
COS 426: Computer Graphics (Fall 2022)

Guðni Nathan Gunnarsson, Yuanqiao Lin, Yuting Yang

Introducing Assignment 1:
Image Processing

Setup

Same layout as A0:

• Run “python3 -m http.server” (or similar) inside
the assignment directory

• Open “http://localhost:8000” in web browser

GUI

GUI

• Useful functions
– Push Image
– Animation: generate gif animation using (min, step,

max)
– MorphLines: specify line correspondences for

morphing
– BatchMode: fix current parameter settings

GUI

• Features to implement
– SetPixels: set pixels to certain colors (This was A0)
– Luminance: change pixel luminance
– Color: remap pixel colors
– Filter: convolution/box filter
– Dithering: reduce visual artifacts due to quantization ≈ cheat our eyes
– Resampling: interpolate pixel colors
– Composite: blending two images
– Misc

Features
Luminance

- Brightness
- Contrast
- Gamma
- Vignette
- Histogram equalization

Color
- Grayscale
- Saturation
- White balance
- Histogram matching

Filter
- Gaussian
- Sharpen
- Edge detect
- Median
- Bilateral filter

Dithering
- Quantization
- Random dithering
- Floyd-Steinberg error diffusion
- Ordered dithering

Resampling
- Bilinear sampling
- Gaussian sampling
- Translate
- Scale
- Rotate
- Swirl

Composite
- Composite
- Morph

Next week’s precept
will focus specifically
on this topic

A few reminders…

• Don’t try to exactly replicate example images.
• Choose parameters in your code which give you

best looking results.
• Have fun!

Changing Contrast

• GIMP formula
– value = (value - 0.5) * (tan ((contrast + 1) * PI/4)) + 0.5;
– "Difference above mid-value times contrast multiplier, plus

mid-value”
– When contrast=1, tan(PI/2) is infinite, think about limit and

what is reasonable
– Clamp pixel to [0, 1] after computing the value.
– Apply to each channel separately.

Gamma correction

• R = R^gamma, G = G^gamma, B = B^gamma
• R,G,B are typically in [0, 1] (default in the code base)
• Second arg of gammaFilter(image, logOfGamma) is log(gamma)

– So use gamma = Math.exp(logOfGamma)
• Exponentiation in JS is “Math.pow(base, exponent)” or (ES7 / ES2017+) “base**pow”

– Your browser might not support ES7

Vignette

• Pixels within inner radius remain unchanged
• Pixels outside outer radius are black
• Pixels between innerR and outerR should be multiplied with a value in [0, 1]:

– R = sqrt(x^2 + y^2) / halfdiag
– Multiplier = 1 - (R - innerR) / (outerR - innerR)

• Similar to soft brush

Multiplier map

Histogram Equalization

Transform an image so that it has flat histogram of
luminance values.

Histogram Matching

Transform an image so that it has same histogram of
luminance values as reference image.

Histogram Equalization/Matching

pdf

cdf

Histogram Equalization/Matching

(source:http://paulbourke.net/miscellaneous/equalisation/)

Histogram Equalization/Matching

(

Saturation

•pixel = pixel + (pixel - gray(pixel)) * ratio
•Do clamp()

White balance

Convolution (Gaussian/Sharpen/Edge)

w1 w2 w3

w4 w5 w6

w7 w8 w9

Convolution (Gaussian/Sharpen/Edge)

• Weights can be normalized depending on the application
• Variety of ways to handle edges

– Mirror boundary
– Zero padding
– Use part of the kernel only

Gaussian filter

• Create a new image to work on
• Weights should be normalized to sum to 1, otherwise

average color changes

– x = distance to the center of the kernel
• Linear separation optimization:

– First apply a 1D Gaussian kernel vertically and then a
1D Gaussian kernel horizontally

Edge

Kernel:

• Weights sum to 0
• Optional to invert the edge map for visualization:
• pixel = 1 - pixel

-1 -1 -1
-1 8 -1
-1 -1 -1

 3 -1
-1 -1

At boundaryInside boundary

Sharpen

•Kernel:

•Weights sum to 1

-1 -1 -1
-1 9 -1
-1 -1 -1

 4 -1
-1 -1

At boundaryInside boundary

Edge Filter vs Sharpen Filter

-1 -1 -1

-1 8 -1

-1 -1 -1

Edge Filter

-1 -1 -1

-1 9 -1

-1 -1 -1

Sharpen Filter

Convolution(Image, Sharpen Filter) = Convolution(Image, Edge Filter) + Image

Median

• Use a window (similar to convolution)
• Choose the median within the window
• Sorting: sort by RGB separately / sort by luminance
• Optimization: use quick-select to find median

– Gives median in linear time

RGB Example

Bilateral
• Combine Gaussian filtering in both spatial domain and color domain
• Weight formula of filter for pixel (i, j):

• Similar color -> large weights, Different color -> smaller weights

Spatial distance component Color distance component

Sampling & Frequencies

• Real-world is continuous, Sensors are discrete
• How many samples do we need to measure real world?

