
Polygonal Meshes
COS 426, Fall 2022



3D Polygonal Mesh
• The power of polygonal meshes



3D Object Representations
•Points
! Range image
! Point cloud

•Surfaces
ØPolygonal mesh
! Parametric
! Subdivision 
! Implicit

•Solids
! Voxels
! BSP tree
! CSG
! Sweep

•High-level structures
! Scene graph
! Application specific



3D Polygonal Mesh
• Set of polygons representing a 2D surface embedded in 3D

Zorin & Schroeder

Face

Vertex
(x,y,z)

Edge



3D Polygonal Mesh
• The power of polygonal meshes



3D Polygonal Mesh
• Set of polygons representing a 2D surface embedded in 3D

Platonic Solids



3D Polygonal Mesh

http://www.fxguide.com/featured/Comic_Horrors_Rocks_Statues_and_VanDyke/



3D Polygonal Mesh

Isenberg



3D Polygonal Meshes
• Why are they of interest?
! Simple, common representation
! Rendering with hardware support
! Output of many acquisition tools

Viewpoint



Outline
• Acquisition
• Representation 

• Processing



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations Sketchup

Blender



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations

Digital Michelangelo Project
Stanford



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations

sphynx.co.uk



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations

Nicky Robinson, COS 426, 2014



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations

Peter Maag, COS 426, 2010Fowler et al., 1992



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations

Jose Maria De Espona

Marching cubes



Polygonal Mesh Acquisition
• Interactive modeling
• Scanners

• Procedural generation
• Conversion
• Simulations

symscape Lee et. al 2010



Outline
• Acquisition
• Representation

• Processing



Polygon Mesh Representation
• Important properties of mesh representation?
! Efficient traversal of topology
! Efficient use of memory
! Efficient updates

Large Geometric Model Repository
Georgia Tech



Polygon Mesh Representation
• Possible data structures



Independent Faces
• Each face lists vertex coordinates
! Redundant vertices
! No adjacency information



Vertex and Face Tables (Indexed Vertices)
• Each face lists vertex references
! Shared vertices
! Still no adjacency information



Full Adjacency Lists
• Store all vertex, edge, and face adjacencies 
! Fast direct adjacency traversal
! Extra storage



Full Adjacency Lists
Adjacency relationships visualized:



Partial Adjacency - Winged Edge
• Adjacency encoded in edges
! All adjacencies in O(1) time
! Little extra storage (fixed records)
! Arbitrary polygons



Winged Edge
• Example:



Half Edge
• Traversals do not require “ifs” in code
• Consistent orientation 



Half Edge … in more detail
• Each half-edge stores:
! Its twin half-edge



Half Edge
• Each half-edge stores:
! Its twin half-edge
! The next half-edge



Half Edge
• Each half-edge stores:
! Its twin half-edge
! The next half-edge
! The next vertex



Half Edge
• Each half-edge stores:
! Its twin half-edge
! The next half-edge
! The next vertex
! The incident face



Half Edge
• Each half-edge stores:
! Its twin half-edge
! The next half-edge
! The next vertex
! The incident face

• Each face stores:
! 1 adjacent half-edge 

• Each vertex stores:
! 1 outgoing half-edge 



Half Edge
• Queries. How do you find:
! All faces incident to an edge?
! All vertices of a face?
! All faces incident to a face?
! All vertices incident to a vertex?



Half Edge
• Adjacency encoded in edges
! All adjacencies in O(1) time
! Little extra storage (fixed records)
! Arbitrary polygons
! Assumes 2-Manifold surfaces



Outline
• Acquisition
• Representation

• Processing



Polygonal Mesh Processing
• Analysis
! Normals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel



Polygonal Mesh Processing
• Analysis

ØNormals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel



Polygonal Mesh Processing
• Analysis

ØNormals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel

Face normals:
(use cross product)



Polygonal Mesh Processing
• Analysis

ØNormals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel

Vertex normals:



Polygonal Mesh Processing
• Analysis

ØNormals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel

Vertex normals:



Polygonal Mesh Processing
• Analysis

ØNormals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel

Vertex Normals:

for each face
• calculate face normal
• add normal to each connected vertex normal



Polygonal Mesh Processing
• Analysis

ØNormals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel

Vertex Normals:

for each face
• calculate face normal
• add normal to each connected vertex normal

for each vertex normal
• normalize



Polygonal Mesh Processing
• Analysis
! Normals
ØCurvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel

color-coded curvature 
(red à higher curvature)



Polygonal Mesh Processing
• Analysis
! Normals
! Curvature

• Warps
ØRotate
! Deform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel



Polygonal Mesh Processing
• Analysis
! Normals
! Curvature

• Warps
! Rotate
ØDeform

• Filters
! Smooth
! Sharpen
! Truncate
! Bevel

Sheffer



Polygonal Mesh Processing
• Analysis
! Normals
! Curvature

• Warps
! Rotate
! Deform

• Filters
ØSmooth
! Sharpen
! Truncate
! Bevel

Thouis “Ray” Jones

How?



The Laplacian Operator

• Mesh formulation: 

Olga Sorkine

Average of 
Neighboring 
Vertices

is the number of 
neighbors.



