
COS 426: Computer Graphics (Fall 2022)

Guðni Gunnarsson, Yuanqiao Lin, Yuting Yang

Finishing Up Assignment 1:
Image Processing

Picking up where we left off last week...
Luminance

- Brightness
- Contrast
- Gamma
- Vignette
- Histogram equalization

Color
- Grayscale
- Saturation
- White balance
- Histogram matching

Filter
- Gaussian
- Sharpen
- Edge detect
- Median
- Bilateral filter

Dithering
- Quantization
- Random dithering
- Floyd-Steinberg error diffusion
- Ordered dithering

Resampling
- Bilinear sampling
- Gaussian sampling
- Translate
- Scale
- Rotate
- Swirl

Composite
- Composite
- Morph

This week’s precept
will focus specifically
on this topic

A Familiar Pattern

Notice anything familiar about the
pattern?

Why Dither?

It’s a Floyd-Steinberg dither over
RGB channels (1 bit each)!

This filter was often used to
compress web GIFs — look for the
artifact in old-school animations!

Transformation (translate/scale/rotate/swirl)

• Inverse mapping

input transformed

Inverse mapping guarantees that every
pixel in the transformed image is filled!

Look up the pixel value

Transformation (translate/scale/rotate/swirl)

• To fill in a pixel in the target image, apply the inverse transform to the pixel
location and look it up in the input image (with resampling technique) for
pixel value.

• i.e. For translation of x’ = x + tx, y’ = y + ty:

I’(x’, y’) = I(x’ - tx, y’ - ty)

• i.e. For scale of x’ = x * sx, y’ = y * sy:

I’(x’, y’) = I(x’ / sx, y’ / sy)

Composite

•output = alpha * foreground + (1 - alpha) *
background

•alpha is the alpha channel foreground

Morph

• Basic concepts
– transform the background image to the foreground image
– alpha = 0: show background
– alpha = 1: show foreground
– alpha is the blending factor / timestamp

• General approach
– specify correspondences (morphLines.html)
– create an intermediate image with interpolated correspondences (alpha)
– warp the background image to the intermediate correspondence
– warp the foreground image to the intermediate correspondence
– blend using alpha

Interpolate Morph Lines

Background Image Foreground Image

current_line[i] = (1 – alpha) * background_lines[i] + alpha * foreground_lines[i]

Morph Algorithm Overview

1. Warp for a single line pair
2. Warp for many line pairs
3. For a fixed t, define the current line pairs as an interpolation between initial

and final lines
4. Warp initial image I to intermediate I’ and final image F to intermediate

F’ using current line pairs from Step 3
5. Alpha blend I’ and F’ using t
6. Vary t to get a morphing animation

Warp Image (Single Line)

Warped background or foreground
(currently undefined)

Pixel source (background or foreground)

: known coordinates.

: unknown invariant.

: unknown coordinate.

Warp Image (Single Line)

Warped background or foreground
(currently undefined)

Pixel source (background or foreground)

Perpendicular(Q - P)

unknown

P’ + u * (Q’ - P’)

Let S be the
projection point of X
onto PQ

u = fraction of SP’s
signed length over
PQ’s absolute length

v = X’s signed
distance to PQ, or to
say, signed length of
SX

S

Warp Image (Single Line)

unit vector

unit vector

If Q - P = (x, y),
Perpendicular(Q – P) = (y, -x)

= Projection of PX onto PQ
scalar

scalar

unknownS S’

S’ = P’ + u * (Q’ - P’)

Want to map X in destination image to unknown pixel
X’ in source image which contains current line

Length of P’Q’

Warp Image (Single Line)

unit vector

unit vector

Contribution (weight) of line segment PQ to the
warping of X’s location
Each line segment contributes some weight

If Q - P = (x, y),
Perpendicular(Q – P) = (y, -x)

= Projection of PX onto PQ
scalar

scalar

unknownS S’

S’ = P’ + u * (Q’ - P’)

Want to map X in destination image to unknown pixel
X’ in source image which contains current line

Length of P’Q’

Warp Image (Single Line)

Q
P

X X

X

Warp Image (Many Lines)

Track total weight for later averaging

Algorithm described
before for a single line

Repeat for all lines and then average based on weight

Blending

alpha = 0.5 (also the blending factor)

+

WarpImage()

WarpImage()

Background Image Foreground Image

Blending

alpha = 0.5 (also the blending factor)

Background Image Foreground Image

Vary this alpha to get an animation

GenerateAnimation(Image0, L0[...], Image1, L1[...])
begin
 foreach intermediate frame time t do
 for i = 0 to number of line pairs do
 L[i] = line t-th of the way from L0[i] to L1[i]
 end
 Warp0 = WarpImage(Image0, L0, L)
 Warp1 = WarpImage(Image1, L1, L)
 foreach pixel p in FinalImage do
 Result(p) = (1-t) Warp0 + t Warp1
 end
 end
end

Morph Algorithm Sketch

Q&A

Course Logistics Update

• New course website incoming!
– Preview at https://reillybova.github.io/COS426-Website/
– Should have everything, but may be slightly buggy as we work out kinks
– If you notice any problems, please make a public Piazza post under the

“website” folder
• Web Framework specs (for those interested):

– ReactJS for state-based logic and modularity
– MaterialUI to build a Material Design compliant interface
– GatsbyJS to compile the React App to static server files (allows us to

host site as a normal webpage, and makes it blazing fast)
– Content generate from Markdown

https://reillybova.github.io/COS426-Website/
https://reactjs.org/
https://material-ui.com/
https://material.io/design/
https://www.gatsbyjs.org/

Fill out the Assignment 0 Feedback Form

Do this now — it takes less than a minute:
• https://forms.gle/o2ea1iJ978zY6Kd78

https://forms.gle/o2ea1iJ978zY6Kd78

Ordered dithering
Pseudo code for n-bit case:
i = x mod m
j = y mod m
err = I(x, y) – floor_quantize(I(x, y)))
threshold = (D(i, j)+ 1) / (m^2 + 1)
if err > threshold
 P(x, y) = ceil_quantize(I(x, y)))
else
 P(x, y) = floor_quantize(I(x, y)))

● floor_quantize(p)
= floor(p * (2^n-1)) / (2^n-1)

● ceil_quantize(p)
= ceil(p * (2^n-1)) / (2^n-1)

m = 4, D=

n=1 example

An Update on the Bilateral Filter

• Compute color distance in RGB space, scaled to [0, 255].
Spatial distance component Color distance component

