COS 426, Spring 2012

Midterm 1

Name:

NetID:
Honor Code pledge:

Signature:

This exam consists of 6 questions. Do all of your work on these pages (use the back for scratch space), giving the answer in the space provided. This is a closed-book exam, but you may use one page of notes during the exam. Put your NetID on every page (1 point), and write out and sign the Honor Code pledge before turning in the test:
"I pledge my honor that I have not violated the Honor Code during this examination."

Question	Score
1	
2	
3	
4	
5	
6	
NetID on every page	
Total	

1. Resampling (20 pts)

Consider the following conceptual image warping pipeline:

(a) Fill in each of the blank boxes as either a bandlimiting filter or a reconstruction filter. (Some of these may operate in the digital realm, while others may be physical.)
(b) The original input to this pipeline is an image of a brick wall. Describe a possible visual artifact of omitting the last bandlimiting filter.
(c) Could the effect in (b) occur when scaling the image to be larger, smaller, both, or neither?
2. Compositing (16 pts)

Consider (R,G,B, α) colors
$\mathrm{A}=(1,1,0,0.9)$
$\mathrm{B}=(1,0,1,0.4)$
$\mathrm{C}=(0,1,1,1.0)$

Compute the following:
(a) A over B
(b) B over C
(c) A over B over C
(d) When composing a series of many "over" operations, what is the net amount by which the color of the lowest layer is multiplied, as a function of the alphas of all the layers?
3. Surface representations (10 pts)

Rank from smallest (1) to largest (5) the size required by each of the following 3D surface representations to store a model of a sphere. For all sampled representations, assume that samples are placed roughly the same distance apart (e.g., 1 mm sample spacing for a 100 mm sphere).
\qquad Triangle mesh with indexed face set
\qquad Triangle mesh with half-edges
\qquad Point cloud
\qquad Implicit function stored an a voxel grid
\qquad Algebraic (quadric polynomial) implicit function

4. Surface continuity (10 pts)

You are given two infinitely smooth $\left(C^{\infty}\right)$ surfaces that intersect along a single curve. Consider the shape U that is their CSG union:
a) What is the minimum degree of surface continuity anywhere on U ?
b) What is the maximum degree of surface continuity anywhere on U ?

5. Subdivision (18 pts)

In addition to the subdivision surfaces considered in class, it is possible to define subdivision curves in 2D. Consider the following three schemes, each consisting of a topology refinement step that inserts a point on each existing edge, and a geometry refinement step that has particular rules for the positions of new points q_{i}^{\prime} and the updated positions p_{i}^{\prime} of old points p_{i} :

Scheme \#1:

new points $q_{i}^{\prime} \leftarrow \frac{1}{2} p_{i}+\frac{1}{2} p_{i+1}$
old points $p_{i}^{\prime} \leftarrow p_{i}$

$\mathrm{p}_{\mathrm{i}}^{\prime}$ (unchanged)

Scheme \#2:

new points $q_{i}^{\prime} \leftarrow \frac{1}{2} p_{i}+\frac{1}{2} p_{i+1}$
old points $p_{i}^{\prime} \leftarrow \frac{1}{8} p_{i-1}+\frac{3}{4} p_{i}+\frac{1}{8} p_{i+1}$

Scheme \#3:
new points $q_{i}^{\prime} \leftarrow-\frac{1}{16} p_{i-1}+\frac{9}{16} p_{i}+\frac{9}{16} p_{i+1}-\frac{1}{16} p_{i+2}$ old points $p_{i}^{\prime} \leftarrow p_{i}$

(a) Is each scheme interpolating or approximating?

Scheme \#1: \qquad Scheme \#2: \qquad Scheme \#3: \qquad
(b) Does each scheme have the convex hull property? (yes/no)

Scheme \#1: \qquad Scheme \#2: \qquad Scheme \#3: \qquad
(c) Would you expect each scheme to be smooth (at least C^{1}) in the limit? (yes/no)
(Hint: only one scheme is not C^{1} - simulate a round on a simple initial curve to determine which.)

Scheme \#1: \qquad
\qquad
\qquad
6. Transformations (25 pts)
(a) Given 2D points represented as column vectors in 3D homogeneous coordinates:

$$
p_{1}=\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \quad p_{2}=\left[\begin{array}{l}
x_{2} \\
y_{2} \\
1
\end{array}\right] \quad p_{3}=\left[\begin{array}{c}
x_{3} \\
y_{3} \\
1
\end{array}\right]
$$

Find a 3×3 affine transformation matrix $\mathbf{M}\left(p_{1}, p_{2}, p_{3}\right)$ that maps:

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \mapsto p_{1} \quad\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \mapsto p_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \mapsto p_{3}
$$

Feel free to leave your result as the product of simpler matrices, if that's easier.
(b) Now find an affine transformation matrix that maps arbitrary points p_{4}, p_{5}, and p_{6}, to p_{1}, p_{2}, and p_{3}, respectively. Feel free to write your result in terms of simpler pieces (such as $\mathbf{M}(\cdot, \cdot, \cdot)$ defined above), if that's easier.

