

Image Compositing and Morphing COS 426, Fall 2022

PRINCETON UNIVERSITY

Digital Image Processing

- Changing pixel values
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Moving image locations
 - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 Dithering

Types of Transparency

- Refraction
 - Light is bent as it goes through an object
 - Can focus light: caustics
 - Can be color-dependent: dispersion

Types of Transparency

- Refraction
- Subsurface scattering
 - Light leaves at different position than it entered
 - Translucent materials

Types of Transparency

- Refraction
- Subsurface scattering
- Today: compositing

 Nonrefractive (partial) transparency
 - Separate image into layers with known order
 - *Pixelwise* combination: each pixel in each layer can be transparent, opaque, or somewhere in between

Smith & Blinn`84

Jurassic Park (1993)

Image Composition

- Issues:
 - Segmenting image into regions
 - Blending into single image seamlessly

Image Composition

- Issues:
 - Segmenting image into regions
 - Blending into single image seamlessly

- Chroma keying (blue- or green-screen)
 - Photograph object in front of screen with known color

Rosco Spectrum

- Specify segmentation by hand
 - Purely manual: draw matte every frame
 - Semi-automatic: graph-cut (draw a few strokes)
 Implemented using min-cut algorithm: separate regions along minimal cuts (where edges measure differences between adjacent pixels)

• Portrait mode in Google Pixel Phone

Wadhwa et al., 2018

Portrait mode blur in Google Pixel Phones

Disparity

Input

Wadhwa et al., 2018

Portrait mode blur in Google Pixel Phones

Input

Mask

Output

Wadhwa et al., 2018

Input

Disparity

Output

Image Composition

• Issues:

- Segmenting image into regions
- Blending into single image seamlessly

Image Blending

- Ingredients
 - Background image
 - Foreground image with blue background
- Method
 - Non-blue foreground pixels overwrite background

Blending with Alpha Channel

- Per-pixel "alpha" channel
 - Controls the linear interpolation between foreground and background pixels when elements are composited

Blending with Alpha Channel

- Per-pixel "alpha" channel
 - Controls the linear interpolation between foreground and background pixels when elements are composited

Alpha Channel

0

- Encodes pixel coverage information
 - $\alpha = 0$: no coverage (or transparent)
 - $\alpha = 1$: full coverage (or opaque)
 - $0 < \alpha < 1$: partial coverage (or semi-transparent)
- Example: $\alpha = 0.3$

Alpha Blending: "Over" Operator

- If background B is opaque:
 - C = A over B
 - $C = \alpha_A A + (1 \alpha_A) B$

- If background B has its own α :
 - C = A over B
 - $C = \alpha_A A + (1 \alpha_A) \alpha_B B$
 - $\circ \ \alpha_{\rm C} = \alpha_{\rm A} + (1 \alpha_{\rm A})\alpha_{\rm B}$

• Suppose we put A over B over background G

• How much of B is blocked by A?

 α_A

B

G

• Suppose we put A over B over background G

```
• How much of B is blocked by A?
```

 α_A

B

G

• How much of B shows through A?

 $(1-\alpha_A)$

• Suppose we put A over B over background G

• How much of B is blocked by A?

 $\boldsymbol{\alpha}_{A}$

В

G

• How much of B shows through A?

$$(1-\alpha_A)$$

 $\circ\,$ How much of G shows through both A and B? $(1{-}\alpha_{\text{A}})(1{-}\alpha_{\text{B}})$

• Suppose we put A over B over background G

$$\alpha_A A + (1 - \alpha_A) \alpha_B B + (1 - \alpha_A)(1 - \alpha_B) G$$

Β

G

$$= \alpha_{A}A + (1 - \alpha_{A}) \left[\alpha_{B}B + (1 - \alpha_{B})G\right]$$

= A over [B over G]

Must perform "over" back-to-front: right associative!

