Introducing Assignment 1: Image Processing

COS 426: Computer Graphics (Fall 2022)

Setup

Same layout as A0:

- Run "python3 -m http.server" (or similar) inside the assignment directory
- Open "http : //localhost : 8000 " in web browser

GUI

cos426 Assignment 1
Image Processing - Interactive Mode
Switch to: Writeup
Student Name <NetID>

Push Image	\checkmark History		
Batch Mode	- 1: Push Image		
Animation	image name	flower.jpg	\bigcirc
MorphLines	Delete Below		
- SetPixels	- 2: Brightness		
- Luminance	brightness		0
Brightness	Delete		
Contrast	Close Controls		

- Useful functions
- Push Image
- Animation: generate gif animation using (min, step, max)
- MorphLines: specify line correspondences for morphing
- BatchMode: fix current parameter settings
- Features to implement
- SetPixels: set pixels to certain colors (This was A0)
- Luminance: change pixel luminance
- Color: remap pixel colors
- Filter: convolution/box filter
- Dithering: reduce visual artifacts due to quantization \approx cheat our eyes
- Resampling: interpolate pixel colors
- Composite: blending two images
- Misc

Features

Luminance

- Brightness
- Contrast
- Gamma
- Vignette
- Histogram equalization

Color

- Grayscale
- Saturation
- White balance
- Histogram matching

Filter

- Gaussian
- Sharpen
- Edge detect
- Median
- Bilateral filter

Dithering

- Quantization
- Random dithering
- Floyd-Steinberg error diffusion
- Ordered dithering

Resampling

- Bilinear sampling
- Gaussian sampling
- Translate
- Scale
- Rotate
- Swirl

Composite

- Composite
- Morph

A few reminders...

- Don't try to exactly replicate example images.
- Choose parameters in your code which give you best looking results.
- Have fun!

Changing Contrast

- GIMP formula
- value $=($ value -0.5$) *(\tan (($ contrast +1$) * P l / 4))+0.5 ;$
- "Difference above mid-value times contrast multiplier, plus mid-value"
- When contrast=1, $\tan (\mathrm{PI} / 2)$ is infinite, think about limit and what is reasonable
- Clamp pixel to [0, 1] after computing the value.
- Apply to each channel separately.

Gamma correction

- $R=R^{\wedge}$ gamma, $G=G^{\wedge}$ gamma, $B=B^{\wedge}$ gamma
- R, G, B are typically in $[0,1]$ (default in the code base)
- Second arg of gammaFilter(image, logOfGamma) is log(gamma)
- So use gamma = Math.exp(logOfGamma)
- Exponentiation in JS is "Math.pow(base, exponent)" or (ES7 / ES2017+) "base**pow"
- Your browser might not support ES7

Vignette

- Pixels within inner radius remain unchanged
- Pixels outside outer radius are black
- Pixels between innerR and outerR should be multiplied with a value in [0, 1]:
$-R=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right) /$ halfdiag
- Multiplier = 1 - (R - innerR) / (outerR - innerR)
- Similar to soft brush

Multiplier map

Histogram Equalization

Transform an image so that it has flat histogram of luminance values.

Before

Histogram Matching

Transform an image so that it has same histogram of luminance values as reference image.

reference image: town

reference image: flower

Histogram Equalization/Matching

Histogram Equalization/Matching

- Image: x
- Number of gray levels: L
- $p d f(i)=\frac{n_{i}}{n} \quad n_{i}=$ number of pixels of the i-th gray level
- $c d f(j)=\sum_{j=0}^{i} p d f(i)$
- Target cdf:
- Equalization:
- $c d f_{r e f}(i)=\frac{i}{L-1}$
- Matching:
- cdf of the reference image

(source:http://paulbourke.net/miscellaneous/equalisation/)

