Assignment 2:
Advanced Features

COS 426: Computer Graphics (Fall 2022)
Agenda

● General tips on tackling A2
● Going over more advanced features of A2
 ○ Scale-Dependent Smoothing
 ○ Truncate, Extrude, Bevel
 ○ Triangle/Quad Topology
 ○ Loop/Catmull-Clark Subdivision
 ○ Curvature
Logistics

- Midterm is Thursday, 10/13
 - Practice exam is released
 - Next week’s precept will be a review session
 - Exercises page
One Primitive A Time

- Start local
 - Modifications to a primitive shouldn’t affect other primitives
- Work with one primitive first
Decouple Topology and Geometry

- **Topology**
 - Relations between structures defining the mesh
 - eg. *What* vertices do I need to add?
 - eg. Between what vertices should I add an edge?

- **Geometry**
 - Spatial relationships, shape, form
 - eg. *Where* on the edge should I insert the vertex?

- **Figure out topology first, then geometry**
Other Tips

● Caution with data
 ○ Do I need to store information about data before modifying them?

● Keep track of new vs old primitives (faces, vertices, half edges)
 ○ New primitives are always added at the end of their respective arrays
Other Tips

- Count primitives after modifications
 - `console.log` is your friend!
- Draw your operations out
- Check your helper functions and mesh traversal functions
- Applying operations to *selected* primitives
Scale-Dependent Smoothing

- Scale delta to \(\delta \cdot \frac{A}{A_v} \) where

\[
A_v = \sum_{f_i \in \text{ring}} \text{area}(f_i)
\]

\[
A = \frac{1}{N_v} \cdot \sum_{v_i \in V} A_{v_i}
\]

\[
A = \frac{3}{N_v} \cdot \sum_{f_i \in F} \text{area}(f_i)
\]
Truncate

- Cut the corners off of a shape
- For every vertex with N edges...
 - Add N-1 vertices
 - Add 1 face
 - How many edges?
Truncate - Topology

- Consider a vertex with 3 edges
- So we need to add 2 vertices, 1 face

Note that the blue vertices should be on top of original vertex in reality.

They are moved apart for easier visualization.
Truncate - Geometry

- Now we move vertices along the edges
 - Calculate all offset vectors before applying changes

After Making Face

Apply Offsets
Extrude

- Each face is moved along its normal
- For each N-gon face:
 - Add N vertices
 - Add N faces
Extrude - Topology

- Note again that the visualizations don’t represent accurate spatial relations
- New blue vertices should be directly on top of the old ones at first!!!
- Let’s think about the end result for 1 face

3D View:

Topological View:
Extrude - Topology

- Denote \text{ov} for old vert and \text{nv} for new vert
Extrude - Topology

- First, insert 4 new vertices
 - SplitEdgeMakeVert x 4
 - Again, there’s no actual movement happening

![Topological View](image)

![Reality](image)
Then, split 4 **adjacent** faces

- SplitFaceMakeEdge x 4
- Between which 2 vertices should we split the face each time?
- Which vertex would we like on which face at the end?
Then, split 4 **adjacent** faces

- SplitFaceMakeEdge x 4
- Between which 2 vertices should we split the face each time?
- Which vertex would we like on which face at the end?
Extrude - Topology

- We want to connect the new vertices...
Now join the two new faces
Extrude - Geometry

- Simple
 - Move each new vert by \(\text{factor} \times f.\text{normal} \)
Bevel

- We want to “flatten” corners and edges
 - Each edge “becomes” a face
 - Each vertex “becomes” a face
A good place to start is Vertex => Face, aka truncate

Now we want to convert edges to faces
 - Let’s consider one edge
Bevel - Topology

- For each corner face, split all of its edges in half
Bevel - Topology

- For each long edge \((v1, v2)\)...
 - Connect the neighboring verts of \(v1\) and \(v2\)
 - Remove the original long edge
 - Remove \(v1\) and \(v2\)

\[
\text{splitFaceMakeEdge} \times 2 \quad \rightarrow \quad \text{joinFaceKillEdge} \quad \rightarrow \quad \text{joinEdgeKillVert} \times 2
\]
Bevel - Geometry

- Simply move each vertex closer to the centroid of its corresponding face based on the factor parameter.
Triangle Topology

- Splits each selected face in the mesh into four triangles
- First, split all n-gons into triangles
 - Filters.triangulate()
TriTop - Topology

- Split all edges
 - For each face, add 3 vertices and 3 faces
 - Create a list of all half edges beforehand
 - When you split a half edge, opposite will be split, so you need to keep track - avoid double splitting

```
splitEdgeMakeVert() x 3
```
TriTop - Topology

- Join new vertices around a face
 - Keep track of new indices by index - new ones are always added to end of verts array
- Do edge splits and join verts in separate loops

splitFaceMakeEdge() x 3
TriTop - Loop Subdivision

- Calculate new positions of vertices as you perform triangle topology
 - Find positions of old verts before adding new verts, and positions of new verts before joining them
- One TriTop is done, update positions

\[
\beta = \begin{cases}
\frac{3}{8n} & n > 3 \\
\frac{3}{16} & n = 3
\end{cases}
\]

These weights are with respect to the old vertices!
TriTop - Loop Subdivision

- On boundary edges, use a different mask:

- To prevent degenerate faces, non-selected faces that touch the boundary should receive a TriTop subdivision.
Quad Subdivision

- Split each edge
- Join any 2 new vertices
- Split this new edge, denote this vert v_{0}
- Join the rest of the new vertices with v_{0}
- Move v_{0} to centroid
Catmull-Clark Subdivision

Centroids

MidPoints

Old Vertices

\[n = \text{number of neighbors of vert} \]
Catmull-Clark Subdivision

Old Vertices

MidPoints

Centroids

n = number of neighbors of vert
Catmull-Clark Subdivision

● Boundaries: Same boundary weights as loop, but more complicated when dealing with boundary faces.
 ○ Details are included in the assignment description
Curvature

- We want to calculate the curvature associated with a vertex
- Then color it based on its curvature
Curvature

- This paper: Akleman, 2006
- Section 2.2 is the most relevant part
 - Gaussian curvature = angular deflection / area associated with vertex
 - Area associated with vertex = Sum of area of faces neighboring vertex
- (This makes for really good art submissions!)
Q&A