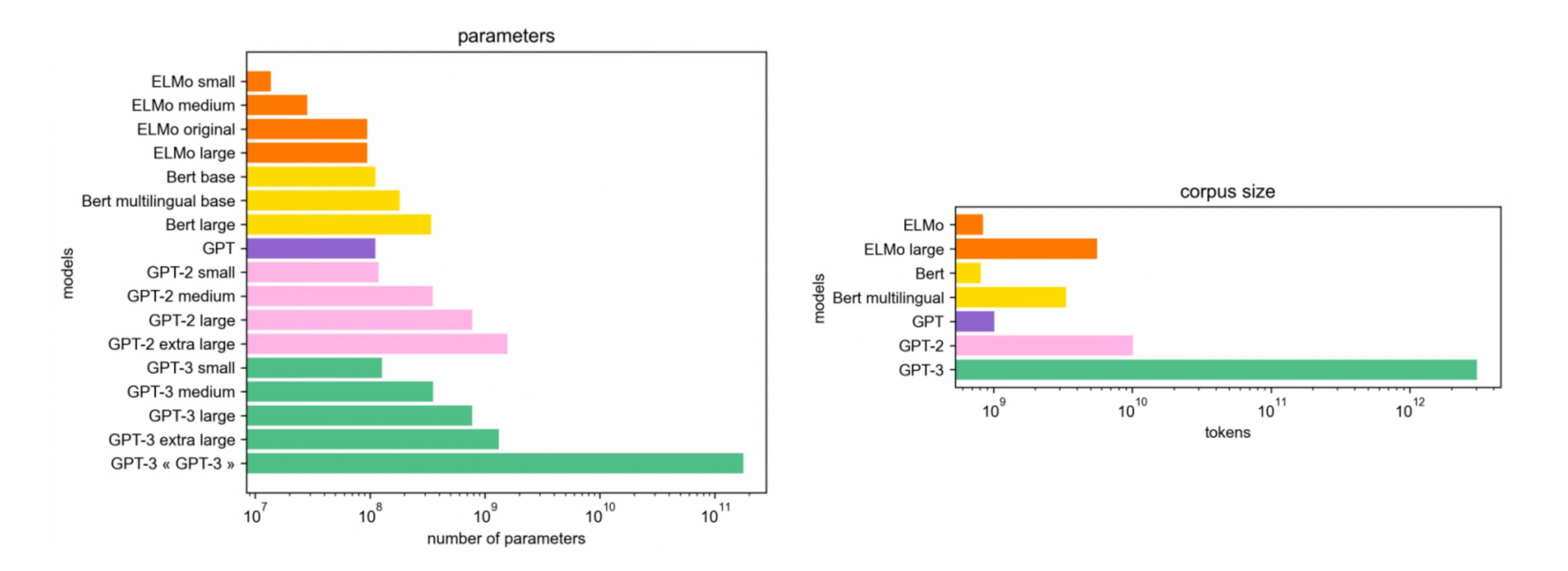
Language models: broad sense

- Decoder-only models (GPT-x models)
- Encoder-only models (BERT, RoBERTa, ELECTRA)
- Encoder-decoder models (T5, BART)





How large are "large" LMs?



More recent models: PaLM (540B), OPT (175B), BLOOM (176B)...

Image source: https://hellofuture.orange.com/en/thegpt-3-language-model-revolution-or-evolution/

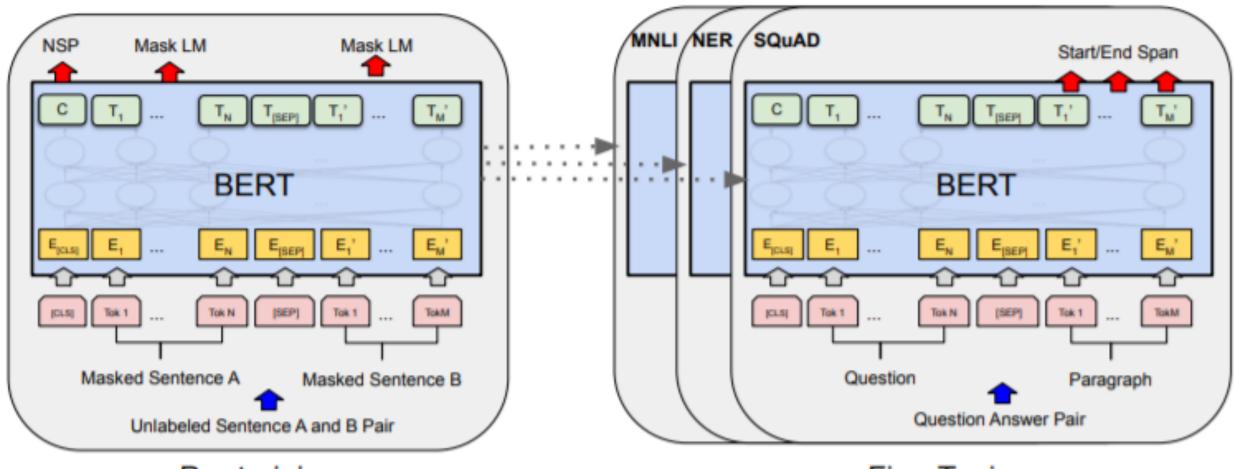
How large are "large" LMs?