Histogram Equalization/Matching

- Target cdf:
- Equalization:
- $c d f_{r e f}(i)=\frac{i}{L-1}$
- Matching:
- cdf of the reference image
- Implementation
- Equalization
- $x^{\prime}=(c d f(x) *(L-1)) /(L-1)$
- Matching
- $x^{\prime}=\arg \min _{i}\left|c d f(x)-c d f_{r e f}(i)\right|$
- Convert back to gray level: $x^{\prime}=\frac{x^{\prime}}{L-1}$

Saturation

- pixel = pixel + (pixel - gray(pixel)) * ratio
- Do clamp()

White balance

whitebalance(image, $r g b_{w}$)
$\left[L_{w}, M_{w}, S_{w}\right.$] = rgb2lms $\left(r g b_{w}\right)$
for each pixel x in image
$[L, M, S]=$ rgb2lms(image (x))
$\mathrm{L}=\mathrm{L} / L_{w}$
$\mathrm{M}=\mathrm{M} / M_{w}$
$\mathrm{S}=\mathrm{S} / S_{w}$
image_out(x) $=\operatorname{lms} 2 \operatorname{rgb}(\mathrm{~L}, \mathrm{M}, \mathrm{S})$

- Hints:
- Use rgbToXyz(), xyzToLms(), ImsToXyz(), xyzToRgb()
- Do clamp()

Convolution (Gaussian/Sharpen/Edge)

Convolution (Gaussian/Sharpen/Edge)

- Weights can be normalized depending on the application
- Variety of ways to handle edges
- Mirror boundary
- Zero padding
- Use part of the kernel only

Gaussian filter

- Create a new image to work on
- Weights should be normalized to sum to 1 , otherwise average color changes

$$
G(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}} \quad \frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

- $x=$ distance to the center of the kernel
- Linear separation optimization:
- First apply a 1D Gaussian kernel vertically and then a 1D Gaussian kernel horizontally

Edge

Kernel:

-1	-1	-1		
-1	8	-1		
-1	-1	-1	3	-1
Inside boundary	-1	-1		

- Weights sum to 0
- Optional to invert the edge map for visualization: pixel = 1 - pixel

Sharpen

- Kernel:

-1	-1	-1		
-1	9	-1	4	-1
-1	-1	-1	-1	-1
Inside boundary				
ghts sum to 1				
At boundary				

Edge Filter vs Sharpen Filter

-1	-1	-1	-1	-1	-1
-1	8	-1	-1	9	-1
-1	-1	-1	-1	-1	-1
	Edge Filter				
Convolution(Image, Sharpen Filter) $=$ Convolution(Image, Edge Filter) + Image					

Median

- Use a window (similar to convolution)
- Choose the median within the window
- Sorting: sort by RGB separately / sort by luminance
- Optimization: use quick-select to find median
- Gives median in linear time

RGB Example

Bilateral

- Combine Gaussian filtering in both spatial domain and color domain
- Weight formula of filter for pixel (i, j): Spatial distance component Color distance component

- Similar color -> large weights, Different color -> smaller weights

Sampling \& Frequencies

- Real-world is continuous, Sensors are discrete
- How many samples do we need to measure real world?
- Too few samples = aliasing
- Nyquist rate says that we need to sample at $\geq 2 \times$ the highest frequency for perfect reconstruction
- Aliasing is when signal X masquerades as signal Y
$-Y$ is the alias of X

Fourier Transform

1st Harmonic

2nd Harmonic

Nyquist Frequency

Maps signal from time domain to frequency domain
Use low-pass filter to remove high frequencies and prevent aliasing

Fourier Transform

Maps signal from time domain to frequency domain
Use low-pass filter to remove high frequencies and prevent aliasing

1D to 2D

- 2D signals follow the same analysis as 1D signals

Real world 2D image is sampled by sensor
Aliasing for 2D signals

Inadequate sampling
(Barely) adequate sampling

1D to 2D

- 2D signals follow the same analysis as 1D signals

Fourier Analysis for 2D signals

Spatial domain

C

Frequency domain

If image resolution is low

- E.g. image compression

Then need to apply band-limiting filter to avoid aliasing

- E.g. Triangle, Gaussian

Note that these filters are "finite" filters, they act as approximations to a perfect low pass filter

