
COS 426: Computer Graphics (Fall 2022)

Guðni Nathan Gunnarsson, Yuanqiao Lin, Yuting Yang

Getting Started with Final Project:
Github Repo & Starter Code



Agenda

● Final Project Logistics
● Set up Github Repository
● Starter Code



Final Project

● Proposals: Dec 8 - 3:00pm
● Presentations and Demos, Dec 14-15
● Written Report

○ Due Dec 16 (Dean’s date)
○ Example outline available on project specs

● Check-in once with your assigned TA
○ Sometime this week or early next week!
○ Before the presentation

● We recommend you start early!

https://www.cs.princeton.edu/courses/archive/spring22/cos426/assignments/Final-Project/#written-report


Starting things - starter code 

• Download the starter code
• Read the ReadMe and Try to Run It!

– We will demo this
– Mac User: “Error: `gyp` failed with exit code: 1”

• try “xcode-select --install” to install xcode tools
• or “sudo rm -rf $(xcode-select -print-path); 

xcode-select --install” to reinstall

https://www.cs.princeton.edu/courses/archive/spring22/cos426/zips/COS-426-Final-Project.zip


Starting things - git 

• Turn the seed into a repository on github or 
start your own one 
– Share it with your partner
– If your new to git look at this cheat sheet
– Add a .gitignore file

• Highly recommend using VSCode for git 
integration

https://docs.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://docs.github.com/en/github/getting-started-with-github/create-a-repo
https://docs.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://docs.github.com/en/github/getting-started-with-github/create-a-repo
https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/inviting-collaborators-to-a-personal-repository
https://education.github.com/git-cheat-sheet-education.pdf
https://code.visualstudio.com/


Add a .gitignore file !!!!

• NPM installs packages 
locally for you.

• Make use of this and 
don’t push packages 
otherwise it’ll take 
forever to git push and 
pull



Very Basic Git Workflow

● Useful commands:
○ git pull
○ Make your changes to the code
○ git add <modified file names> 

■ To add all changes you can just use ‘git add .’
○ git commit -m ‘<commit message>’
○ git push



Final Project 
- Optional Requirements overview -



Texture mapping (fairly simple)

• ThreeJS has built-in texture support.
• Make sure that your models have proper UVs
• You can also set up texture filtering.

https://threejs.org/manual/#en/textures


Multiple views (intermediate)

• Several ways to achieve this. The 
canonical way is to render the 
scene twice per frame. To do this 
update the render loop.

• Swapping between views is 
simpler, so if you do that, try 
to use a novel viewpoint such 
as over the shoulder.

renderer.setViewport( 0, 0, w, h );
renderer.clear();

// full scene with perspective camera
renderer.render( scene, camera );

// minimap with orthogonal camera
renderer.setViewport( 0, h - mapHeight,   

mapWidth, mapHeight );
renderer.render( scene, mapCamera );



On-screen control panel (fairly simple)

• The control panel is already present. See the 
gui documentation here. Set up the gui for 
your scene like so:

this.state = {
gui: new Dat.GUI(), //Create GUI for scene

     rotationSpeed: 1,
     updateList: [],
};

//Add a control for rotation speed
this.state.gui.add(this.state, 'rotationSpeed', -5, 5);

https://github.com/dataarts/dat.gui/blob/master/API.md


View frustum culling (intermediate)

• Save on rendering time by never sending 
off-screen objects into the renderer.

• Iterate through all your game objects, and 
check if they are inside the frustum.

• Here is a helpful resource on view 
frustum culling.

• For full points, please refrain from using 
the THREE.Frustum type and have 
frustumCulled set to false for all objects.

//In the render loop, recursively check all elements
scene.traverse(function(element) {

element.visible = frustum_check(element, camera)
});

https://www.gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf


Level of Detail control (intermediate)

• Use lower detailed models when far away.
• You will need to take your models and make lower detailed 

versions with a program like blender or find models with 
built in LOD.

• ThreeJS already implements this feature, but for full points 
you will need to implement it yourselves.

