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Digital Image Processing

- Changing pixel values

o Linear: scale, offset, etc.
o Nonlinear: gamma, saturation,
etc.

o Histogram equalization

* Filtering over neighborhoods
o Blur & sharpen
o Detect edges
o Median
o Bilateral filter

Moving image locations

o Scale
o Rotate
o Warp

Combining images
o Composite
o Morph

Quantization

Spatial / intensity tradeoff
o Dithering
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Image Warping

* Move pixels of an image

Source image

‘p > B
- S

Destination Ima

y

ge




-

Image Warping

« |ssues:

o Specifying where every pixel goes (mapping)
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Image Warping

« |ssues:

o Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)

Source image

oooo'o’o’

(]
\

,,,,,
ooooooooooooo
» & :

o
OO0 QOO

{
000000

A
[ ]
/

Destination image




-

Image Warping

» Issues:
o Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)
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Two Options

» Forward mapping

Source image

* Reverse mapping
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Mapping

« Define transformation

o Describe the destination (x,y) for every source (u,v)
(vice-versa, if reverse mapping)
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Parametric Mappings

- Scale by factor:
o X = factor* u
o y = factor* v

Scale F
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Parametric Mappings

* Rotate by 6 degrees:
o X=Ucos@—-vsinf
oy=uUsSinfd +vcoséb
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Parametric Mappings

- Shear in X by factor: v
o X =U + factor* v v
Y=V Shear X
u

factor=0.3
- Shearin Y by factor: v y
o X=U >
o y =V + factor* u Shear Y
u
factor=0.3 X




-

Other Parametric Mappings

 Any function of u and v:
o X =1 (u,v)

o y = f,(uv)

Fisye
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C0S426 Examples

Aditya Bhaskara |

Wei Xiang
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More COS426 Examples

Sid Kapur

Michael Oranato

Eirik Bakke
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Point Correspondence Mappings

« Mappings implied by correspondences:
o Ao A’
o Be B’
o Ce(C

Warp
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Line Correspondence Mappings

- Alternatively, Beier & Neeley [92] use pairs of lines to specify warp

(more on this next time)

Beier & Neeley
SIGGRAPH 92/
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Image Warping

* Issues:
o Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)
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Digital Image Processing

When implementing operations that move pixels,
must account for the fact that digital images are
sampled versions of continuous ones
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Sampling and Reconstruction
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Sampling and Reconstruction
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Sampling and Reconstruction

Original
signal

l Sampling

Reconstruction

Reconstructed
signal

Fiqure 19.9 FYDFH
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Sampling Theory

- How many samples are enough?

o How many samples are required to represent a given signal
without loss of information?

o What signals can be reconstructed without loss for a given sampling rate?

- What happens when we use too few samples?

4 Original function

/ Reconstructed function

/N

Jw/




/

Sampling Theory

- What happens when we use too few samples?
o Aliasing: high frequencies masquerade as low ones

- Specifically, in graphics:
o Spatial aliasing
o Temporal aliasing

TR

Figure 14.17 FvDFH
J
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Spatial Aliasing

- Artifacts due to limited spatial resolution

T \/\/\/\/
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Spatial Aliasing

- Artifacts due to limited spatial resolution

(Barely) adequate sampling
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Spatial Aliasing

- Artifacts due to limited spatial resolution
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Spatial Aliasing

- Artifacts due to limited spatial resolution

“Jaggies”




-

Temporal Aliasing

- Artifacts due to limited temporal resolution
o Flickering
o Strobing (“Backwards spinning wheel” effect)
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Sampling Theory

- How many samples are enough to avoid aliasing?

o How many samples are required to represent a given signal
without loss of information?

o What signals can be reconstructed without loss for a given sampling rate?
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Sampling Theory

- How many samples are enough to avoid aliasing?

o How many samples are required to represent a given signal
without loss of information?

o What signals can be reconstructed without loss for a given sampling rate?

Inadequate
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Sampling Theory
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Sampling Theory

- How many samples are enough to avoid aliasing?

o How many samples are required to represent a given signal
without loss of information?

o What signals can be reconstructed without loss for a given sampling rate?