Resampling

- Gaussian interpolation
- Weights:

$$
G(d, \sigma)=e^{-d^{2} /\left(2 \sigma^{2}\right)}
$$

- Weights need to be normalized, so that sum up to 1
- Use windowSize = 3*sigma - Sigma can be 1
- Window can be square

Resampling

- Bilinear interpolation

$$
\begin{aligned}
f(x, y)=\frac{1}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)} & \left(f\left(Q_{11}\right)\left(x_{2}-x\right)\left(y_{2}-y\right)+f\left(Q_{21}\right)\left(x-x_{1}\right)\left(y_{2}-y\right)\right. \\
& \left.+f\left(Q_{12}\right)\left(x_{2}-x\right)\left(y-y_{1}\right)+f\left(Q_{22}\right)\left(x-x_{1}\right)\left(y-y_{1}\right)\right)
\end{aligned}
$$

(from wikipedia)

Quantization

- Quantize a pixel within $[0,1]$ using n bits - round $\left(p^{*}\left(2^{\wedge} n-1\right)\right) /\left(2^{\wedge} n-1\right)$

$\mathrm{n}=1$ example

Random dithering

- Before quantization:
- $p=p+($ random() -0.5$) /\left(2^{\wedge} n-1\right)$
- n is number of bits per channel

Reduce banding with intentional noise

Ordered dithering

Pseudo code for n-bit case:

i $=x \bmod m$
$j=y \bmod m$
err = I(x, y) - floor_quantize(I(x, y)))

$$
\mathbf{m}=4, \mathrm{D}=\left[\begin{array}{cccc}
15 & 7 & 13 & 5 \\
3 & 11 & 1 & 9 \\
12 & 4 & 14 & 6 \\
0 & 8 & 2 & 10
\end{array}\right]
$$

threshold $=(\mathrm{D}(\mathrm{i}, \mathrm{j})+1) /\left(\mathrm{m}^{\wedge} 2+1\right)$
if err > threshold

$$
P(x, y)=\text { ceil_quantize(I }(x, y)))
$$

else

$$
P(x, y)=\text { floor_quantize(I }(x, y)))
$$

- floor_quantize(p)

$$
=\mathrm{floor}\left(\mathrm{p} *\left(2^{\wedge} \mathrm{n}-1\right)\right) /\left(2^{\wedge} \mathrm{n}-1\right)
$$

- ceil_quantize(p)

$$
=\operatorname{ceil}\left(p *\left(2^{\wedge} n-1\right)\right) /\left(2^{\wedge} n-1\right)
$$

$\mathrm{n}=1$ example

Floyd-Steinberg error diffusion

- Loop over pixels line by line
- Quantize pixel
- Compute quantization error (the difference of the original pixel and the quantized pixel)
- Spread quantization error over four unseen neighboring pixels with weights (see left figure below)
- Results look more natural

Q\&A

Transformation (translate/scale/rotate/swirl)

- Inverse mapping

input

Inverse mapping guarantees that every pixel in the transformed image is filled!

Transformation (translate/scale/rotate/swirl)

- To fill in a pixel in the target image, apply the inverse transform to the pixel location and look it up in the input image (with resampling technique) for pixel value.
- i.e. For translation of $x^{\prime}=x+t x, y^{\prime}=y+t y:$

$$
I^{\prime}\left(x^{\prime}, y^{\prime}\right)=I\left(x^{\prime}-t x, y^{\prime}-t y\right)
$$

- i.e. For scale of $x^{\prime}=x^{*} s x, y^{\prime}=y^{*}$ sy:
$l^{\prime}\left(x^{\prime}, y^{\prime}\right)=I\left(x^{\prime} / s x, y^{\prime} / s y\right)$