//In the render loop, recursively check all elements
scene.traverse(function(element) {

if (element.LOD !== undefined && element.visible)
{

const updatedLOD = getLOD(element, camera); //Make this function
element.children[element.LOD].visible = false;
element.children[updatedLOD].visible = true;

}
});



Occlusion Culling (advanced)

• Hide objects that are occluded by other objects.
• Different methods include:

– Visibility Test
– Hierarchical Visibility
– Hierarchical Occlusion Map

• See the gamedeveloper website to get started.

https://www.gamedeveloper.com/programming/occlusion-culling-algorithms


Procedural and physically-based modeling
(intermediate - advanced)

• Using controlled noise (think perlin 
noise, fBM) to generate terrain or 
particles.

• Classic use-case is generating a 
height-map. For full effect, use textures 
or water to communicate the heights.

• Here is a simple tutorial for 
heightmaps.

• Plenty of other possible uses.
• This works well when combined with 

custom GLSL shaders.

https://www.gamedeveloper.com/design/how-to-procedurally-generate-terrain-in-20-minutes-or-less


Collision detection - (advanced)

• Almost any proper game will need collisions. 
• You can use a library, but for full points implement them yourselves.
• Your collisions do not need to be complicated. Simple box-box, 

sphere-sphere or box-sphere collisions may be sufficient for many 
games.

https://github.com/lo-th/Oimo.js/


Simulated dynamics - (advanced) 

• Modeling dynamic behaviors and physics for objects in the 3D 
world.

• Works well when paired with collision detection.
• For example, the wheels of a vehicle might react realistically 

as they move over rough terrain (e.g. spinning, springs)
• Or a door might swing open differently depending on the 

force exerted by the player. (e.g. shoot the door vs or tapping 
on it).

• This could be an extension of assignment 5.



Skinned Characters - (advanced) 

• Given a moving character model, 
we want to deform the skin so 
that it aligns with the skeleton.

• You will need animated, rigged 
characters. (see for example 
mixamo.com or this 3js example)

• Although ThreeJS has already 
skinning, you will have to make 
your own implementation for full 
points here.

https://www.mixamo.com
https://threejs.org/examples/webgl_animation_skinning_blending.html


Vertex or fragment shaders  
(fairly simple - advanced) 

• Add custom shaders to implement custom effects or offload processing to 
the GPU.

• Useful for other types of advanced functionality, such as: 
– Procedural generation,
– Texture mapping,
– Non-photorealistic Rendering,
– Animation (especially massively parallelized),
– Particle systems,
– Mirrors,
– Portals,
– Non-euclidean geometry,
– and even the kitchen sink.



Advanced image-based techniques
(intermediate - advanced)

• Billboarding - Sprites that always face the camera
• Environment mapping - Quick and dirty 

reflections  
• Once again many of these techniques are already 

implemented in ThreeJS. So for full points here 
you will need your own implementation. 

• However, you are allowed to use the 
CubeCamera to generate cubemap textures.

• Pairs well with GLSL shaders

Environment mapping

Billboarding



Sound (fairly simple)

• ThreeJS has support for audio listeners and audio sources 
which may be used.  You will have to build the infrastructure 
of playing the correct sound at the right time (e.g. with 
events).

• https://freesound.org/ is an excellent source for creative 
commons licensed audio - don’t forget attribution.

https://freesound.org/


Networked multi-player capability 
(advanced)

• Multiplayer through a network.
• Can provide a lot of bang for your buck - it’s 

always a good time to play with friends.
• Use the servicenet wifi network to be able to 

communicate.
• We recommend using websockets so the 

server can be programmed in any language.



Networked multi-player capability 
(advanced)
• Many possible architectures, but one is a simple 

broadcasting server. 
– Every frame (or tick) each player sends their data to the server. 

This would include player positions and the actions that they 
take. The server broadcasts to all the other players.

– Each player reads the data from the server to update their game 
world.

– One player is designated “the leader”. If there is a disagreement 
(e.g. who was killed first), then the leader is the tiebreaker.

– Good for up to 4 local players, but scales poorly after that.



Game level editor (advanced)

• If your game features complicated levels, like a 
shooter or platformer, you might consider making a 
supplementary program to design and create levels.

• This application may be part of your game, a separate 
ThreeJS application, or any other graphical application.