– Too few samples = aliasing
– Nyquist rate says that we need to sample at ≥ 2× the highest frequency

for perfect reconstruction
• Aliasing is when signal X masquerades as signal Y

– Y is the alias of X

X

Y

Fourier Transform

Maps signal from time domain to frequency domain

Use low-pass filter to remove high frequencies and prevent aliasing

Fourier Transform

Maps signal from time domain to frequency domain

Use low-pass filter to remove high frequencies and prevent aliasing

Bandlimiting

• 2D signals follow the same analysis as 1D signals

1D to 2D

Real world 2D image is sampled by sensor Aliasing for 2D signals

• 2D signals follow the same analysis as 1D signals

1D to 2D

Fourier Analysis for 2D signals
If image resolution is low

- E.g. image compression

Then need to apply band-limiting filter to avoid aliasing
- E.g. Triangle, Gaussian

Note that these filters are “finite” filters, they act as
approximations to a perfect low pass filter

Resampling

• Gaussian interpolation
– Weights:

• Weights need to be normalized, so that sum
up to 1

• Use windowSize = 3*sigma
– Sigma can be 1

• Window can be square

Resampling

• Bilinear interpolation

(from wikipedia)

Quantization

• Quantize a pixel within [0, 1] using n bits
– round(p * (2^n-1)) / (2^n-1)

n=1 example

Random dithering

• Before quantization:
– p = p + (random() - 0.5)/(2^n-1)
– n is number of bits per channel

n=1 example

Reduce banding with intentional noise

Ordered dithering
Pseudo code for n-bit case:
i = x mod m
j = y mod m
err = I(x, y) – floor_quantize(I(x, y)))
threshold = (D(i, j)+ 1) / (m^2 + 1)
if err > threshold
 P(x, y) = ceil_quantize(I(x, y)))
else
 P(x, y) = floor_quantize(I(x, y)))

● floor_quantize(p)
= floor(p * (2^n-1)) / (2^n-1)

● ceil_quantize(p)
= ceil(p * (2^n-1)) / (2^n-1)

m = 4, D=

n=1 example

Floyd-Steinberg error diffusion

• Loop over pixels line by line
– Quantize pixel
– Compute quantization error (the difference of the original pixel and the

quantized pixel)
– Spread quantization error over four unseen neighboring pixels with

weights (see left figure below)
• Results look more natural

Q&A

Transformation (translate/scale/rotate/swirl)

• Inverse mapping

input transformed

Inverse mapping guarantees that every
pixel in the transformed image is filled!

Look up the pixel value

Transformation (translate/scale/rotate/swirl)

• To fill in a pixel in the target image, apply the inverse transform to the pixel
location and look it up in the input image (with resampling technique) for
pixel value.

• i.e. For translation of x’ = x + tx, y’ = y + ty:

I’(x’, y’) = I(x’ - tx, y’ - ty)

• i.e. For scale of x’ = x * sx, y’ = y * sy:

I’(x’, y’) = I(x’ / sx, y’ / sy)

Composite

•output = alpha * foreground + (1 - alpha) *
background

•alpha is the alpha channel foreground

Morph

• Basic concepts
– transform the background image to the foreground image
– alpha = 0: show background
– alpha = 1: show foreground
– alpha is the blending factor / timestamp

• General approach
– specify correspondences (morphLines.html)
– create an intermediate image with interpolated correspondences (alpha)
– warp the background image to the intermediate image
– warp the foreground image to the intermediate image
– blend using alpha

GenerateAnimation(Image0, L0[...], Image1, L1[...])
begin
 foreach intermediate frame time t do
 for i = 0 to number of line pairs do
 L[i] = line t-th of the way from L0[i] to L1[i]
 end
 Warp0 = WarpImage(Image0, L0, L)
 Warp1 = WarpImage(Image1, L1, L)
 foreach pixel p in FinalImage do
 Result(p) = (1-t) Warp0 + t Warp1
 end
 end
end

Morph

Warp Image

unit vector

unit vector

Contribution of line segment PQ to the warping of
X’s location

If Q - P = (x, y),
Perpendicular(Q – P) = (y, -x)

Warp Image

Warped background or
foreground (currently black)

Pixel source (background or foreground)

Perpendicular(Q - P)

unknown

P’ + u * (Q’ - P’)

Warp Image

Interpolate Morph Lines

Background Image Foreground Image

current_line[i] = (1 – alpha) * background_lines[i] + alpha * foreground_lines[i]

Blending

alpha = 0.5 (also the blending factor)

+

WarpImage()

WarpImage()

Background Image Foreground Image

Blending

alpha = 0.5 (also the blending factor)

Background Image Foreground Image