Adequate
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Spectral Analysis

 Spatial domain: * Frequency domain
o Function: f(x) o Function: F(u)
o Filtering: convolution o Filtering: multiplication
F &) |F )|

Wx <WM\/W> )

Any signal can be written as a
sum of periodic functions.
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Fourier Transform
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Fourier Transform

* Fourier transform:
F(u) = f f(x)e ™ dx

* |nverse Fourier transform:

£(x) = } Fu)e" ™ dy




Sampling Theorem

A signal can be reconstructed from its samples
iff it has no content > %2 the sampling frequency
— Shannon

* The minimum sampling rate for a bandlimited function
Is called the “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.
That frequency is called the bandwidth.
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Why >?

- Sampling rate must be > 2 bandwidth

Adequate?
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Why >?

- Sampling rate must be > 2 bandwidth

Inadequate

VAVAVAV
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Antialiasing

- Sample at higher rate

o Not always possible
o Doesn’t always solve the problem

- Pre-filter to form bandlimited signal
o Use low-pass filter to limit signal to < 1/2 sampling rate
o Trades blurring for aliasing
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Image Processing

- Consider scaling the image (or, equivalently, reducing resolution)

Original image 1/4 resolution
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Image Processing

l Real world

Sample
| Discrete samples (pixels)

Reconstruct
Reconstructed function

Transform
l Transformed function

Filter
l Bandlimited function

Sample
| Discrete samples (pixels)

Reconstruct
Display
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Image Processing

l Real world

>

Continuous Function
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Image Processing

Sample
l Discrete samples (pixels)
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Discrete Samples
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Image Processing

Reconstruct
l Reconstructed function

>

Reconstructed Function
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Image Processing

Transform
l Transformed function

>

Transformed Function
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Image Processing

Filter
l Bandlimited function

>

Bandlimited Function
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Image Processing

I ?

b

Discrete samples

f

Sample
1 Discrete samples (pixels)
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Image Processing

Reconstruct
l[ﬁsMay

Display
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Image Processing

l Real world

Sample
| Discrete samples (pixels)

Reconstruct
Reconstructed function

Transform
l Transformed function

Filter
l Bandlimited function

Sample
| Discrete samples (pixels)

Reconstruct
Display

* Ideal resampling
requires correct filtering
to avoid artifacts

- Reconstruction filter
especially important
when magnifying

- Bandlimiting filter
especially important
when minifying
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Ideal Image Processing Filter

+ Frequency domain Retain these frequencies

(multiplication)
Remove these frequencies

« Spatial domain
(convolution)

SIN TTX

Sinc(x) =
X

Figure 4.5 Wolberg
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Practical Image Processing

l Real world

Sample
l Discrete samples (pixels)

Reconstruct
. l Reconstructed function
%_ Transform
= l Transformed function
G
3 Filter
oC

l Bandlimited function

Sample
1 Discrete samples (pixels)

Reconstruct
l Display

- Resampling: effectively
(discrete) convolution
to prevent artifacts

 Finite low-pass filters
o Point sampling (bad)
o Box filter
o Triangle filter
o Gaussian filter
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Point Sampling

» Possible (poor) resampling implementation:

float Resample(src, u, v, k, w) {
int iu = round(u);
int iv = round(v) ;
return src(iu,iv);

}

Source image Destination image
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Point Sampling

« Use nearest sample

1l

t

nput

Output
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Point Sampling

Point Sampled: Aliasing!

Correctly Bandlimited
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Resampling with Filter

« Output is weighted average of inputs:

float Resample(src, u, v, k, w)
{
float dst = 0;
float ksum = 0;
int ulo = u - w,; el
for (int iu = ulo; iu < uhi; iu++) {
for (int iv = vlo; iv < vhi; iv++) {
dst += k(u,v,iu,iv,w) * src(u,v);
ksum += k(u,v,iu,iv,w);

S —

return dst / ksum;

Source image

Destination image

J
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Image Resampling

- Compute weighted sum of pixel neighborhood

o Qutput is weighted average of input, where
weights are normalized values of filter kernel (k)

k(ix,iy) represented by gray value
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Image Resampling

- For isotropic Triangle and Gaussian filters,
K(ix,ly) is function of d and w

-W d W
Triangle filter

K(i,j)=max(1 - d/w, 0)

Filter Width = 2
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Image Resampling

- For isotropic Triangle and Gaussian filters,
K(ix,ly) is function of d and w

-W d W
Gaussian filter

G(d,o)=e'?")