- Today, we mostly talk about two camps of models:
 - Medium-sized models: BERT/RoBERTa models (100M or 300M), T5 models (220M, 770M, 3B)
 - "Very" large LMs: models of 100+ billion parameters
- Larger model sizes \Rightarrow larger compute, more expensive during inference
- Different sizes of LMs have different ways to adapt and use them • Fine-tuning, zero-shot/few-shot prompting, in-context learning...
- Emergent properties arise from model scale
- Trade-off between model size and corpus size

Q: Do largest models always give the best performance today?

Pre-training and adaptation

- **Pre-training**: trained on huge amounts of unlabeled text using "selfsupervised" training objectives
- Adaptation: how to use a pretrained model for your downstream task?
 - What types of NLP tasks (input and output formats)?
 - How many annotated examples do you have?



Pre-training

Fine-Tuning

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

LM

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. //

http://ai.stanford.edu/blog/understanding-incontext/

• The promise: one single model to solve many NLP tasks

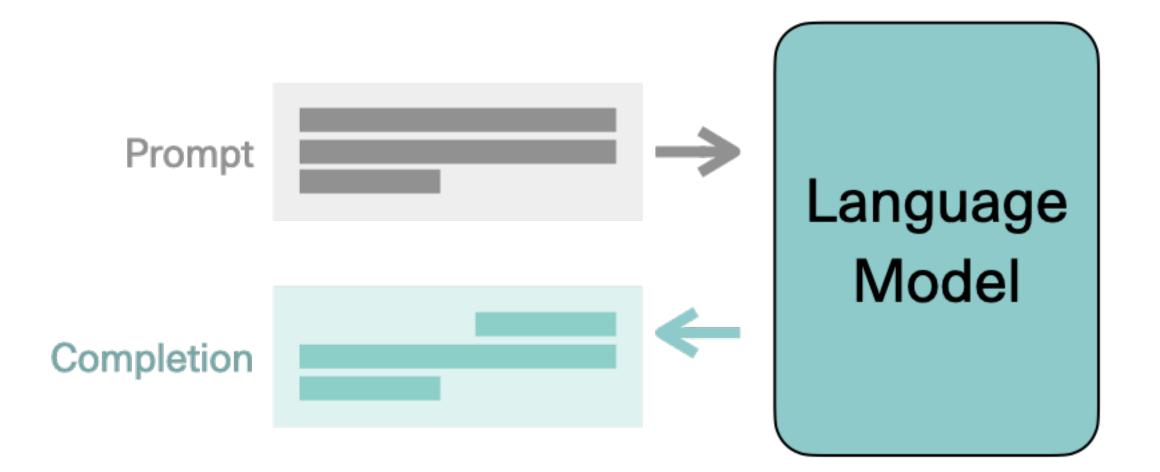
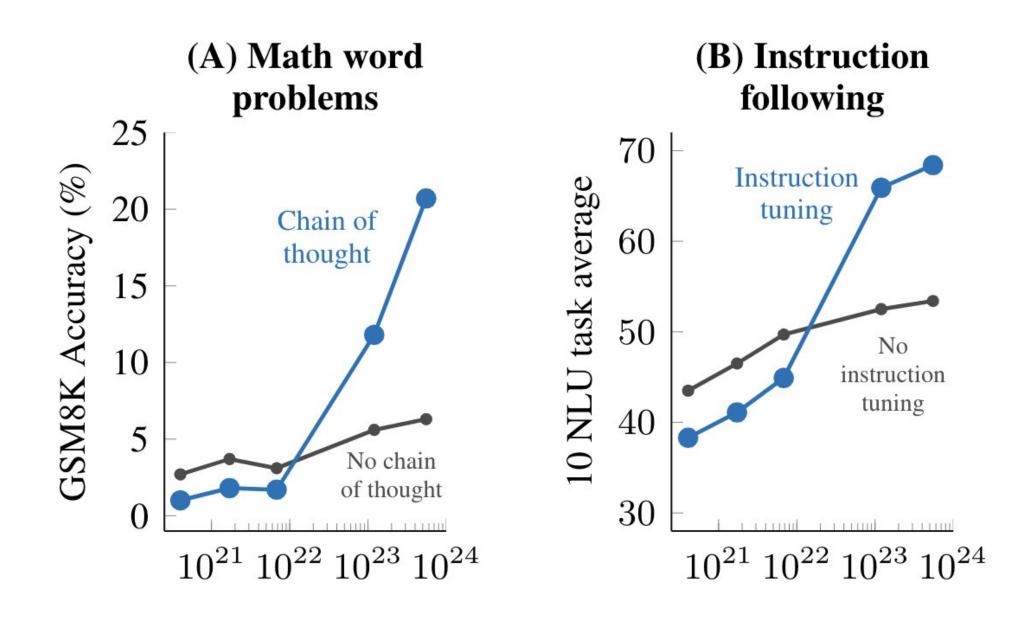