Composite

- output = alpha * foreground + (1-alpha) * background
- alpha is the alpha channel foreground

backgroundImg

foregroundImg

foregroundImg(alpha channel)

Result

Morph

- Basic concepts
- transform the background image to the foreground image
- alpha $=0$: show background
- alpha = 1: show foreground
- alpha is the blending factor / timestamp
- General approach
- specify correspondences (morphLines.html)
- create an intermediate image with interpolated correspondences (alpha)
- warp the background image to the intermediate image
- warp the foreground image to the intermediate image
- blend using alpha

Morph

GenerateAnimation(Image $_{0}, L_{0}[\ldots]$, Image $\left._{1}, L_{1}[\ldots]\right)$ begin
foreach intermediate frame time t do for $\mathrm{i}=0$ to number of line pairs do
$L[i]=$ line t-th of the way from $L_{0}[i]$ to $L_{1}[i]$ end
Warp $_{0}=$ WarpImage $^{\left(\text {Image }_{0}, L_{0}, L\right)}$
Warp $_{1}=$ WarpImage $^{\left(\text {Image }_{1}, L_{1}, L\right)}$ foreach pixel p in Finallmage do

Result $(\mathrm{p})=(1-\mathrm{t}) \mathrm{Warp}_{0}+\mathrm{t} \mathrm{Warp}_{1}$ end
end
end

Warp Image

- $u=\frac{(X-P) \cdot(Q-P)}{\|Q-P\|^{2}}$
- $v=\frac{(X-P) \cdot \operatorname{Perpendicular}(Q-P)}{}$ unit vector $\quad \operatorname{Perpendicular}(Q-P)=(y,-x)$
- $X^{\prime}=P^{\prime}+u \cdot\left(Q^{\prime}-P^{\prime}\right)+\frac{v \cdot \text { Perpendicular }\left(Q^{\prime}-P^{\prime}\right)}{\left\|Q^{\prime}-P^{\prime}\right\|}$ unit vector
- dist $=$ shortest distance from X to $P Q$
- 0 <= u <= 1: dist = |v|
- $u<0$: dist $=\| X-P| |$
- $u>1$: dist $=||X-Q||$
- weight $=\left(\frac{\text { length }^{p}}{a+\text { dist }}\right)^{b}$
- we use $p=0.5, a=0.01, b=2$

Contribution of line segment PQ to the warping of X's location

Warp Image

Warped background or Pixel source (background or foreground) foreground (currently black)

Warp Image

For each pixel \boldsymbol{X} in the destination
$\boldsymbol{D S U} \boldsymbol{M}=(0,0)$
weightsum $=0$
For each line $\boldsymbol{P}_{\boldsymbol{i}} \boldsymbol{Q}_{\boldsymbol{i}}$
calculate u, v based on $P_{i} Q_{i}$

calculate X_{i}^{\prime} based on $\boldsymbol{u}, \boldsymbol{v}$ and $P_{i}{ }^{\prime} Q_{i}{ }^{\prime}$
calculate displacement $D_{i}=\boldsymbol{X}_{\boldsymbol{i}}{ }^{\prime}-\boldsymbol{X}_{\boldsymbol{i}}$ for this line dist $=$ shortest distance from X to $P_{i} Q_{i}$
weight $=\left(\text { length }^{p} /(a+\text { dist })\right)^{b}$
DSUM $+=D_{i}$ * weight
weightsum $+=$ weight
$X^{\prime}=X+$ DSUM / weightsum
destinationImage $(\boldsymbol{X})=$ sourceImage $\left(\boldsymbol{X}^{\prime}\right)$

Interpolate Morph Lines

Background Image

Foreground Image
current_line[i] = (1 - alpha) * background_lines[i] + alpha * foreground_lines[i]

Blending

Blending

Background Image
alpha $=0.5$ (also the blending factor)

Foreground Image

