Finishing Up Assignment 1:

Image Processing

COS 426: Computer Graphics (Fall 2022)

Gudni Gunnarsson, Yuangqiao Lin, Yuting Yang

Picking up where we lett off last week...

Luminance Dithering
- Brightness - Quantization
- Contrast - Random dithering
- Gamma - Floyd-Steinberg error diffusion
- Vignette - Ordered dithering
- Histogram equalization
Color Resampling
- Grayscale - Bilinear sampling
- Saturation - Gaussian sampling
- White balance - Translate
- Histogram matching - Scale
Filter - Rotate
- Gaussian - Swirl
- Sharpen
- Edge detect Composite
- Median - Composite

Bilateral filter - Morph

bout the

iar a

ing fam

th

>
C
@©
(]
Q
-
O
Z

pattern?

<
—
Q
=
S
aw
—
S
s
S
=~
<

Why Dither?

It's a Floyd-Steinberg dither over
RGB channels (1 bit each)!

This filter was often used to
compress web GIFs — look for the
artifact in old-school animations!

Transformation (translate/scale/rotate/swirl)

Inverse mapping

pixel val

input transformed

-

Inverse mapping guarantees that every
pixel in the transformed image is filled!

Transformation (translate/scale/rotate/swirl)

To fill in a pixel in the target image, apply the inverse transform to the pixel
location and look it up in the input image (with resampling technique) for
pixel value.

i.e. For translation of X' = x + tx, y' =y + ty:
'(x', y')=I(X-tx,y -ty)
i.e. Forscale of X’ = x *sx,y =y * sy:

'(X’, y')=1(X"/sx,y /sy)

-output = alpha * foreground + (1 - alpha) *
background

-alpha is the alpha channel foreground

backgroundImg foregroundImg foregroundImg(alpha channel)

Morph

 Basic concepts
— transform the background image to the foreground image
— alpha = 0: show background
— alpha = 1: show foreground
— alpha is the blending factor / timestamp

* General approach
— specify correspondences (morphLines.html)
— create an intermediate image with interpolated correspondences (alpha)
— warp the background image to the intermediate correspondence
— warp the foreground image to the intermediate correspondence
— blend using alpha

Interpolate Morph Lines

Background Image Foreground Image

current_line[i] = (1 — alpha) * background_lines[i] + alpha * foreground_lines|i]

Morph Algorithm Overview

1. Warp for a single line pair

2. Warp for many line pairs

3. For a fixed ¢, define the current line pairs as an interpolation between initial
and final lines

4. Warp initial image / to intermediate /’ and final image F to intermediate
F’ using current line pairs from Step 3

5. Alphablend /" and F" using ¢

6. Vary ¢ to get a morphing animation

Warp Image (Single Line)

Destination Image

ource Image

4

O : known coordinates.

O : unknown invariant.

O : unknown coordinate.

Warp Image (Single Line)

—
—
—
- -

Destination Image

X'

P'
Source Image

unknown

4

X

Let S be the
projection point of X
onto PQ

u = fraction of SP’s
signed length over
PQ’s absolute length

v = X’s signed
distance to PQ, or to
say, signed length of
SX

Warp Image (Single Line)

_ (X-P)-(@-P)
lQ—-PII?
. (X—P)-Perpendicular(Q—P)l

[lQ—P|
v-Perpendicular(Q'—P")

X'=P' +u-(Q'—P)+ — TP

P

Destination Image

Source Image

Warp Image (Single Line)

_ (X-P)-(@-P)
lQ—-PII?
__ (X—=P)+Perpendicular (Q—P)I

[lQ—Pl|
v-Perpendicular(Q'—P")

X'=P 4+u-(Q'—P)+ — TP

* dist = shortest distance from X to PQ
* O0<=u<=1:dist=|v|
e u<O:dist=||X-P]|
cu>1l:dist=||X-Ql|

. lengthPp
e weight =
g (a+dist)

e weusep=0.5a=0.01,b=2

P

Destination Image

Source Image

Warp Image (Single Line)

dist = shortest distance from X to PQ
* 0<=u<=1:dist=|v]|
e u<O0:dist=[[X=P]|]
*u>1l:dist=||X-Ql|

Warp Image (Many Lines)

For each pixel X in the destination u
DSUM = (0,())

weightsum = () ’

Destination Image

Source Image

For each line P; O,
calculate u,v based on P; Q;
calculate X’; based on u,v and P,-'Q,-'
calculate displacement D; = X;’ - X; for this line
dist = shortest distance from X to P 0;
weight = (length® | (a + dist))?
DSUM +=D; * weight
weightsum += weight
X'=X +DSUM [weightsum
destinationlmage(X) = sourcelmage(X"’)

Blending

alpha = 0.5 (also the blending factor)

Background Image Foreground Image

Blending

alpha = 0.5 (also the blending factor)

Background Image Foreground Image

Morph Algorithm Sketch

GenerateAnimation(Image,, L [...], Image,, L.[...])
begin
foreach intermediate frame time t do
for i =0 to number of line pairs do
L[i] = line t-th of the way from L [i] to L.[i]
end
Warp, = Warplmage(lmage,, L, L)
Warp, = Warplmage(Image,, L., L)
foreach pixel p in Finallmage do
Result(p) = (1-t) Warp, + t Warp,
end
end
end

Course Logistics Update

New course website incoming!
— Preview at https://reillybova.qithub.io/COS426-Website/
— Should have everything, but may be slightly buggy as we work out kinks
— If you notice any problems, please make a public Piazza post under the
“‘website” folder

Web Framework specs (for those interested):
— ReactJS for state-based logic and modularity
— MaterialUl to build a Material Design compliant interface
— GatsbyJS to compile the React App to static server files (allows us to
host site as a normal webpage, and makes it blazing fast)
— Content generate from Markdown

https://reillybova.github.io/COS426-Website/
https://reactjs.org/
https://material-ui.com/
https://material.io/design/
https://www.gatsbyjs.org/

Fill out the Assignment 0 Feedback Form

Do this now — it takes less than a minute:
https://forms.gle/o2ea1iJ978zYE6Kd/8

https://forms.gle/o2ea1iJ978zY6Kd78

Ordered dithering

Pseudo code for n-bit case: (15 7 13 5]
1l=xmodm m =4, D= 3 11 1 9
J = y mod m 12 4 14 6
err = I(x, y) - floor quantize(I(x, Vy))) 0 8 2 10
threshold = (D(i,)+ 1) / (m™2 + 1)

if err > threshold

P(x, y) = ceil quantize(I(x, Vy)))
else

P(x, y) = floor quantize(I(x, vy)))

floor quantize (p)

= floor(p * (2°n-1)) / (2°n-1)
cell quantize (p)

= ceil(p * (2°n-1)) / (2"n-1) n=1 example

An Update on the Bilateral Filter

Compute color distance in RGB space, scaled to [0, 255].

(=024 -02 (G- I(k0))

w(z, j, k1) =€ }

Dyl Nl
205 2of