Image credit: Jay Alammar

Why LLMs?

• Emergent properties in LLMs



(Wei et al., 2022)

21

What are we going to cover in the class?

Part I.What are LLMs (3 lectures)

What are LLMs?			
Sep 12 (Mon)	BERT/RoBERTa (encoder-only models) 1. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	 RoBERTa: A Robustly Optimized BERT Pretraining Approach ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators 	Danqi Chen
Sep 14 (Wed)	T5/BART (encoder-decoder models) 1. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (T5)	1. BART: Denoising Sequence-to- Sequence Pre-training for Natural Language Generation, Translation, and Comprehension	
Sep 19 (Mon)	GPT-3 (decoder-only models) 1. Language Models are Few-Shot Learners (GPT- 3)	 Language Models are Unsupervised Multitask Learners (GPT-2) PaLM: Scaling Language Modeling with Pathways OPT: Open Pre-trained Transformer Language Models 	

Part II. How to use and adapt LLMs (6 lectures)

Sep 21 (Wed)	 Prompting for few-shot learning 1. Making Pre-trained Language Models Better Few-shot Learners (blog post) 2. How Many Data Points is a Prompt Worth?
Sep 26 (Mon)	 Prompting as parameter-efficient fine-tuning 1. Prefix-Tuning: Optimizing Continuous Prompts for Generation 2. The Power of Scale for Parameter-Efficient Prompt Tuning
Sep 28 (Wed)	 In-context learning 1. Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? 2. An Explanation of In-context Learning as Implicit Bayesian Inference (we don't expect you to read this paper in depth, you can check out this blog post instead)

 True Few-Shot Learning with Language Models Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models 		
 LoRA: Low-Rank Adaptation of Large Language Models Towards a Unified View of Parameter-Efficient Transfer Learning 		
 What Makes Good In-Context Examples for GPT-3? Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity 		

Prompting, in-context learning

Part II. How to use and adapt LLMs (6 lectures)

Oct 3 (Mon)	Calibration of prompting LLMs 1. Calibrate Before Use: Improving Few-Shot Performance of Language Models 2. Surface Form Competition: Why the Highest Probability Answer Isn't Always Right
Oct 5 (Wed)	Reasoning 1. Chain of Thought Prompting Elicits Reasoning in Large Language Models 2. Large Language Models are Zero-Shot Reasoners
Oct 10 (Mon)	Knowledge 1. Language Models as Knowledge Bases? 2. How Much Knowledge Can You Pack Into the Parameters of a Language Model?