Composition algebra – 12 combinations

 $C' = F_A \alpha_A A + F_B \alpha_B B$

Composition algebra – 12 combinations

 $C' = F_A \alpha_A A + F_B \alpha_B B$

Composition algebra – 12 combinations

 $C' = F_A \alpha_A A + F_B \alpha_B B$

Composition algebra – 12 combinations

 $C' = F_A \alpha_A A + F_B \alpha_B B$

Composition algebra – 12 combinations

 $C' = F_A \alpha_A A + F_B \alpha_B B$

"Genesis" sequence from Star Trek II: The Wrath of Khan

COS426 Examples

Darin Sleiter

Kenrick Kin

Poisson Image Blending

Beyond simple compositing

• Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

sources

destinations

Poisson Image Blending

Beyond simple compositing

 Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial \Omega} = f^*|_{\partial \Omega}$$

Poisson Image Blending

source/destination

cloning

seamless cloning

Digital Image Processing

- Changing pixel values
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Moving image locations
 - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 Dithering

Image Morphing

Animate transition between two images

Figure 16-9 Transformation of an STP oil ca into an engine block. (Courtesy of Silicon Graphics, Inc.)

H&B Figure 16.9

Cross-Dissolving

- Blend images with "over" operator
 - alpha of bottom image is 1.0
 - $\circ~$ alpha of top image varies from 1.0 to 0.0 $\,$

blend(i,j) = $(1-t) \operatorname{src}(i,j) + t \operatorname{dst}(i,j)$ ($0 \le t \le 1$)

Image Morphing

Combines warping and cross-dissolving

Beier & Neeley Example

Image₀

Result

Image₁

Warp₀

Beier & Neeley Example

Beier & Neeley Example

Black or White, Michael Jackson (1991)

This generates one warp per line, each of which is a simple rotation and non-uniform scale (scaling is only done along the axis of the line). These warps must then be averaged to get the final warp. In the original paper, the weights for the average are tuned with the formula below. The *dist* variable is the distance of the point from the line segment, and the *length* variable is the length of the line segment.

$$weight = \left(\frac{length^p}{a+dist}\right)^b$$

The equations give several parameters to tune, and I got the best results when a = 0.001, b = 2, and p = 0. Ignoring the length of the line segments (by setting p to zero) gave better results than when the length was taken in to account. I used seven contours with 28 line segments to represent the features of each face. Nice implementation notes from Evan Wallace, Brown University

Nice implementation notes from Evan Wallace, Brown University http://cs.brown.edu/courses/csci1950-g/results/proj5/edwallac/

Warping Pseudocode


```
WarpImage(Image, L<sub>src</sub>[...], L<sub>dst</sub>[...])
begin
    foreach destination pixel p<sub>dst</sub> do
         psum = (0,0)
         wsum = 0
         foreach line L<sub>dst</sub>[i] do
             p_{src}[i] = p_{dst} transformed by (L_{dst}[i], L_{src}[i])
             psum = psum + p_{src}[i] * weight[i]
             wsum += weight[i]
         end
         p_{src} = psum / wsum
         \text{Result}(p_{dst}) = \text{Resample}(p_{src})
    end
end
```

Morphing Pseudocode


```
GenerateAnimation(Image<sub>0</sub>, L_0[...], Image<sub>1</sub>, L_1[...])
begin
    foreach intermediate frame time t do
        for i = 1 to number of line pairs do
            L[i] = line t^{th} of the way from L_0[i] to L_1[i]
        end
        Warp_0 = WarpImage(Image_0, L_0, L)
        Warp_1 = WarpImage(Image_1, L_1, L)
        foreach pixel p in FinalImage do
            \text{Result}(p) = (1-t) \text{Warp}_0 + t \text{Warp}_1
        end
    end
end
```


Amy Ousterhout

COS426 Examples

ckctwo

BELONA

Jon Beyer

COS426 Examples

- "Computational photography": new photographic effects that inherently use multiple images + computation
- Example: stitching images into a *panorama*

• Photo montage

• Stoboscopic images

• Extended depth-of-field

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros

SIGGRAPH 2007

Slides by J. Hays and A. Efros

Image Completion

Image Completion

2.3 Million unique images from Flickr

Scene Completion Result

Image Completion Algorithm

Input image

Scene Descriptor

Image Collection

Mosaicing

200 matches

. . .

20 completions

Summary

- Image compositing
 - Alpha channel
 - Porter-Duff compositing algebra
- Image morphing
 - Warping
 - Compositing
- Compositing in Computational Photography

Next Time: 3D Modeling

Hoppe

