

IImage Compositing and Morphing COS 426, Fall 2022

PRINCETON UNIVERSITY

Digital Image Processing

- Changing pixel values
- Linear: scale, offset, etc.
- Nonlinear: gamma, saturation, etc.
- Histogram equalization
- Filtering over neighborhoods
- Blur \& sharpen
- Detect edges
- Median
- Bilateral filter
- Moving image locations
- Scale
- Rotate
- Warp
- Combining images
- Composite
- Morph
- Quantization
- Spatial / intensity tradeoff
- Dithering

Types of Transparency

- Refraction
- Light is bent as it goes through an object
- Can focus light: caustics
- Can be color-dependent: dispersion

Types of Transparency

- Refraction
- Subsurface scattering
- Light leaves at different position than it entered
- Translucent materials

Types of Transparency

- Refraction
- Subsurface scattering
- Today: compositing
- Nonrefractive (partial) transparency
- Separate image into layers with known order
- Pixelwise combination: each pixel in each layer can be transparent, opaque,
 or somewhere in between

Example

Jurassic Park (1993)

Image Composition

- Issues:
- Segmenting image into regions
- Blending into single image seamlessly

Image Composition

- Issues:
- Segmenting image into regions
- Blending into single image seamlessly

Image Matting

- Chroma keying (blue- or green-screen)
- Photograph object in front of screen with known color

Image Matting

- Specify segmentation by hand
- Purely manual: draw matte every frame
- Semi-automatic: graph-cut (draw a few strokes)

Implemented using min-cut algorithm: separate regions along minimal cuts (where edges measure differences between adjacent pixels)

Image Matting

- Portrait mode in Google Pixel Phone

Image Matting

- Portrait mode blur in Google Pixel Phones

Input
Mask

Image Matting

- Portrait mode blur in Google Pixel Phones

Mask
Output

Image Composition

- Issues:
- Segmenting image into regions
- Blending into single image seamlessly

Image Blending

- Ingredients
- Background image
- Foreground image with blue background
- Method
- Non-blue foreground pixels overwrite background

Blending with Alpha Channel

- Per-pixel "alpha" channel
- Controls the linear interpolation between foreground and background pixels when elements are composited

Blending with Alpha Channel

- Per-pixel "alpha" channel
- Controls the linear interpolation between foreground and background pixels when elements are composited

Alpha Channel

- Encodes pixel coverage information
- $\quad \alpha=0$: no coverage (or transparent)
- $\quad \alpha=1$: full coverage (or opaque)
- $0<\alpha<1$: partial coverage (or semi-transparent)
- Example: $\alpha=0.3$

Partial
Coverage

Semi-
Transparent

Alpha Blending: "Over" Operator

- If background B is opaque:
- C = A over B
- $C=\alpha_{A} A+\left(1-\alpha_{A}\right) B$
- If background B has its own α :
- C = A over B
- $C=\alpha_{A} A+\left(1-\alpha_{A}\right) \alpha_{B} B$
- $\alpha_{C}=\alpha_{A}+\left(1-\alpha_{A}\right) \alpha_{B}$

Compositing Algebra

- Suppose we put A over B over background G

- How much of B is blocked by A ?

$$
\alpha_{A}
$$

Compositing Algebra

- Suppose we put A over B over background G

- How much of B is blocked by A ?

$$
\alpha_{A}
$$

- How much of B shows through A ?

$$
\left(1-\alpha_{A}\right)
$$

Compositing Algebra

- Suppose we put A over B over background G

- How much of B is blocked by A ?

$$
\alpha_{\mathrm{A}}
$$

- How much of B shows through A ?

$$
\left(1-\alpha_{A}\right)
$$

- How much of G shows through both A and B ?

$$
\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right)
$$

Compositing Algebra

- Suppose we put A over B over background G

- Final result?

$$
\begin{gathered}
\alpha_{A} A+\left(1-\alpha_{A}\right) \alpha_{B} B+\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right) G \\
=\alpha_{A} A+\left(1-\alpha_{A}\right)\left[\alpha_{B} B+\left(1-\alpha_{B}\right) G\right] \\
=A \text { over }[B \text { over } G]
\end{gathered}
$$

Other Compositing Operations

Composition algebra - 12 combinations
$C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B$

Operation	F_{A}	F_{B}
Clear	$\mathbf{0}$	$\mathbf{0}$
A	$\mathbf{1}$	$\mathbf{0}$
B	$\mathbf{0}$	$\mathbf{1}$

Other Compositing Operations

Composition algebra - 12 combinations
$C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B$

Other Compositing Operations

Composition algebra - 12 combinations
$C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B$

Other Compositing Operations

Composition algebra - 12 combinations
$C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B$

Operation	F_{A}	F_{B}
Clear	0	0
A	1	0
B	0	1
A over B	1	$1-\alpha_{A}$
B over A	$1-\alpha_{B}$	1
A in B	α_{B}	0
B in A	0	α_{A}
A out B	$1-\alpha_{B}$	0
B out A	0	$1-\alpha_{A}$

Other Compositing Operations

Composition algebra - 12 combinations
$C^{\prime}=F_{A} \alpha_{A} A+F_{B} \alpha_{B} B$