Filter Width = 2

* Drops off quickly, but never gets to exactly O
* In practice: compute outto w ~ 2.5 or 3o

J
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Image Resampling

+ Filter width chosen based on scale factor (or blur)

Filter Width = 1

AN

-W W
Triangle filter

Width of filter
affects blurriness
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Image Resampling

- What if width (w) is smaller than sample spacing?

(U@/‘N

Filter Width < 1

-W

Triangle filter

W
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Image Resampling (with width < 1)

« Reconstruction filter: Bilinearly interpolate four closest pixels
o a = linear interpolation of src(u4,v,) and src(u,,Vs)
o b = linear interpolation of src(u4,v,) and src(u,,v,4)
o dst(x,y) = linear interpolation of “a” and “b”

(Uq,V5) a (Us,V5)
O O @)
(u,V)T
( )O O O
uq,Vv b
Filter Width < 1 LA (Ug,V4)
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Image Resampling (with width < 1)

« Alternative: force width to be at least 1

Filter Width = 1

-W

Triangle filter

W
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Putting it All Together

» Possible implementation of image scale:

Scale(src, dst, sx, sy) {
w = max(l/sx,1/sy,1);
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {
float u = ix / sx;
float v = iy / sy;
dst(ix,iy) = Resample(src,u,v,k,w);
}
}

}

Source image

Destination image

J




-

Putting it All Together

» Possible implementation of image rotation:

Rotate (src, dst, O) {

w = 1;
for (int ix
for (int 1

0; ix < xmax; ix++) {

= 0; iy < ymax,; iy++) {
float u ix*cos (-OQ) - iy*sin(-0);
float v ix*sin(-0O) + iy*cos (-0);
dst(ix,iy) = Resample(src,u,v,k,w);

i nw<

}
}
} ; 5 i _______ ?

)

)

o

o 6000

o




Sampling Method Comparison

* Trade-offs

o Aliasing versus blurring
o Computation speed

Triangle Gaussian
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Forward vs. Reverse Mapping

* Reverse mapping:

Warp (src, dst) {
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {

float w # 1 / scale(ix, iy);
float u = £, (ix,iy) ;
float v = £ 1(:|.x iy) ;

T ST S R PE SRS T YRR SR SUT SIS P (T T RS ST TS ST ST RIE IS PPN

Source image “Destination image

J
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Forward vs. Reverse Mapping

* Forward mapping:

Warp (src, dst) {
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {

float x = £, (iu,iv);
float y = £,(iu,iv);
float w % 1 / scale(x, y);

Splat(src(iu,iv) ,x,y,k,w);

Source image

Destination image
€
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Forward vs. Reverse Mapping

* Forward mapping:

Warp(src, dst) {
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {

float x = £, (iu,iv);

float y = £,(iu,iv);

float w # 1 / scale(x, y);

for (int ix = xlo; ix <= xhi; ix++) {

for (int iy = ylo; iy <= yhi; iy++) {
dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);

}
} Problem?
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Forward vs. Reverse Mapping

Warp (src, dst) {

for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
float x = £_(iu,iv);
float y = £f,(iu,iv);
float w = 1 scale(x, y);

I~

for (int ix xlo; ix <= xhi; ix++) {
for (int iy = ylo; iy <= yhi; iy++) {
dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
ksum(ix,iy) += k(x,y,ix,iy,w);

}

}
}
for (ix = 0; ix < xmax; 1ix++)
for (iy = 0; iy < ymax; iy++)
dst(ix,iy) /= ksum(ix,iy)
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Forward vs. Reverse Mapping

« Tradeoffs?
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Forward vs. Reverse Mapping

« Tradeoffs:

o Forward mapping:
- Requires separate buffer to store weights

o Reverse mapping:
- Requires inverse of mapping function, random access to original image
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Summary

» Mapping
o Forward vs. reverse
o Parametric vs. correspondences

- Sampling, reconstruction, resampling
o Frequency analysis of signal content
o Filter to avoid undersampling: point, triangle, Gaussian
o Reduce visual artifacts due to aliasing
» Blurring is better than aliasing
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Next Time...

- Changing pixel values

o Linear: scale, offset, etc.
o Nonlinear: gamma, saturation,
etc.

o Histogram equalization

* Filtering over neighborhoods
o Blur & sharpen
o Detect edges
o Median
o Bilateral filter

Moving image locations

o Scale
o Rotate
o Warp

Combining images
o Composite
o Morph

Quantization

Spatial / intensity tradeoff
o Dithering