5

5

• The Laplacian operator Δ

𝐿(𝑣!) = Δ 𝑣! =
"!∈#$%&'%

#!$#%

#&$%&'%

• In matrix form:

𝐿!' = '
−𝑤!' 𝑖 ≠ 𝑗
Σ'∈&$%&'%𝑤!' 𝑖 = 𝑗
0 𝑒𝑙𝑠𝑒

The Laplacian Operator



The Laplacian Operator

• The Laplacian operator Δ

𝐿(𝑣!) = Δ 𝑣! =
"!∈#$%&'%

#!$#%

#&$%&'%

• However, Meshes are irregular



• The Laplacian operator Δ

𝐿(𝑣!) = Δ 𝑣! =
"!∈#$%&'%

#!$#%

#&$%&'%

• However, Meshes are irregular

! Cotangent weights:

𝐿(𝑝!) =
"!∈#$%&'%

#%!⋅%!

"!∈#$%&'%
#%!

− 𝑝!

𝑤!& =
'() *%! +'() ,%!

-

The Laplacian Operator



Solve Constrained Laplacian Optimization 

• Applicable to:
! Deformation, by adding constraints



• The Laplacian operator Δ

𝐿(𝑣!) = Δ 𝑣! =
"!∈#$%&'%

#!$#%

#&$%&'%

• However, Meshes are irregular

! Cotangent weights:

𝐿(𝑝!) =
"!∈#$%&'%

#%!⋅%!

"!∈#$%&'%
#%!

− 𝑝!

𝑤!& =
'() *%! +'() ,%!

-

Solve Constrained Laplacian Optimization 

Solve:



Polygonal Mesh Processing

Sorkine

Deformation



The Laplacian Operator

• Applicable to:
! Deformation, by adding constraints
! Blending, by concatenating rows in matrix problem 



The Laplacian Operator

• Applicable to:
! Deformation, by adding constraints
! Blending, by concatenating rows 
! Hole filling, by 0’s on the RHS



The Laplacian Operator

• Applicable to:
! Deformation, by adding constraints
! Blending, by concatenating rows 
! Hole filling, by 0’s on the RHS
! Coating (or detail transfer), by copying RHS values (after filtering)



The Laplacian Operator

• Applicable to:
! Deformation, by adding constraints
! Blending, by concatenating rows 
! Hole filling, by 0’s on the RHS
! Coating (or detail transfer), by copying RHS values (after filtering)
! Spectral mesh processing, through eigen analysis



Polygonal Mesh Processing
• Analysis
! Normals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
ØSharpen
! Truncate

Desbrun

Olga Sorkine

Weighted Average 
of Neighbor Vertices



Polygonal Mesh Processing
• Analysis
! Normals
! Curvature

• Warps
! Rotate
! Deform

• Filters
! Smooth
! Sharpen
ØTruncate http://www.uwgb.edu/dutchs/symmetry/archpol.htm

Archimedean Polyhedra



Polygonal Mesh Processing
• Remeshing
! Subdivide
! Resample 
! Simplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract



Polygonal Mesh Processing
• Remeshing
! Subdivide
! Resample 
! Simplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract

Collapse edge

Remove Vertex

Subdivide face



Polygonal Mesh Processing
• Remeshing

ØSubdivide
! Resample 
! Simplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract

Zorin & Schroeder



Polygonal Mesh Processing
• Remeshing

ØSubdivide
! Resample 
! Simplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract

Matt Matl, COS 426, 2014



Polygonal Mesh Processing
• Remeshing

ØSubdivide
! Resample 
! Simplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract

Dirk Balfanz, Igor Guskov, 
Sanjeev Kumar, & Rudro Samanta, 

Fractal Landscape



Polygonal Mesh Processing
• Remeshing
! Subdivide
ØResample
! Simplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract

- more uniform distribution
- triangles with nicer aspect



Polygonal Mesh Processing
• Remeshing
! Subdivide
! Resample
ØSimplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract



Polygonal Mesh Processing
• Remeshing
! Subdivide
! Resample
! Simplify

• Topological fixup
ØFill holes
! Fix self-intersections

• Boolean operations
! Crop
! Subtract

Podolak



Polygonal Mesh Processing
• Remeshing
! Subdivide
! Resample
! Simplify

• Topological fixup
! Fill holes
ØFix self-intersections

• Boolean operations
! Crop
! Subtract

Borodin



Polygonal Mesh Processing

• Remeshing
! Subdivide
! Resample 
! Simplify

• Topological fixup
! Fill holes
! Fix self-intersections

• Boolean operations
ØCrop
ØSubtract
ØEtc.



Summary
• Polygonal meshes
! Most common surface representation
! Fast rendering

• Processing operations
! Must consider irregular vertex sampling
! Must handle/avoid topological degeneracies

• Representation
! Which adjacency relationships to store 

depend on which operations must be efficient



3D Polygonal Meshes
• Properties

? Efficient display
? Easy acquisition
? Accurate
? Concise
? Intuitive editing
? Efficient editing
? Efficient intersections
? Guaranteed validity
? Guaranteed smoothness
? etc.

Viewpoint



3D Polygonal Meshes
• Properties

JEfficient display
JEasy acquisition
LAccurate
LConcise
L Intuitive editing
LEfficient editing
LEfficient intersections
LGuaranteed validity
LGuaranteed smoothness

Viewpoint