Calibration, reasoning, knowledge

1. Noisy Channel Language Model Prompting for Few-Shot Text Classification		
 Explaining Answers with Entailment Trees Generating Natural Language Proofs with Verifier-Guided Search Faithful Reasoning Using Large Language Models 		
1. Fast Model Editing at Scale		

Part III. Dissecting LLMs: data, model scaling and risks (5 lectures)

Oct 12 (Wed)Data 1. Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus1. The Pile: A Diverse Text Modeling 2. Deduplica Makes LangOct 24 (Mon)Scaling 1. Training Compute-Optimal Large Language Models1. Scaling La Models 2. Emergent Language MOct 26 (Mon)Privacy 1. Extracting Training Data from Large Language Models1. Quantifyi Across Neuro 2. Deduplica ModelsOct 26 (Wed)Bias & Toxity 1. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models 2. OPT paper, Section 41. On the Da Parrots: Car Too Big? 2. Whose La Quality? Me Ideologies in 2. Detoxifyin Risks MarginNov 2 (Wed)Bias & Toxity II 1. Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP1. Challenge Language M			
24 (Mon)1. Training Compute-Optimal Large Language ModelsModels 2. Emergent Language MOct 26 (Wed)Privacy 1. Extracting Training Data from Large Language Models1. Quantifyi Across Neur 2. Deduplica Mitigates Pri ModelsOct 31 (Mon)Bias & Toxity 1. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models1. On the Day Parrots: Car Too Big? 2. OPT paper, Section 4Nov 2 (Wed)Bias & Toxity II 1. Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in1. Challenge Language M 2. Detoxifying	12	1. Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled	Diverse Text Modeling 2. Deduplica
26 (Wed)1. Extracting Training Data from Large Language ModelsAcross Neur 2. Deduplica Mitigates Pr ModelsOct 31 (Mon)Bias & Toxity 1. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models 	24	1. Training Compute-Optimal Large Language	Models 2. Emergent
31 (Mon)1. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models 2. OPT paper, Section 4Parrots: Car 	26	1. Extracting Training Data from Large	Across Neur 2. Deduplica Mitigates Pr
(Wed)1. Self-Diagnosis and Self-Debiasing: ALanguage MProposal for Reducing Corpus-Based Bias in2. Detoxifying	31	1. RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models	Parrots: Car Too Big? 2. Whose La Quality? Me
		1. Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in	Language M 2. Detoxifyir

: An 800GB Dataset of ext for Language

cating Training Data guage Models Better

aws for Neural Language

nt Abilities of Large Models

ving Memorization ural Language Models cating Training Data Privacy Risks in Language

Dangers of Stochastic an Language Models Be

anguage Counts as High leasuring Language in Text Data Selection

ges in Detoxifying Models ring Language Models ginalizing Minority Voices Data, scaling, privacy, bias, toxity

Part IV. Beyond Current LLMs: Models and Applications (5 lectures)

	Nov 7 (Mon)	Sparse models 1. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity	1. Efficient Large S Modeling with Mix 2. Branch-Train-M Embarrassingly Pa Expert Language N
	Nov 9 (Wed)	Retrieval-based LMs 1. Improving language models by retrieving from trillions of tokens	 Generalization to Memorization: Net Language Models Training Langua Memory Augment Few-shot Learning Augmented Langua
	Nov 14 (Mon)	Training LMs with human feedback 1. Training language models to follow instructions with human feedback	 Training a Helpf Assistant with Rei Learning from Hur LaMDA: Langua Dialog Application
	Nov 16 (Wed)	Code Models 1. Evaluating Large Language Models Trained on Code	 A Conversational Program Synthesis InCoder: A Generational Code Infilling and States
2	Nov 21 (Mon)	Multimodal LMs 1. Flamingo: a Visual Language Model for Few- Shot Learning	1. Learning Transfe Models From Natu Supervision (CLIP)

Scale Language ixtures of Experts Aerge: Parallel Training of Models

through learest Neighbor

age Models with Itation ning with Retrieval Juage Models

oful and Harmless einforcement uman Feedback age Models for on

nal Paradigm for is nerative Model for d Synthesis

ferable Visual tural Language P) Sparse/retrievalbased models

Training LMs with human feedback

Code models/visual LMs

Presentation & feedback scheduling

- We will send out a sign-up form tonight (your priority of topics and blackout dates) • **Complete it by Friday evening 11:59pm** and we will finalize the schedule by the end of the week
- If you are still not sure whether you will stay in this course, please let us know ASAP • We still have a number of people on the waitlist
- - We can't let you take the course if you don't get a presentation slot, sorry \otimes
- We need two volunteers for next Wednesday's lecture (topic: T5/BART)!

Sep 14 (Wed)	T5/BART (encoder-decoder models) 1. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (T5)	1. BART: Denoising Sequence-to- Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
--------------------	--	--

Discussion: What are you most excited about LLMs and want to learn from the class?