Operation	F_{A}	F_{B}
Clear	0	0
A	1	0
B	0	1
A over B	1	$1-\alpha_{A}$
B over A	$1-\alpha_{\mathrm{B}}$	1
A in B	α_{B}	0
B in A	0	α_{A}
A out B	$1-\alpha_{\mathrm{B}}$	0
B out A	0	$1-\alpha_{\mathrm{A}}$
A atop B	α_{B}	$1-\alpha_{\mathrm{A}}$
B atop A	$1-\alpha_{\mathrm{B}}$	α_{A}
A xor B	$1-\alpha_{\mathrm{B}}$	$1-\alpha_{\mathrm{A}}$

Image Composition Example

Stars

Planet

Image Composition Example

BFire

FFire

Image Composition Example

BFire out Planet

Composite

Image Composition Example

"Genesis" sequence from Star Trek II: The Wrath of Khan

COS426 Examples

Kenrick Kin

Poisson Image Blending

Beyond simple compositing

- Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

destinations

cloning

Poisson Image Blending

Beyond simple compositing

- Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

$$
\min _{f} \iint_{\Omega}|\nabla f-\mathbf{v}|^{2} \text { with }\left.f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}
$$

Poisson Image Blending

cloning

seamless cloning

Digital Image Processing

- Changing pixel values
- Linear: scale, offset, etc.
- Nonlinear: gamma, saturation, etc.
- Histogram equalization
- Filtering over neighborhoods
- Blur \& sharpen
- Detect edges
- Median
- Bilateral filter
- Moving image locations
- Scale
- Rotate
- Warp
- Combining images
- Composite
- Morph
- Quantization
- Spatial / intensity tradeoff
- Dithering

Image Morphing

- Animate transition between two images

(a)

(b)

(c)

Figure 16-9
Transformation of an STP oil ca into an engine block. (Courfesy of Silicon Graphics, Inc.)

Cross-Dissolving

- Blend images with "over" operator
- alpha of bottom image is 1.0
- alpha of top image varies from 1.0 to 0.0

$$
\operatorname{blend}(\mathrm{i}, \mathrm{j})=(1-\mathrm{t}) \operatorname{src}(\mathrm{i}, \mathrm{j})+\mathrm{tdst}(\mathrm{i}, \mathrm{j}) \quad(0 \leq t \leq 1)
$$

$t=0.0$
$t=0.5$
dst

$t=1.0$

Image Morphing

- Combines warping and cross-dissolving

Beier \& Neeley Example

Beier \& Neeley Example

Beier \& Neeley Example

Black or White, Michael Jackson (1991)

Warping Pixel Locations

$$
\begin{gathered}
u=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|^{2}} \\
\boldsymbol{v}=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot \operatorname{Perpendicular}(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|} \\
\boldsymbol{X}^{\prime}=\boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \operatorname{Perpendicular}\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|}
\end{gathered}
$$

The original basis
The warped basis

This generates one warp per line, each of which is a simple rotation and non-uniform scale (scaling is only done along the axis of the line), These warps must then be averaged to get the final warp. In the original paper, the weights for the average are tuned with the formula below. The dist variable is the distance of the point from the line segment, and the length variable is the length of the line segment.

$$
\text { weight }=\left(\frac{\text { length }^{p}}{a+\text { dist }}\right)^{b}
$$

The equations give several parameters to tune, and I got the best results when $a=0.001, b=2$, and $p=0$. Ignoring the length of the line segments (by setting p to zero) gave better results than when the length was taken in to account. I used seven contours with 28 line segments to represent the features of each face.

Warping Pseudocode

```
WarpImage(Image, L Lrcc
begin
    foreach destination pixel pdst do
        psum = (0,0)
        wsum = 0
        foreach line L Lsst [i] do
            p
            psum = psum + porc[i] * weight[i]
            wsum += weight[i]
        end
        p src = psum / wsum
        Result( (pst})=\mathrm{ Resample(psrc}
    end
end
```


Morphing Pseudocode

GenerateAnimation(Image ${ }_{0}, L_{0}[\ldots]$, Image $\left._{1}, L_{1}[\ldots]\right)$ begin
foreach intermediate frame time t do for $i=1$ to number of line pairs do
$L[i]=$ line $t^{\text {th }}$ of the way from $L_{0}[i]$ to $L_{1}[i]$
end
Warp $_{0}=$ WarpImage $^{\left(\text {Image }_{0}, L_{0}, \mathrm{~L}\right)}$
Warp $_{1}=$ WarpImage $^{\left(\text {Image }_{1}, L_{1}, L\right)}$ foreach pixel p in Finallmage do

Result(p) $=(1-t)$ Warp $_{0}+$ t Warp $_{1}$ end
end
end

COS426 Example

Amy Ousterhout

COS426 Examples

Jon Beyer

COS426 Examples

Image Composition Applications

- "Computational photography": new photographic effects that inherently use multiple images + computation
- Example: stitching images into a panorama

[Michael Cohen]

Image Composition Applications

- Photo montage

[Michael Cohen]

Image Composition Applications

- Stoboscopic images

Image Composition Applications

- Extended depth-of-field

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros
SIGGRAPH 2007

Slides by J. Hays and A. Efros

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Image Completion

Hays et al. SIGGRAPH 07

Image Completion

2.3 Million unique images from Flickr

Image Completion Algorithm

Input image

20 completions

Scene Descriptor

Image Collection

200 matches

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Summary

- Image compositing
- Alpha channel
- Porter-Duff compositing algebra
- Image morphing
- Warping
- Compositing
- Compositing in Computational Photography

Next Time: 3D Modeling

Hoppe

